AN ELASTIC MASS FOR CONFECTIONERS’ USE.
It should be made in a well glazed earthen crock; metallic vessels are not good, as the gelatine burns too easily on the sides, and dries out where it gets too hot. Nor is a water bath to be recommended for dissolving the gelatine, for the sides get too hot and dry out the gelatine.
A quart of water is put in the crock and heated to boiling; it is then taken off the open fire and two pounds of the finest gelatine stirred in, a little at a time. After the gelatine is completely dissolved there is to be added eight or ten pounds (according to the quality of the gelatine) of the finest white sirup previously warmed, and constantly stirred. The mass must not boil, as it would easily burn, or turn brown and acquire a bad color.
Thirty or forty pounds of a beautiful white elastic mass can be made by this recipe in an hour at a cost of ten or twelve cents. Its chief use is for making figures and ornaments to put on bridal cakes and other fanciful productions of the confectioner. It contains no harmful ingredients and can be eaten without danger. If coloring is added, cochineal, plant green (chlorophyl), and turmeric are safer than aniline colors.
* * * * *
CAOUTCHOUC.
A. Levy contributes the following brief account of this subject to the _Moniteur Scientifique_:
The crude gum cut in irregular strips is passed five or six times between two strong rolls sixteen inches in diameter, and making two or three revolutions per minute. These rolls are kept wet by water trickling on them. This broad strip of gum is perforated with foreign substances and looks like a sieve. It is next put in the cutting machine, a horizontal drum provided with an axle having knives on it. So much heat is produced by this cutting that the water would soon boil if it were not renewed. A second machine of this kind completes the cutting and subdividing, and expels the air and water from it. The mass is then pressed in round or quadrangular blocks.
The vulcanization of thin articles from one twenty-fifth to one-sixteenth inch thick, is done by Parkes’ patented process, that is, dipping it in carbon disulphide for a short time, to which chloride or bromide of sulphur has been added, and when the solvent has evaporated the sulphur remains behind. Balls, ornamental articles, and surgical apparatus are dipped into melted sulphur at 275 deg. or 300 deg. Fahr.
The third most important process consists in mixing in the sulphur mechanically with the gum in the cutting machine.
After the pieces have received the form they are to have they are heated with steam or hot air to 275 deg.. Flat articles are vulcanized between press plates heated by steam. This vulcanization is said to have been discovered accidentally by searching different colored stuffs, some of which were dyed yellow with sulphur; the latter stood well.
Hard rubber contains more sulphur, and is heated longer and higher. Small or fine tubes and hose are made by a continuous machine that presses it through a hole with a core to it. Large hose is made by wrapping strips around iron rods or tubes. The little air balloons are made in Paris (their value is $300,000) by Brissonet from English Mackintosh cloth. Powdered soapstone is strewed over it in cutting. The edges are united by hammering on a horn anvil, or by machinery through simple adhesion, and the cut surfaces are smooth.
* * * * *
PHOTOGRAPHIC ACTION STUDIED SPECTROSCOPICALLY.
At the last meeting of the Chemical Society Captain Abney gave a lecture on the above subject to a large audience. We may premise by saying that the demonstrations he gave were carried out principally by means of experiments on paper, to enable his hearers to understand the different points he wished to enforce. The lecture was commenced by insisting on the fact that all photographic action took place within the molecules of the compound acted upon and not on the molecule itself, and from this he deduced that the absorption of radiation which take place by such compounds is principally caused by the atoms composing the molecule. This was found to be the case in the organic liquids, which the lecturer to some extent had investigated, where he had further traced the absorption to the vibrating atoms of hydrogen in those bodies. In order to properly investigate the action of light it was necessary to ascertain which components of light in the spectrum were the chief agents in causing it, and this led him to consider the means to be employed to obtain a spectrum.
The effects of diffraction gratings were first discussed, and in two which were shown it was found that in some spectra the visible portions were dimmed; in others the ultra-violet and the infra-red were almost entirely absent. It thus became necessary to investigate the condition of a grating before placing any confidence in the results obtained. This was the first pitfall into which an experimentalist was liable to fall. If prisms were used for obtaining the spectrum, then precautions had also to be taken, since all glass absorbed a portion of the ultra-violet rays and some the infra-red. On the whole, he considered that the best glass to use was pure white flint glass for the collimator, the prisms, and the camera lens. Another inquiry that was necessary was the source of radiation which it was proposed to use. Diagrams showed the unsatisfactory nature of solar radiation, and a photograph of the whole spectrum, taken with it under certain atmospheric conditions in which the effect of the green rays were almost _nil_, demonstrated the false conclusions that might be deduced as to the sensitiveness of any particular compound.
Captain Abney also showed the satisfactory conditions which existed in using the crater of the positive pole of the electric arc light as a source, and by diagrams illustrated the inferiority of an incandescent light for the purpose, owing to the deficiency of violet and ultra-violet rays. Having thus settled the source of illumination and the kind of apparatus to employ, he next considered the conditions under which the sensitive salts were to be exposed. The action of ordinary sensitizers was explained and demonstrated by experiments, from which point the results of certain colored sensitizers were considered. Thus, various aniline dyes were proved to be bromine absorbents, and likewise, more or less, to be capable of being acted upon by light in those regions of the spectrum they absorbed. The result of the two effects was to produce a developable image of the spectrum just in those parts to which the salt of silver was sensitive, and also in the parts where the dye itself was acted upon. The latter effect was traced to the organic matter being oxidized in the presence of the sensitive silver salt.
The sensitizing effect of one silver compound upon another was then gone into, and experiments and photographs showed where two salts of silver were in contact with one another, and without an energetic sensitizer being at hand, that the one when acted upon by light absorbed the halogen liberated from the other through the same cause and that a new molecule was formed. This was of importance, since in photographic spectroscopic researches a conclusion might be arrived at that a body suffered absorption in those regions of the spectrum where this interesting reaction took place, whereas in reality the phenomenon might be due to the silver salts employed. This was another pitfall for the unwary. Again, it became necessary in studying photographic action to make sure that the effect of radiation was only a reducing action, and that the results were not vitiated by some other action.
The destruction by oxidizing agents of the effect produced by light was then experimentally demonstrated, and photographs of the spectrum showed that this effect was increased by the action of light itself. Thus, when immersing a plate sensitive to all radiations, visible and invisible, in a very dilute solution of nitric acid, bichromate of potash, or hydroxyl, it was shown that if the plate were exposed to light, first the parts acted upon by the red rays were reduced before the parts not acted upon at all by the spectrum, thus conclusively proving that light itself helped forward the oxidation or so-called solarization of the image. It thus became a struggle, under ordinary circumstances, between the reducing action on the normal salt and the oxidizing action on the altered salt as to which should gain the mastery. If the reducing action of any particular ray were the most active, then a negative image resulted, whereas if the oxidizing action were in the ascendant, a positive image resulted. Thus, in determining the action of light on a particular salt, this antagonism had to be taken into account, and exposure made with such precautions that no oxidizing action could occur, as would be the case if an inorganic sensitizer, such as sulphite of soda, were used.
The reversal of the image by soluble haloid salts, such as bromide of potassium, was then dwelt upon with experimental demonstration. It was shown that the merest trace of soluble haloid would reverse an image by the extraction of bromine from it, and the fact that the most refrangible part of the spectrum was principally efficacious in completing this action showed how necessary it was to avoid falling into error when analyzing photographic action by the spectroscope. A reference was next made to gelatine plates, in which, owing to their preparation, reversal through the above cause was most likely to take place, and a plate soaked in sulphite of soda and exposed in the camera for a couple of minutes–a time largely in excess of that necessary to give a reversal under ordinary circumstances–proved the efficacy of the oxygen absorber, the image remaining in its normal condition after development.
The lecturer closed his remarks by showing the different molecular states of iodide, bromide, and chloride of silver, as produced by different modes of preparation. The color of the film by transmitted light in every case indicated the effect which was likely to be produced on them, and the photographed spectrum in each of them showed the remarkable differences that were found. The points raised by Captain Abney at different times are well worthy the study of scientific photographers, since strict attention to the modes of exposure to the spectrum, to the instruments employed, and to the source of light used can alone insure accuracy in comparative experiments.–_Br. Jour. of Photo_.
* * * * *
SALT AND LIME.
M.F.K. communicates the following interesting circumstance to _Neueste Erfindung_.: A few years ago it was decided to whitewash the walls and ceiling of a small cellar to make it lighter. For this purpose a suitable quantity of lime was slaked. A workman who had to carry a vessel of common salt for some other purpose stumbled over the lime cask and spilled some of his salt into it. To conceal all traces of his mishap he stirred in the salt as quickly as possible. The circumstance came to my knowledge afterward, and this unintentional addition of salt to the lime excited my liveliest curiosity, for the whitewash was not only blameless, but hard as cement, and would not wash off.
After this experience I employed a mixture of milk of lime and salt (about three parts of stone lime to one part of salt), for a court or light well. To save the trouble and expense of a scaffold to work on, I had it applied with a hand fire engine (garden syringe?) to the opposite walls. The results were most satisfactory. For four years the weather has had no effect upon it, and I have obtained a good and cheap means of lighting the court in this way.
* * * * *
RENEWING PAINT WITHOUT BURNING.
It is stated in the _Gewerbeblatte fur Hessen_ that paint can be renewed and refreshed in the following manner:
When cracks and checks appear in the paint on wooden articles, this usually indicates that the varnish has cracked. If this is the case, the article can easily be prepared for a fresh coat by sponging it over with strong ammonia water, and two or three minutes later scraping off the varnish with the broad end of a spatula before the ammonia has dried up.
In this way the first coat is removed. If it is necessary to remove the next coating, the same operation is repeated. After the last coat has been scraped off that is to be removed, it must be washed with sufficient water to render the ammonia inactive, and then the surface is rubbed with pulverized pumice to make it smooth. Any desired paint or varnish can be applied to a surface prepared in this way.
* * * * *
TESTING OLIVE OIL.
By DR. O. BACH.
There is no department in analytical chemistry in which so little success has been attained as in the testing of commercial fats and oils. All methods that have been proposed for distinguishing and recognizing the separate oils, alone or mixed, bear upon them the stamp of uncertainty.
The facts observed by J. Koenig, and described by him in his excellent book entitled “_Die Menschlichen Nahrungs und Genussmittel_” (p. 248), excited great expectations; viz., that the quantity of glycerine in vegetable fats was much less than the amount required to combine with all the fatty acids, and that the quantity of oleic acid in the oils that he examined exhibited essential differences. Koenig himself asserts that the fats have hitherto been too little investigated to found upon it a method for distinguishing them, but that nevertheless it may possibly do good service in some cases.
My own estimation of the amount of glycerine in different olive oils, by Koenig’s method, has shown, unfortunately, that the percentage may vary from 1.6 to 4.68, according to the origin and quality of the oil. In like manner the estimation of the oleic acid, which was conducted essentially in the manner proposed by Koenig, showed that the amount of oleic acid in different olive oils varied from 45 to 54 per cent. But since cotton seed oil, for example, which is most frequently used to adulterate olive oil, contains 5 per cent. of glycerine, and 59.5 per cent. of oleic acid, it is easy to see an admixture of cotton seed oil cannot be detected by this method, which appeared to be so exact.
The method of analysis that I am about to describe is based chiefly upon the determination of the melting point of the fatty acids contained in the oils, and upon their solubility in a mixture of alcohol and acetic acid.
The oils employed in adulterating olive oil, and to which regard must be had in testing it, are the following: Cotton seed oil, sesame, peanut, sun flower, rape, and castor oils. The tests for the two last named have hitherto never presented any difficulty, as rape seed is easily detected, owing to the sulphur in it, by saponifying it in a silver dish, and castor oil by its solubility in alcohol. But in recent times another product has come into the market called sulphur oil or pulpa oil, obtained by extracting the pressed olive cake with sulphide of carbon. This also gives a sulphur reaction when saponified, while it resembles castor oil by its solubility in alcohol. When this oil is mixed with ordinary olive oil, it can easily deceive any one who uses the ordinary tests.
My method of testing olive oil is as follows:
First, the so-called elaidine test is made, and then the test with nitric acid. About 5 c. c. (a teaspoonful) of the oil is mixed in a test tube with its own volume of nitric acid, spec. gr. 1.30, and shaken violently for one minute. At the expiration of this time the oils will have acquired the following colors: Olive oil, pale green; cotton seed oil, yellowish brown; sesame, white; sun flower, dirty white; peanut, rape, and castor oils, pale pink or rose.
As soon as the color has been observed, the test glass is put in a water bath at the full boiling temperature and left there five minutes. It was found that the action of nitric acid upon cotton seed and sesame oil was the most violent, sometimes so violent as to throw the oil out of the glass. At the end of another five minutes after the test tube is taken out of the water bath, the following colors are seen: olive and rape oils are red; castor oil is golden yellow; sun flower oil, reddish yellow; sesame and peanut, brownish yellow; cotton seed, reddish brown.
After standing 12 to 18 hours at about 60 deg. Fahr. the olive, rape, and peanut oils will have solidified; sun flower, castor, and cotton seed will be like salve (sticky), while sesame will remain perfectly liquid. Mixtures of olive oil with small quantities of cotton seed or sesame are distinguished by this characteristic–that, although the whole mass, which is darker in color than olive oil, solidifies at first, at the end of 24 or 36 hours a brown oil will be found floating upon the surface of the solid mass, while the lower strata exhibit the yellow color of pure olive oil. Oil of rosemary has no effect when shaken with cold nitric acid, and imparts to it only a slightly darker color on heating. Oils treated with lye act just like pure oils.
Far the purpose of determining the melting point of the fatty acids, 10 grammes of oil were saponified with 5 grammes of caustic potash on the water bath; some water and alcohol being added. After all the alcohol had been expelled the soap was dissolved in hot water, and the fatty acids separated from the clear solution by adding hydrochloric acid. After prolonged heating these acids will swim on the salt solution as a perfectly clear oil, a portion of which is then put into a little, narrow, thin walled tube and allowed to solidify. The point at with it melts and solidifies is determined by putting this tube in a beaker glass filled with water and warming with a small flame. A thermometer is placed _in_ the fatty acids and moved gently about during the observation, and the point accurately observed at which the whole mass becomes perfectly clear, and also when the mercury bulb begins to be clouded. It was found that the acids from pure olive oil melt between 261/2 and 281/2 deg. C. (= 80 deg. to 83 deg. Fahr.) and solidify at a point not lower than 22 deg. C. (72 deg. Fahr.). The melting point of the fatty acids in the oils used to adulterate olive oil differs considerably from this. The melting and solidifying points of the acids in cotton seed, sesame, and peanut oils lie considerably higher, those of sunflower, rape, and castor oils decidedly lower than those of olive oil.
The melting and solidifying points of these acids are as follows:
Cotton seed melts at 38.0 deg.C. solidifies 35.0 deg.C. Sesame do. 35.0 do. do. 32.5 do. Peanut do. 33.0 do. do. 31.0 do. Sunflower do. 23.0 do. do. 17.0 do. Rape do. 20.7 do. do. 15.0 do. Castor oil do. 13.0 do. do. 2.0 do.
The above figures differ so much from those of olive oil, that adulteratious carried to the extent that they are in trade can easily be detected by the aid of an estimation of the melting point, for a Gallipoli olive oil, mixed with 20 per cent. of sunflower oil, melted at 24 deg. C. and solidified at 18 deg. C. (of course, the fatty acids are meant). A Nizza oil, mixed with 20 per cent. cotton seed oil, melted at 311/2 deg. C. and solidified at 28 deg. C. A Gallipoli oil with 33-1/3 per cent. of rape oil melted at 231/2 deg. C. and solidified at 161/2 deg. C. When 0.50 per cent. of rape is added, it melts as low as 20 deg. and solidifies at 131/2 deg. C., etc.
In testing the solubility of the fatty acids in alcohol and acetic acid, I employ the method proposed by David (in _Comptes Rendus_, 1878, p. 1416) for estimating stearic acid.
It depends upon the principle that when acetic acid is poured drop by drop into an alcoholic solution of oleic acid, there comes a time when all the oleic acid separates, but stearic acid, which is insoluble in a mixture of alcohol and acetic acid, remains insoluble if the mixture contains oleic acid.
The following manipulations are adopted in testing olive oil: Equal parts of glacial acetic acid and water are mixed in a bottle. Then 1 c.c. of pure oleic acid, 3 c.c. of 95 per cent. alcohol, and 2 c.c. of acetic acid are put in a small tube graduated in tenths of cubic centimeters. The solution should remain clear; on adding another one-tenth c.c. of acetic acid it becomes turbid, and when 1 c.c. of oleic acid (or at first even more) floats on the mixture of acid and alcohol, the liquid is ready for use. If this is not the case, the proportions (of acetic acid and alcohol?) must be varied until the addition of one-tenth c.c. of the former will cause all the oleic acid to separate. The proportions having been ascertained from these preliminary experiments, the alcohol and acid are then mixed accordingly, e.g., 300 of alcohol to 225 of acid. One or two grammes of stearic acid are added to the alcoholic acetic acid, and the clear supernatant liquid used for the experiments.
One cubic centimeter of the oil (acids) to be tested is put in the tube, and 15 c.c. of alcoholic acetic acid added, well shaken, and the whole left to stand quietly at 15 deg. C. (60 deg. Fahr). If the olive oil is pure, the acids dissolve to a clear solution that remains so. Cotton seed oil is insoluble, and the solution obtained by heating the solution solidifies at 60 deg. Fahr. to a white jelly. Sesame and peanut oil react in a similar manner. Sunflower oil dissolves, but at 60 deg. a granular precipitate falls. Rape oil is entirely insoluble and floats like oil on the surface. Castor oil on the contrary dissolves completely, just like olive oil, and hence cannot be detected therein by this method. To detect this oil we must take the melting point of the acids along with the solubility of the oil itself in alcohol.
Olive oil when mixed with 25 per cent. of cotton seed oil yields a granular precipitate, and so does 25 per cent. of sesame. Smaller quantities cannot be detected by these methods. For rape oil the limit is 50 per cent., and in smaller quantities the oil does not collect on the alcoholic solution. The decided lowering of the melting point of the fatty acids in combination with the sulphur reaction, and the insolubility of the oil in alcohol, also furnish a method of detecting when present in smaller quantities in olive oil.
Although I am well aware that I am making public a research that is by no means free from objections, I nevertheless believe that it may be of use to those who have to undertake the ticklish and intricate analyses of commercial fats.–_Translated from the Chemiker Zeitung_, p. 355.
Leipsic, Jan., 1883.
* * * * *
ON THE THEORY OF THE FORMATION OF COMPOUND ETHERS.
In a note presented to the Industrial Society of Mulhouse, A. Pabst discusses the different stages in the formation of compound ethers, as Williamson has explained the production of ordinary ethers by the action of sulphuric acid upon alcohol. Pabst has observed that the compound ethers are formed in an analogous manner. If alcohol, sulphuric acid, and acetic acid are heated together, acetic ether, we know, is formed.
Pabst has shown that it takes place in three stages. In the first stage, ethyl sulphuric acid and water are formed; in the second, acetate of ethyl with the reproduction of sulphuric acid, which again converts a fresh quantity of alcohol into ethyl sulphuric acid.
(1) C_{2}H_{5}OH+HO,SO_{2}OH = C_{2}H_{5}O,SO_{2}OH+H_{2}O. (Alcohol.) (Sulphuric acid.) (Ethyl sulphuric acid.)
(2) C_{2}H_{5}O,SO_{2}OH+C_{2}H_{3}O,OH = (Ethyl sulphuric acid.) (Acetic acid.)
C_{2}H_{5}O,C_{2}H_{3}O+HO,SO_{2}HO. (Acetate of ethyl.) (Sulphuric acid.)
Pabst proved this by letting methyl sulphuric acid act upon a mixture of acetic acid and ethyl alcohol. He obtained by this process acetate of methyl and ethyl sulphuric acid. By the continued action of ethyl alcohol and acetic acid upon this mixture, of course, acetate of ethyl was formed. At the conclusion of the operation there was no longer any methyl sulphuric acid present in the liquid.
In the course of his investigations, Pabst was led to a very practical method for preparing acetate of methyl, which consists in heating ethyl sulphuric acid to 135 deg. or 140 deg. C, and allowing a mixture of equal molecules of strong alcohol and acetic acid to flow into it.
The details of his experiments and the method of purification will be published by the society.
* * * * *
A GREEN OR GOLDEN COLOR FOR ALL KINDS OF BRASS.
By E. PULCHER.
The French brass castings and articles of sheet brass are made of cheap, light colored brass, and possess a fine golden color which is not produced by gold varnish, but by a coating of copper. This gives them a finer appearance, so that they sell better.
This golden color can be easily produced at very little expense and with but little trouble by the following process. Fifty grammes of caustic soda and 40 grammes of milk sugar are dissolved in a liter of water and boiled for a quarter of an hour. The solution is clear as water at first, but acquires a dark yellow color. The vessel is next taken from the fire, placed on a wooden support, and 40 grammes of a cold concentrated solution of blue vitriol stirred in. A red precipitate of suboxide of copper is at once formed, and by the time the mixture cools to 167 deg. Fahr., the precipitate will have settled.
A suitable wooden sieve is placed in the vessel, and on this the polished articles are laid. In about one minute the sieve is lifted up to see how far the operation has gone, and at the end of the second minute the golden color is dark enough.
The sieve and articles are now taken out, and the latter are washed and then dried in sawdust. If the brass is left longer in the copper solution, in a short time a fine green luster is produced, becoming yellow at first and then bluish green. After it turns green, then the well-known iridescent colors finally appear. To obtain uniform colors it is necessary that they be produced slowly, which is attained at temperatures between 135 deg. and 170 deg. Fahr.
The copper bath can be used repeatedly and can be kept a long time if bottled up tightly without change. After it is exhausted it can be renewed by adding 10 grammes of caustic soda, replacing the water that has evaporated, heating to boiling, and adding 25 grammes of a cold solution of blue vitriol.
Similar operations with other well known reducing agents, such as tartrate of soda, glycerine, etc., do not give such good colors, because they do not precipitate the copper solution so rapidly and at so low a temperature.
If the rinsed and pickled brasses are dipped for five minutes in a three per cent. neutral solution of cocoa nut oil soap, and then washed with water again before they dry, the coating gains in permanence.
Brass articles that have to be cleaned frequently should be covered with oil of turpentine, or thin English copal varnish.–_Neueste Erfind_.
* * * * *
VINEGAR.
Hermann Kratzer, of Leipsic, communicates the following practical information on the clarification and purification of vinegar to the _Neueste Erfindungen und Erfahrungen_:
If vinegar has an unpleasant odor, which is rarer now that the vinegar manufacture has reached such a state of perfection, it may be removed as follows: Well burned and finely pulverized wood charcoal is put into the bottles containing the vinegar, the proportions being 8 grammes of charcoal to a liter of vinegar, or one ounce to the gallon. It is shaken several times very thoroughly, then left standing three or four days, and the vinegar filtered through a linen cloth. Vinegar treated in this manner will be found to have completely lost its unpleasant odor.
I have found that when I used blood charcoal or bone coal in place of wood coal it was still more efficient; but it must be mentioned that when they are used they must be purified as follows before using: Charcoal from blood contains potash and hence it is necessary to wash it with distilled water and dry it before using it. Bone coal (also called bone black, animal charcoal, etc.) contains on an average 10 per cent. of nitrogenous and hydrogenated carbon, 8 per cent. of carbonate of lime, 78 per cent. of phosphate of lime, besides phosphate of magnesia, sulphate of lime, soluble salts, etc. Before using, it should be treated with dilute hydrochloric acid until it does not effervesce any more. The bone coal is then left to stand for 24 or 30 hours and at the end of this time is washed with distilled water until the wash water no longer reddens a blue piece of litmus paper, i.e., until every trace of hydrochloric acid has been removed from the bone coal. Wood charcoal may be treated in like manner. When this coal is perfectly dry it is employed in the same proportions as the other, 8 to 1,000, the operation being exactly the same.
He turns next to the clarification of the vinegar.
It happens everywhere that vinegar instead of being clear is sometimes turbid. This is due to particles of yeast dissolved in the vinegar that have not yet settled. To remove this kind of turbidity it is customary to use oak or beech shavings that have been washed in hot water and then dried. These shavings, which must be very long and extremely thin, are put in a barrel with a second and perforated bottom, to a depth of 12 to 34 inches. The vinegar that runs through them deposits its slimy constituents on the shavings and becomes perfectly clear, and presents to the eye a pleasing appearance.
To this generally known method I would add a few more:
1. I take a 1/2 kilo of well pulverized _animal charcoal_ (black burned bones) to 7/8 of a hectoliter of vinegar (1 lb. to 20 gallons), and stir it well with a wooden rod; or, if the vinegar is in bottles, I shake it a long time after putting the animal charcoal in the bottle, and repeat it several times. After three or four days I finally filter the vinegar through linen, when the filtrate will exhibit the desired clearness.
2. The best way to clarify vinegar is with _isinglass_. It is first broken up, then swelled for a day in vinegar (17 or 18 grammes to the liter), then 2 liters of vinegar are added and the mass boiled until the isinglass is completely dissolved. Such a solution as this (1/2 ounce to 3 quarts) is mixed with 101/4 hectoliters (250 gallons) of turbid vinegar and well stirred through it. After the expiration of five or six weeks vinegar treated in this way has a beautifully clear appearance.
3. _Albumen_ can likewise be used to clarify it. The vinegar is boiled with the albumen until the latter is completely coagulated, and then the vinegar is filtered.
4. And finally _milk_ may be employed. For this purpose the milk is skimmed, and 1 quart of milk added for every 68 quarts of vinegar, the mixture well stirred and shaken. After the caseous portion has coagulated (curdled) it is filtered as before, and in this case, too, the product is a fine, clear vinegar.
We believe that these few experiments, so easily performed, and at so small an expense, will prove useful to our readers in enabling them to put their product in the market in an excellent condition and nicely clarified.
* * * * *
THE ALIZARINE INDUSTRY.
At a recent meeting of the Manchester section of the Society of Chemical Industry, Mr. Ivan Levinstein described the history and progress of the manufacture of alizarine, from which are produced fast red, purple, brown, and black dyes. He said alizarine was, until very recently, made only from the root of the madder plant, of which the yearly crop was 70,000 tons, and represented an annual value of L3,150,000, of which the United Kingdom consumed 23,000 tons, representing a value of nearly L1,000,000.
Madder is now no longer grown for this purpose. The German chemists found that alizarine produced from madder in undergoing certain treatment gave a substance identical with anthracine, one of the constituents of coal tar, and in 1869 the same chemists announced to the world that they had accomplished the synthesis of alizarine from anthracine. The effect of this discovery was to throw madder out of cultivation.
Mr. Perkin, an English chemist, and Messrs. Graebe and Liebermann, German chemists, almost simultaneously applied for patents in 1869, in England, and as their methods were nearly identical they arranged priorities by the exchanging of licenses. The German license became the property of the Badische Aniline Company, and the English license became the property of the predecessors of the North British Alizarine Company. These patents expire in about two months, and the lecturer explained that an attempt made by the German manufacturers to further monopolize this industry (even after the expiry of the patent) proved abortive. He also stated that alizarine, 20 per cent. quality, is sold to-day at 2s 6d. per lb., but that if the price were reduced by one-half there will still be a handsome profit to makers, and that the United Kingdom is the largest consumer, absorbing one-third of the entire production, and that England possesses advantages over all other countries for manufacturing alizarine–first, by having a splendid supply of the raw material, anthracine; secondly, cheaper caustic soda in England than in Germany by fully L4 per ton; thirdly, cheaper fuel; fourthly, large consumption at our own doors; and, fifthly, special facilities for exporting.
The advantages derived from the development of the alizarine manufacture here, it was stated, will benefit other collateral industries, such as manufacture of soda, of ordinary sulphuric acid, bichromatic, and chlorate of potash, articles used in this manufacture. The lecturer considered that the difficulties attending the manufacture of alizarine were now overcome, and with sufficient capital and competent chemists English manufacturers must be successful.
He then proceeded to explain the source from which nearly all the artificial coloring matters are derived, viz., gas tar; showing the principal products of this wonderful, complex mixture, of which one is anthracine. Alizarine manufacturers originally found scarcity of anthracine; at present the supply is in excess of the demand, and the price during the last 18 months has fallen from 3s. 6d. to 1s. per unit, and the probabilities are that the supply will increase. The quantity of gas tar now obtained the lecturer estimated at 500,000 tons per annum, and the coal carbonized for gas making, 10,000,000 tons. This quantity of tar suffices to produce 9,000 tons of 20 per cent. alizarine.
The lecturer then reviewed, in case of an increased demand for anthracine, the probable new sources of obtaining increased supplies of coal tar: (1) The destructive distillation of petroleum; (2) coke ovens and blast furnaces; (8) the carbonization of coal for general manufacturing purposes, using the coal and gas as fuel, and giving tar, benzine, and ammonia as residues; and (4) distillation of coal with the object of obtaining the principal products, tar and benzine, and as the residual product, gas. This part of the lecture was important to dyers and printers, the lecturer showing also, in a very interesting way, in what manner manufacturers may very considerably economize their consumption of coal.
The lecturer explained that while from one ton of coal there was obtained on an average about 17 oz. of benzine, by the new method about thirty times that amount can be got from the same quantity of coal. He also considered in great detail the different processes of the carbonization of coal, and of increasing the production of the different important residual products of gas tar, and also the best method of extracting the benzine. He showed samples of benzine which he produced from gas obtained at the Rochdale Road Gasworks, and, further, nitro-benzine, aniline, and coloring matters, which he had made from this gas benzine.
The lecturer also discussed the effect of the probable increased production of tar, ammonia, benzine, etc., as affecting gas companies, and said it was anticipated they either would raise the price of gas or change the present system of manufacture, which he considered probable. The enormous increase in the production of ammonia, of which the larger portion at present, as sulphate of ammonia, was used as a fertilizer, would no doubt considerably reduce its value. It might even replace soda for many purposes, and thus react on our alizarine industry.
He then proceeded to consider the manufacture of alizarine purpurine, and divided its manufacture into four stages: 1, the purification of crude anthracine; 2, the conversion of the purified anthracine into anthraquinone; and 3, the production of sulpho acid of anthraquinone and the conversion of this sulpho-acid into alizarine and purpurine. This part of the lecture comprised a detailed explanation of the various kinds of apparatus required, to be used which were beautifully got up, complete working models having been prepared for the occasion. The lecturer was of opinion that large consumers would be benefited if makers would offer for sale only three distinct coloring matters–iso or anthrapurpurine, and flavo-purpurine, leaving it to the dyers and printers to produce for themselves the intermediate shades by mixing the three colors; and he showed that by reason of the fastness of the shades produced by these coloring agents varying considerably, the blue shade (alizarine) being much faster then the orange shade (flavo-purpurine), consumers were in many instances losers by using mixtures of alizarine and flavo-purpurine.
In the course of the lecture many interesting specimens of various products were produced and dilated upon, the lecturer fully describing the process of purifying the crude anthracine and of the conversion of the purified anthracine into anthraquinone.
* * * * *
THE PRESERVATION OF MEAT BY CARBONIC ACID.
Since 1874, when Professor Kolbe, of Leipsic, first published his results on the antiseptic action of salicylic acid, he has made many efforts to apply this acid to the preservation of meat, but he has invariably found that after the lapse of a few days an unpleasant flavor has been developed, which is not that of putridity. If putrid changes be noticed, it is a sign that salicylic acid is in insufficient quantity, for where it has turned putrid the meat is found to be no longer acid, but alkaline. This leads to the assumption that meat is protected from change by acids, even by gases of that kind; and in fact it was noticed that beef–from 2 to 5 kilos. being taken–when placed in an earthen vessel and loosely covered with a wooden cover, was long preserved from putridity if the bottom of the vessel contained some hydrochloric acid, nitric acid, or aqueous sulphurous acid. The meat, however, no longer had the taste of fresh meat, but of such as had long lain in ice. Experiments were therefore made with carbonic acid, and these proved highly successful. The meat was placed in a cylinder of metal plate, and suspended from a rod which crossed the upper part and the lower part. A small tube serves to admit a current of carbonic acid from a Kipp’s apparatus. The lid, which rested in a circular trough of glycerine, was traversed by a similar tube in its center, and both tubes could be closed with India-rubber tubing and screw taps as soon as sufficient carbonic acid gas had traversed the apparatus. At the end of seven, fourteen, and twenty-one days it was found that the meat was still quite good, and the soup prepared from it was in every respect excellent. At the end of the fourth or fifth week the meat thus preserved in the gas was still quite free from all putridity; but the broth prepared from it no longer tasted so well as fresh bouillon. The experiments were not extended over a longer time. Carbonic acid is thus shown to be an excellent means of preserving beef from putridity and of causing it to retain its good taste for several weeks. Mutton does not preserve so well. In eight days it had become putrid; and veal is by no means so well preserved as beef. The comportment of beef in an atmosphere of carbonic acid, to which carbonic oxide has been added, is curious. A number of cylinders were filled in the usual way with such a mixture and opened at the end of two or three weeks; in each case the flesh had the smell and taste of good, pure meat, but it was not of the gray color which meat preserved in carbonic acid gas gradually takes, but appeared in the interior, as well as on the outside, of a bright flesh-red color, and on the surface here and there, there were white round masses of fungoid growth of the size of a 20-pfenning piece, which were removed with the slightest rubbing. The flesh lying just below these was found to have the same bright red color as that already described. Meat which had been for three weeks in such a gas mixture gave a broth which, in good taste and freshness, could hardly be distinguished from freshly-made bouillon; and the boiled meats could not be distinguished either in appearance or taste. The property of carbonic acid to preserve meat suggests a use for the large supplies of this gas evolved from the earth in many localities. And it is as interesting to determine in how far the gas could be of service as an antiseptic during surgical operations.
* * * * *
REDUCTION OF OXIDIZED IRON BY CARBONIC OXIDE.
IT is well known that when the heat is sufficient, carbonic oxide reduces the oxide of iron to metal with the production of carbon dioxide (carbonic acid). On the other hand, at lower temperatures carbon dioxide oxidizes metallic iron, forming carbonic oxide. J. Lowthian Bell’s celebrated researches (see SCIENTIFIC AMERICAN, p. 199, March 31, 1883) established the point of equilibrium where in the presence of both monoxide and dioxide the reducing action of the one just counterbalances the oxidizing action of the other.
At the suggestion of Prof. R. Akermann, of Stockholm, C.G. Saernstrom has conducted a similar series of forty-five experiments, the expense being borne by the Jernkontor. About 1 gramme of oxide of iron was placed in a porcelain boat, and slid in a porcelain tube 18 millimeters (3/4 inch) in diameter and 635 millimeters long (25 inches). This was exposed to the action of a current of mixed carbon dioxide and monoxide made by heating oxalic acid and concentrated sulphuric acid. It was mixed with carbon dioxide as required, then analyzed, and preserved in gasometers holding 66 liters. Before using, it is passed over phosphorus and chloride of calcium, and through sulphuric acid. The porcelain tube and boat were heated to from 300 deg. to 600 deg. C. (572 deg. to 1,652 deg. Fahr.) while the gases were passing, and then the state of oxidation determined. It was found that the larger the quantity of dioxide the higher the degree of oxidation, and the larger the proportion of monoxide the lower the degree of oxidation.
The details of the experiment indicate that a saving of fuel in the blast furnace could best be accomplished by the use of a very hot blast, introducing some carbon monoxide into the blast, provided, of course, that this gas can be made outside of the blast furnace more cheaply than inside of it. Nevertheless, 643 lb. of carbon must be burned to every 1,000 lb. of iron reduced, if carbonic oxide is exclusively employed.–_Stahl und Eisen_.
* * * * *
ON THE ADULTERATION OF SOAP.
By Dr. H. BRACKEBUSCH.
The importance of soap as an indispensable article in the household has not restrained the adulterators from making it a favorite object of their operations, and at the present day soap is only very rarely what it should be, the alkaline salt of a fatty acid with about 15 per cent. of water, which may be increased in case of soft soaps to 30 per cent. at most. The amount of moisture is an immediate signal for adulteration. Of all substances that can be used to adulterate soap, water is of course the cheapest, and as it is also harmless, this was the first point where manufacturers made use of their knowledge. The percentage of water was raised to 26 or 28 per cent., and now nearly all the ordinary soaps contain that amount when they leave the factory. At first the retailers objected to this method, because they had to suffer the loss so far as it dried out and lost weight in the store.
The next point was to find some substance that would prevent this rapid drying, and it was very soon discovered that those soaps that contained an excess of lye retained moisture longer. Henceforth it was only necessary to use lyes of extra strength so as to obtain a large yield of soap containing an excess of water. The results of this ingenious method are before us; in the shops of the soap dealers the bars of soap become coated with a crust of white crystals, which is nothing but soda. If a few drops of corrosive sublimate be dropped on these crystals, a red spot will at once be produced by the formation of mercuric oxide. In addition to the deception of the public who buy such soaps, this alkali destroys clothes washed with it, as the fiber of the tissues is directly attacked by it, while the proper action of the soap depends on its enveloping the particles of dirt and carrying them off.
Soap is subject to another kind of adulteration called filling, or weighting. Soapstone and similar mineral substances are added to the finished soap to increase its weight. But it may be added that this fraudulent weighting is rare. Large establishments cannot take the risk of being detected in such avaricious practices, and small ones scarcely have the apparatus at their disposal for making a uniform mixture which will not arouse suspicion.
Now soaps are frequently found in the market that scarcely deserve this name. Mineral soap, cold water soap, etc., are the names inscribed on the placards behind which is buried a preparation consisting for the greater part of water-glass. The well-known water-glass is a silicate of soda or potash dissolved in free or caustic soda, or potash. There was a time when it excited great hopes, and its introduction into the household for washing was dreamed of, but it was soon found that its caustic properties made their appearance at a relatively low temperature. Hence we often find the notice, “TO BE USED COLD,” printed in bold letters on the wrappers. This product is obtained by thickening water-glass with stearine, oleine, or any other easily saponifiable fat. As it takes but very little of the substances named to make an article closely resembling soap, of course the product is very cheap. There does not seem to be any limit to the amount of water in it; at least the author found in one kind of mineral soap from Berlin 58 per cent. of water. Water-glass soaps do not dissolve readily in water, they make but little suds, and render the skin hard and unpliable. Admitting that they are suitable for many purposes, nothing can be said against their sale so long as they appear under names which preclude their being confounded with other soaps. Nevertheless, there is always this danger–that water-glass may come into general use in making soap, and this is to be deplored. Water-glass soaps are easily recognized by their insolubility in moderately strong alcohol, the water-glass remaining behind in a gelatinous form.
Great deception has been practiced under such names as “almond soap,” etc. Fortunately the difference between various kinds of fat are not very great from a chemical point of view, although it is always an unpleasant thought that the fat from animals that have died may return to the house in the form of soap. A white or yellow soap having a good smell is not made from bad fat, and hence is more appetizing.
A method formerly much in use consisted in mixing green soap with starch paste, a mixture that could not be detected by the naked eye, especially if colored with caramel. On attempting to dissolve it in ordinary burning alcohol, a white coagulum forms.
From the foregoing it is sufficiently evident that those who buy soap to sell again have every reason to keep a sharp lookout on those who furnish them with soap.–_Polyt. Notiz._
* * * * *
BOVINE AND HUMAN MILK: THE DIFFERENCE IN ITS ACTION AND COMPOSITION.
By C. HUSSON.
M. Meynet, in a remarkable report upon condensed milk, has raised a question which it is important to have solved in the interests of infants. This is my excuse for presenting to the French Society of Hygiene certain observations on this subject.
Is woman’s milk richer in fatty matters and sugar in proportion to the caseine than that of the cow? Is the affirmative, sustained by a large number of chemists, a mistake that ought to be corrected?
Such is the question that needs to be answered.
In my last work on milk, my aim was to report new experiments, and hence I gave only the analysis of M. Colawell. By the side of the essays of MM. Doyere, Millon, Commaille, and Wurtz, I put those of Liebig, and quoted an interesting chapter written on this question by M. Caulier, in Dechambre’s Encyclopedic Dictionary. These are the authorities upon which to base any opposition to the analyses of Boussingault, Regnault, Littre, and Simon, savants of no less renown.
The differences are easily explained.
Woman’s milk is rarely to be had in sufficient abundance to make a complete analysis of it. In the country especially a few precious drops, obtained with difficulty, are carried off in a thimble to be placed under a microscope, where the number of fat globules are counted, and it is examined to see if they are not mixed with globules of colostrum.
It will be necessary at the outset to know whether the analyses given refer to milk drawn from the breast before nursing, or at the end. In the former case there will be an excess of caseine, in the second an excess of fat present. This is the reason that in nursing infants the intervals should not be too long, or the child will not be able to empty the breast completely, and it will obtain a milk too rich in caseine, too poor in butter, and one that it cannot digest.
This is the first proof of the importance of fatty matters for the alimentation of babes.
Let us turn to the second.
At birth, when the milk is still in a state of colostrum, the fluid contains a variable quantity of albumen coagulable by heat, much less caseine, and an excess of butter and sugar.
Cow’s milk, immediately after calving, contains more butter and less caseine than milk produced some time later, when the specific character of ruminants begins to appear in the calf, that is to say, when it commences to graze the milk coagulates in the stomach. As in other mammals, an excess of fat helps digestion by subdividing the caseine and emulsifying it. But the milk of an animal recently calved is reserved for its young, and it is not until the time of weaning that the lacteal fluid is offered for human consumption.
Thus it is that the nursling of a day receives milk many months old and heavily loaded with caseine. This milk it cannot digest because the emulsifying element, the fat, is not present in it in sufficient quantity in proportion to the coagulable matter. We must not forget either that the difference in coagulation holds also with respect to difference in the age and in the kind of animal. Just so the rennet of a sucking calf has a greater power of coagulating cow’s milk than that of a sheep, and _vice versa_.
“Clinical observation,” says Dr. Condereau, “shows that all young infants digest human milk very easily and cow’s milk very imperfectly. When it is fed on the latter, in the excreta will be found numerous fragments, sometimes very bulky, of undigested caseine. In most cases this caseine suffers more or less decomposition in the alimentary canal, which gives to the feces a tainted odor recalling that of putrid Roquefort cheese.
“The excrement vary in appearance as much as they do in odor. Frequently the caseous clots are not to be seen, and the stool has a clammy look reminding one of glazier’s putty, while the color varies from dirty white to pale grayish yellow. That is due to the fact that the composition of the milk from different animals is far from being constant.
“The proportions of albumen to those of caseine are especially varied. For woman’s milk the proportions are as 100 to 122.72. In goat’s milk the proportions are 100 to 173.09. In cow’s milk it is as 100 to 289.20.
“The conclusion is this: Caseine is not a food at all for the new born during a space of time, the duration of which is to be determined experimentally.
“This substance is a harmful burden that interferes with the regular action of the digestive organs. It is a premature food, and the more abundant the more injurious.
“Albumen on the contrary remains fluid in the presence of the gastric juice; it is separated from the other aliments by coagulation of the caseine. It is absorbed entire either in its natural state or in form of peptone.”
According to clinical observation, it is still the fats that give to milk its hygienic value, and the excess of caseine is an obstacle to its digestion.
However, if cow’s milk is not easily digested by children, experience proves that there are other kinds of milk, from other animals, which young stomachs are able to bear more easily. There are many proofs of this fact.
M. Tarnier, speaking before the Academy of Medicine on the artificial nourishment of the new born, reports that the milk of cows and goats, pure or diluted in different ways, that of condensed milk and Biedert’s cream, have always given disastrous results at the Maternite in Paris, but that the mortality of the new born was considerably reduced from the day when ass’s milk was introduced as food.
Ass’s milk was given pure for six weeks or two months; then cow’s milk diluted with one-half water until six months old, followed by pure cow’s milk. This is the most rational course of artificial feeding.
Prof. Parrot reports analogous results obtained at the nursery opened at the Hospice des Enfants Assistes. By the aid of ass’s milk he saved a number of the little syphilitics.
The following are the numerical results: 86 infants with hereditary taint of syphilis have been at the nursery. Of 6 fed exclusively on cow’s milk, only 1 survived and the other 5 died. Forty-two were suckled by goats, of which 8 lived, 34 are dead, which is equal to a mortality of 80.9 per cent. Thirty-eight were suckled by an ass, of which 28 lived and 10 died; a mortality of 26.3 per cent.
Certainly these figures prove eloquently enough what chemical analysis shows, that ass’s milk, being better borne by the infant’s stomach, ought to have a composition resembling that of woman’s milk. This analogy is not found to consist in the quantity of fat, but in the small amounts of dry residue (total solids) and of caseine.
Let us now examine the objections raised by M. Meynet.
Food has a considerable influence upon the composition of milk; this fact, stated by M. Riche in his treatise on chemistry, seem to be accepted by all.
The milk of carnivorae is excessively rich in caseine; that of herbivorae much less.
The food of woman, who enjoys a mixed alimentation, ought to have a composition intermediate between these two, and consequently ought to contain more caseine than that of the plant eaters. This is the logical deduction.
At first this reasoning misleads one, but numerous objections present themselves.
The food, no doubt, has some influence upon the composition of the milk of animals of the same species, but every animal can secrete something independent of any food, just as one kind secretes musk, another castor, etc. Yet it would not be an anomaly if an excess of caseine in proportion to the other substances was a true characteristic of ruminants.
But we admit that the milk of all mammals ought to have identically the same composition if their food suffered no modifications.
What is the food of ruminants? Without doubt it is essentially vegetable, and the plants of the field constitute the element par excellence of their nurture. These plants contain a large excess of carbohydrates in proportion to the nitrogenous.
But what are these other substances? What role do they play in digestion?
They are composed in great part of fibers and cells that suffer no change in the animal economy, and which are not acted upon by the gastric juice, as proved by their occurrence in excreta. The carbon is found almost unchanged, so that the excrements of herbivoiae, when dried, form a valuable fuel. Ruminants are compelled, in order to obtain nourishment from the plants that they eat, to extract their juices by repeated pressure (as in chewing the cud); and what do these soluble juices contain? Some saccharine substances, a little fat, but mostly albumen and vegetable caseine, that is to say, the substance which predominates in their lacteal secretions.
What, on the contrary, is the food of woman?
No doubt she gains much strength from the lean, muscular flesh that she eats, but besides this she has butter, oil, fats of all kinds, sugar, starches, and alcoholic beverages, all of which are favorable to the production of butter in the milk. Hence, aside from her physical constitution, the food of woman alone explains the relative excess of non-nitrogeneous substances.
Nitrogenous articles of food are expensive, while the other forms of nutriment are to be had in the form of potatoes, beans, and bread, products sold at a reasonable price. Yet logic demands that there shall be an excess of butter in proportion to caseine in the milk.
The discrepancies in analyses of woman’s milk are easily explained by the mobile and impressible character of woman.
If bad treatment and bee stings are able to modify the composition of cow’s milk, how much more ought the emotions of all sorts, which disturb the heart and head of woman, to change the composition of her milk?
But if new analyses seem to be needed, they ought to be made. This question is too important to rest in suspense. The mean composition of human milk for the first two months after delivery ought to be established. In chemistry, as in mathematics, figures alone are convincing. But from what has been said it is logical to conclude that an excess of caseine in milk is unfavorable to good digestion, while an excess of butter is favorable to it.–_Translated from Journal d’Hygiene, March 1, 1883_.
* * * * *
CEREAL FOODS IN THEIR RELATION TO HEALTH AND DISEASE.
By F.R. CAMPBELL, A.B., M.D.
The cereals are subject to many diseases which retard their development, rendering them unfit for food, and even poisonous. The relation of unwholesome foods to the diseases of the animal body are now being thoroughly studied, recent advances in chemistry and microscopy contributing valuable aid to the prosecution of such investigations. Some enthusiastic advocates of the germ theory of disease believe that many, if not all, the so-called disease germs may be transplanted into the human system with the food ingested. But whatever may be the real truth in regard to this subject, it has been positively demonstrated that many diseases of the human body may be produced by unwholesome food. The specific symptoms produced in man by the various grain diseases are not accurately known, consequently our remarks upon this subject must be of a very general character.
Pappenheim divides the diseases of the cereals into two classes, internal and external. The internal diseases are those depending upon conditions of soil, climate, cultivation, etc., and may be neglected in our discussion, as they produce no special disease of the body, only impairing the nutritive value of the grain.
The external diseases are of much greater importance, as they probably produce some of the most fatal maladies to which the human race is subject. These external diseases of the cereals are due to parasites, which may be either of an animal or vegetable nature. Among the animal parasites may be mentioned the _weevil, vibrio tritici_, which feeds upon the starch cells of the grain. Grain attacked by this parasite was at one time supposed to be injurious to health.
In 1844 the French Commission appointed to examine grain condemned a large quantity imported with this parasite, but afterward reconsidered their decision and permitted its sale, concluding that it was deficient in nutritive properties, but not otherwise unwholesome. Rust is the most common disease of the cereals, produced by vegetable parasites. Like the other diseases of this class, it is most prevalent in warm, damp seasons.
Prof. Hensboro is of the opinion that rust is but an earlier stage of mildew or blight, the one form of parasite being capable of development into the other, and the fructification characteristic of the two supposed genera having been evolved on one and the same individual.
Blight is a term loosely applied to a number of parasitic diseases. In it are included mildew, cories, and even rust and smut. The fungi producing these diseases attack the plant and seed at various stages of its growth. The whole kernel is affected, and not merely the external coat, as is sometimes maintained. When blighted grain is sown, the disease recurs the following year, often making it necessary to import new seed before the disease can be eradicated. Various remedies have been used to destroy the spores of these fungi, but all are uncertain and some are dangerous to health. Special machinery and methods have been employed in the mills to separate the mildew from the grain. Some of these succeed in removing the fungi and discoloration from the surface of the grain, but have no effects upon the parts within. Blighted grain is soft, and has an unpleasant taste and smell, and bread made of it is liable to be heavy and sodden.
It is undeniable that the use of blighted grain as food is exceeding dangerous to health. It is a well known fact that vegetable parasites may attack animals; the silk worm disease produced by the _Botrytis baniana_, being an example. It is stated that the same vegetable parasites which produce plant diseases, when transmitted to the animal body produce special affections, the form and appearance of the germs being altered by their environments. The same germs developed under different conditions of temperature and surrounding medium, assume forms so various that they have been supposed to belong to different species and even different genera. If there is any truth, then, in the germ theory of disease, it is not so very improbable that a fungus which will produce blight in grain may cause cholera or tetanoid fever in an animal.
Hallier, the famous physiological botanist, observed in 1867 that there was a peculiar disease of the rice plant associated with an epidemic of cholera. Rice plants fertilized with the discharges of cholera patients were affected with blight. A concentrated infusion of the blighted grain would produce changes in all animal substances, blood and albumen being converted into thin odorless products resembling in every respect the material found in the kidneys of cholera patients.
The most formidable of the diseases attributed to the use of diseased grain is cerebro-spinal meningitis, commonly known as spotted or blanoid fever. The disease is rare in England, but is frequently epidemic in the United States, in Ireland, and on the Continent. In 1873, in the State of Massachusetts alone, 747 persons died of it, and other epidemics even more fatal have lately occurred in New York and Michigan. The disease is a nervous fever attended with convulsions, the pathological lesion being congestion and inflammation of the membrane of the spinal cord and brain. Dr. Richardson in writing on the nature and causes of spotted fever concludes that it is due to the use of diseased vegetable substances, especially grain, and from a careful analysis of the statistics of this disease reported by the Michigan State Board of Health considers it demonstrated that “under favoring condition for its action diseased grain received as a food is the primary cause of the phenomena which characterize the disease.” These views are substantiated by the experiments of Dr. H. Day, who found that by feeding rabbits on unsound grain, spasmodic affections were produced, due to inflammation of the membranes of the spinal cord and brain.
In warm climates, pellagra or Italian leprosy is said to be produced by eating diseased maize, which forms the principal article of food among the poorer classes of the rural districts. Pellagra is epidemic in northern Italy and the south of France. The disease is manifested by a redness and discoloration of the exposed parts of the body. It is most active during the hot weather, the inflammation subsiding in the winter, leaving a pigmentation of the skin. Each year the symptoms become more alarming, nervous disorders finally setting in, and a large number die insane. The disease is most prevalent in the country. In the towns, where maize is supplemented by other articles of food, it does not exist.
Ergot is a very common disease of the cereals. The fungus producing it was discovered in 1853, but for centuries previous its injurious effects upon the human body were recognized, and it was observed that ergot of rye was the most poisonous. Taken in large doses, ergot will produce nausea, vomiting, diarrhoea, headache, and weakness of the heart. In small repeated doses it will produce contraction of all the unstriped muscles, as those of the blood vessels, the womb, and intestines. Ergotium is the name given to the disease produced by the continued use of grain affected by this fungus. Aitken describes it as “a train of morbid symptoms produced by the slow and cumulative action of a specific poison peculiar to wheat and rye, which produces convulsions, gangrene of the extremities, and death. In countries where rye bread is much used ergotium is sometimes epidemic. This was a frequent calamity before the introduction of suitable purifiers into the mills. There are two varieties of the disease, the convulsive and the gangrenous. The convulsive form begins with tingling of the extremities, drowsiness, and headache, followed by pain in the joints, violent muscular contractions, and death. The gangrenous variety begins with coldness and weakness of the extremities followed by gangrene and sloughing. This form is somewhat more fatal than the convulsive, the mortality of those affected being about 90 per cent.
Mouldy grain and bread have also caused poisoning. Prof. Varnell states that “six horses died in three days from eating mouldy oats. There was a large amount of matted mycelium, and this when given to other horses for experiment, killed them within thirty-six hours.” The writer has himself seen seven hogs die within a few days while being fed on mouldy corn. Flour which has become stale may produce similar injurious effects, although most of the germs are destroyed in the process of baking. It is quite probable, however, that a poisonous substance is generated by the mould fungus, which cannot be destroyed in this way.–_Milling World_.
* * * * *
MOIST AIR IN LIVING ROOMS.
The injurious effect of dry heat in inhabited rooms is quite generally known, and different methods have been suggested for moistening the air. To test the effectiveness of these methods, J. Melikow, of St. Petersburg, has estimated the quantity of moisture in the air of different rooms by means of August’s psychrometer, and also tested the different methods of increasing the moisture. He arrived at the following results, which are of decided practical value:
1. When large and small open vessels filled with water are placed in the room, they do not increase the moisture of the air at all.
2. Tubs of water of the same temperature as the room and parlor fountains have very little effect.
3. When hot air is used, open vessels of water placed over the pipes have no effect at all.
4. Wolpert’s revolving wheel increases the moisture but slightly.
5. The Russian tea machine and the steam pulverizer (atomizer) are effective but only for a short time.
6. Wet hand towels suspended in a room are insufficient.
7. Of all the methods tested, the most efficient seemed to be to hang up a number of wet cloths on a winch or some contrivance that permits of turning them, so as to hasten their giving out moisture to the air.–_Med. Zeitung_.
* * * * *
[The following article is from the June number of the _American Naturalist_, edited by Prof. A. S. Packard, Jr., and Prof. E. D. Cope. Published by McCalla & Stavely, Philadelphia, Pa.]
THE DEVELOPMENTAL SIGNIFICANCE OF HUMAN PHYSIOGNOMY.
[Footnote: Abstract of a lecture delivered before the Franklin Institute of Philadelphia, Jan. 20.1881, in exposition of principles laid down in The Hypothesis of Evolution, New Haven, 1870, p. 31.]
By E. D. COPE.
The ability to read character in the form of the human face and figure is a gift possessed by comparatively few persons, although most people interpret, more or less correctly, the salient points of human expression. The transient appearances of the face reveal temporary phases of feeling which are common to all men; but the constant qualities of the mind should be expressed, if at all, in the permanent forms of the executive instrument of the mind, the body. To detect the peculiarities of the mind by external marks has been the aim of the physiognomist of all times; but it is only in the light of modern evolutionary science that much progress in this direction can be made. The mind, as a function of part of the body, partakes of its perfections and its defects, and exhibits parallel types of development. Every peculiarity of the body has probably some corresponding significance in the mind; and the causes of the former are the remoter causes of the latter. Hence, before a true physiognomy can be attempted, the origin of the features of the face and general form must be known. Not that a perfect physiognomy will ever be possible. A mental constitution so complex as that of man cannot be expected to exhibit more than its leading features in the body; but these include, after all, most of what it is important for us to be able to read, from a practical point of view.
[Illustration: FIG. 1.–Section of skull of adult orang-outang _(Simia satyrus)_. FIG. 2.–Section of skull of young orang, showing relatively shorter jaws and more prominent cerebral region.]
The present essay will consider the probable origin of the structural points which constitute the permanent expression. These may be divided into three heads, viz.:
1. Those of the general form or figure.
2. Those of the surface or integument of the body, with its appendages.
3. Those of the forms of the head and face.
[Illustration: FIG. 3.–Figure of infant at birth; _a_, front of face. (The eye is too far posterior in this figure.)]
The principal points to be considered under each of these heads are the following:
I. THE GENERAL FORM.
1. The size of the head.
2. The squareness or slope of the shoulders.
3. The length of the arms.
4. The constriction of the waist.
5. The width of the hips.
6. The length of the leg, principally of the thigh.
7. The sizes of the hands and feet.
8. The relative sizes of the muscles.
[Illustration: FIG. 4.–Portrait of a girl at five years of age.]
II. THE SURFACES.
9. The structure of the hair (whether curled or not).
10. The length and position of the hair.
11. The size and shape of the nails.
12. The smoothness of the skin.
13. The color of the skin, hair, and irides.
[Illustration: FIG. 5.–Portrait of the same at seventeen years, showing the elongation of the facial region, and less protuberance of the cerebral.]
III. THE HEAD AND FACE.
14. The relative size of the cerebral to the facial regions.
15. The prominence of the forehead.
16. The prominence of the superciliary (eyebrow) ridges.
17. The prominence of the alveolar borders (jaws).
18. The prominence and width of the chin.
19. The relation of length to width of skull.
20. The prominence of the malar (cheek) bones.
21. The form of the nose.
22. The relative size of the orbits and eyes.
23. The size of the mouth and lips.
[Illustration: FIG. 6.–Profile of a Luchatze negro woman, showing deficient bridge of nose and chin, and elongate facial region and prognathism.]
The significance of these, as of the more important structural characters of man and the lower animals, must be considered from two standpoints, the paleontological and the embryological. The immediate paleontological history of man is unknown, but may be easily inferred from the characteristics displayed by his nearest relatives of the order Quadrumana. If we compare these animals with man, we find the following general differences. The numbers correspond to those of the list above given:
I. _As to General Form_.–(3) In the apes the arms are longer; (8) the extensor muscles of the leg are smaller.
II. _As to Surface_.–(9) The body is covered with hair which is not crisp or woolly; (10) the hair of the head is short; (18) the color of the skin, etc., is dark.
III. _As to Head and Face_.–(14) The facial region of the skull is large as compared with the cerebral; (15) the forehead is not prominent, and is generally retreating; (16) the superciliary ridges are more prominent; (17) the edges of the jaws are more prominent; (18) the chin is less prominent; (20) the cheek bones are more prominent; (21) the nose is without bridge, and with short and flat cartilages; (22) the orbits and eyes are smaller (except in Nyctipithecus); (24) the mouth is small and the lips are thin.
[Illustration: FIG. 7.–Face of another negro, showing flat nose, less prognathism and larger cerebral region. From Serpa Pinto.]
It is evident that the possession of any one of the above characteristics by a man approximates him more to the monkeys, so far as it goes. He retains features which have been obliterated in other persons in the process of evolution.
[Illustration: FIG.8.–Portrait of Satanta, a late chief of the Kiowas (from the Red river of Texas), from a photograph. The predominance of the facial region, and especially of the malar bones, and the absence of beard, are noteworthy.]
In considering the physiognomy of man from an embryological standpoint, we must consider the peculiarities of the infant at birth. The numbers of the following list correspond with those already used (Fig. 3).
I. _As to the General Form_.–(1) The head of the infant is relatively much larger than in the adult; (3) the arms are relatively longer; (4) there is no waist; (6) the leg, and especially the thigh, is much shorter.
II. _As to the Surfaces_.–(10) The body is covered with fine hair, and that of the head is short.
III. _The Head and Face_.–(14) The cerebral part of the skull greatly predominates over the facial; (16) the superciliary ridges are not developed; (17) the alveolar borders are not prominent; (20) the malar bones are not prominent; (21) the nose is without bridge and the cartilages are flat and generally short; (22) the eyes are larger.
[Illustration: FIG. 9.–Australian native (from Brough Smyth), showing small development of muscles of legs and prognathism.]
It is evident that persons who present any of the characters cited in the above list are more infantile or embryonic in those respects than are others; and that those who lack them have left them behind in reaching maturity.
We have now two sets of characters in which men may differ from each other. In the one set the characters are those of monkeys, in the other they are those of infants. Let us see whether there be any identities in the two lists, i. e., whether there be any of the monkey-like characters which are also infantile. We find the following to be such:
I. _As to General Form_.–(3) The arms are longer.
II. _Surface_.–(10) The hair of the head is short, and the hair on the body is more distributed.
III. _As to Head and Face_.–(21) The nose is without bridge and the cartilages are short and flat.
Three characters only out of twenty-three. On the other hand, the following characters of monkey-like significance are the opposites of those included in the embryonic list: (14) The facial region of the skull is large as compared with the cerebral; (15) the forehead is not prominent; (16) the superciliary ridges are more prominent; (17) the edges of the jaws are more prominent. Four characters, all of the face and head. It is thus evident that in attaining maturity man resembles more and more the apes in some important parts of his facial expression.
[Illustration: Esequibo Indian woman, showing the following peculiarities: deficient bridge of nose, prognathism, no waist, and (the right hand figure) deficiency of stature through short femur. From photographs by Endlich.]
It must be noted here that the difference between the young and embryonic monkeys and the adults is quite the same as those just mentioned as distinguishing the young from the adult of man (Figs. 1 and 2). The change, however, in the case of the monkeys is greater than in the case of man. That is, in the monkeys the jaws and superciliary ridges become still more prominent than in man. As these characters result from a fuller course of growth from the infant, it is evident that in these respects the apes are more fully developed than man. Man stops short in the development of the face, and is in so far more embryonic.[1] The prominent forehead and reduced jaws of man are characters of “retardation.” The characters of the prominent nose with its elevated bridge, is a result of “acceleration,” since it is a superaddition to the quadrumanous type from both the standpoints of paleontology and embryology.[2] The development of the bridge of the nose is no doubt directly connected with the development of the front of the cerebral part of the skull and ethmoid bone, which sooner or later carries the nasal bones with it.
[Footnote 1: This fact has been well stated by C. S. Minot in the _Naturalist_ for 1882, p. 511.]
[Footnote 2: See Cope, The Hypothesis of Evolution, New Haven, 1870, p. 31.]
[Illustration: The Venus of the Capitol (Rome). The form and face present the characteristic peculiarities of the female of the Indo-European race.]
If we now examine the leading characters of the physiognomy of three of the principal human sub-species, the Negro, the Mongolian, and the Indo-European, we can readily observe that it is in the two first named that there is a predominance of the quadrumanous features which are retarded in man; and that the embryonic characters which predominate are those in which man is accelerated. In race description the prominence of the edges of the jaws is called prognathism, and its absence orthognathism. The significance of the two lower race characters as compared with those of the Indo-European is as follows:
_Negro_.–Hair crisp (a special character), short (quadrum. accel.); prognathous (quadrum. accel.); nose flat, without bridge (quadrum. retard)[1]; malar bones prominent (quadrum. accel.); beard short (quadrum. retard.); arms longer (quadrum. accel.); extensor muscles of legs small (quadrum. retard.).
[Footnote 1: In the Bochimans, the flat nasal bones are co-ossified with the adjacent elements as in the apes (Thulie).]
_Mongolian_.–Hair straight, long (accel.); jaws prognathous (quadrum. accel.); nose flat or prominent with or without bridge; malar bones prominent (quadrum. accel.); beard none (embryonic); arms shorter (retard.); extensor muscles of leg smaller (quad. retard.).
_Indo-European_.–Hair long (accel.); jaws orthognathous (embryonic retard.); nose (generally) prominent with bridge (accel.); malar bones reduced (retard.); beard long (accel.); arms shorter (retard.); extensor muscles of the leg large (accel.).
The Indo-European race is then the highest by virtue of the acceleration of growth in the development of the muscles by which the body is maintained in the erect position (extensors of the leg), and in those important elements of beauty, a well-developed nose and beard. It is also superior in these points in which it is more embryonic than the other races, viz., the want of prominence of the jaws and cheekbones, since these are associated with a greater predominance of the cerebral part of the skull, increased size of cerebral hemispheres, and greater intellectual power.
A comparison between the two sexes of the Indo-Europeans expresses their physical and mental relations in a definite way. I select the sexes of the most civilized races, since it is in these, according to Broca and Topinard, that the sex characters are most pronounced. They may be contrasted as follows. The numbers are those of the list already used. I first consider those which are used in the tables of embryonic, quadrumanous, and race characters:
MALE. FEMALE.
I. _The General Form_.
2. Shoulders square. Shoulders slope. 4. Waist less constricted. Waist more constricted. 5. Hips narrower. Hips wider.
6. Legs longer. Legs shorter (very frequently). 8. Muscles larger. Muscles smaller.
II. _The Integuments, etc_.
10. More hair on body, that Less hair on body, that of head of head shorter; beard. longer; no beard. 12. Skin rougher (generally). Skin smoother.
III. _The Head and Face_.
16. Superciliary ridges more Superciliary ridges low. prominent.
22. Eyes often smaller. Eyes often larger.
[Illustration: The Wrestler; original in the Vatican. This figure displays the characters of the male Indo-European, except the beard.]
The characters in which the male is the most like the infant are two, viz., the narrow hips and short hair. Those in which the female is most embryonic are five, viz., the shorter legs, smaller muscles, absence of beard, low superciliary ridges, and frequently larger eyes. To these may be added two others not mentioned in the above lists; these are 1, the high pitched voice, which never falls an octave, as does that of the male; and 2, the structure of the generative organs, which in all mammalia more nearly resemble the embryo and the lower vertebrata in the female than in the male. Nevertheless, as Bischoff has pointed out, one of the most important distinctions between man and the apes is to be found in the external reproductive organs of the female.
From the preceding rapid sketch the reader will be able to explain the meaning of most of the peculiarities of face and form which he will meet with. Many persons possess at least one quadrumanous or embryonic character. The strongly convex upper lip frequently seen among the lower classes of the Irish is a modified quadrumanous character. Many people, especially those of the Sclavic races, have more or less embryonic noses. A retreating chin is a marked monkey character. Shortness of stature is mostly due to shortness of the femur, or thigh; the inequalities of people sitting are much less than those of people standing. A short femur is embryonic; so is a very large head. The faces of some people are always partially embryonic, in having a short face and light lower jaw. Such faces are still more embryonic when the forehead and eyes are protuberant. Retardation of this kind is frequently seen in children, and less frequently in women. The length of the arms would appear to have grown less in comparatively recent times. Thus the humerus in most of the Greek statues, including the Apollo Belvidere, is longer than those of modern Europeans, according to a writer in the Bulletin de la Societe d’Anthropologie of Paris, and resembles more nearly that of the modern Nubians than any other people. This is a quadrumanous approximation. The miserably developed calves of many of the savages of Australia, Africa, and America are well known. The fine, swelling gastroenemius and soleus muscles characterize the highest races, and are most remote from the slender shanks of the monkeys. The gluteus muscles developed in the lower races as well as in the higher distinguish them well from the monkeys with their flat posterior outline.
It must be borne in mind that the quadrumanous indications are found in the lower classes of the most developed races. The status of a race or family is determined by the percentage of its individuals who do and do not present the features in question. Some embryonic characters may also appear in individuals of any race, as a consequence of special circumstances. Such are, however, as important to the physiognomist as the more normal variations.
Some of these features have a purely physical significance, but the majority of them are, as already remarked, intimately connected with the development of the mind, either as a cause or as a necessary coincidence. I will examine these relations in a future article.
* * * * *
THE PRODUCTION OF FIRE.
In 1867 the Abbe Bourgeois found at Thenay, near Pont-levoy (Loir-et-Cher), in a marly bank belonging to the most ancient part of the middle Tertiary formation, fragments of silex which bore traces of the action of fire. This fire had not been lighted by accidental causes, for, says Mr. DeMortillet (_Le Prehistorique_, p. 90), the causes of instantaneous conflagrations can be only volcanic fires, fermentations, and lightning. “Now, in the entire region there is no trace of volcanic action, and neither are there any traces of turfy or vegetable deposits capable of giving rise to spontaneous inflammations–phenomena that are always very rare and very exceptional, as are also conflagrations started by lightning. Well, in the Thenay marls, the pieces of silex that had undergone the action of fire were found disseminated at different levels, and this could not have been a simple accident, but was evidently something that had been done intentionally. There existed, then, during the Aquitanian epoch, a being who was acquainted with fire and knew how to produce it.”
Mr. De Mortillet supposes that this being was an animal intermediate between man and the monkey, which he calls the _anthropopithecus_.
This precursor of man made use of fire for splitting silex and manufacturing from it instruments whose cutting edge he perfected by means of a series of retouchings produced by slight percussions upon one of the surfaces only.
I shall not enter in this place upon a discussion as to the existence of an anthropopithecus or Tertiary man, whom every one does not as yet accept, but will confine myself to giving the facts as to the use of fire in the remotest epochs, incontestable proofs of which exist from the time at which Quaternary man made his appearance. How this was discovered is indicated, according to Aryan tradition, by the Vedic hymns. The ancestors of the Aryans, these tell us, had seen the lighting dart forth from the shock of black clouds. They had seen the spark that fired the forests issue from the friction of dry branches agitated by the storm. They took a branch of soft wood, _arani_, and passing a thong around a branch of hard wood, _pramontha_, they caused it to revolve rapidly in a cavity in the _arani_, and thus evoked the god _Agni_, whom they nourished with libations of clarified butter, _soma_.
The _Pramontha_, became the _Prometheus_ of the Greeks, the Titan who stole the fire, and it is from the Sanscrit _Agni_ that is derived the Latin _Ignis_, “fire,” and the Greek [Greek: Agnos], “pure,” and the _Agnus Dei_ of the Christians, who purifies all.
Orientalists generally agree that the sign which is seen under the forms [inline illustration], [inline illustration], or [inline illustration], on a large number of objects of Aryan origin is a sort of sacred hieroglyphic, representing the _arani_ or _svastika_, formed of two pieces of soft wood fixed by four pins in such a way as not to revolve under the pressure of the Pramontha.
This process of producing fire is also found among a host of more or less savage peoples, and especially in India, where, during the last month of the great feast of sacrifices, the sacred fire must always be kindled three hundred and sixty times a day with nine different kinds of wood that are prescribed by the rite.
Fig. 1 shows the arrangement in use among the Eskimos, and Fig. 2 that employed by the Indians of North America.
In 1828 there still existed at Essen, in Hanover, an analogous apparatus designed to produce an alarm fire. This was a large, horizontal, round wooden bar whose extremities pivoted in two apertures formed in vertical posts, and which was provided with a cord that was wound around it several times. Several persons, by pulling on the ends of this cord, caused the bar to revolve alternately in one direction and the other, and the heat developed by the friction lighted some tow that had previously been inserted in one of the apertures in the post.
[Illustration: FIG. 1.–ESKIMO PRODUCING FIRE BY FRICTION.]
It is certain that the alternate motion must have been produced directly by hand before being effected by cords. This simpler process is still in use in Tasmania, Australia, Polynesia, Kamtschatka, Thibet, Mexico, and among the Guanches of the Canary Isles, who are supposed to be the last representatives of the inhabitants of Atlantis, which sank under the waters at the close of the Quaternary epoch.
Chamisso, who accompanied Kotzebue in his voyage, describes it as follows: “In the Caroline Islands, they rest a vertical piece of roundish wood, terminating in a point, and about a foot and a half in length and one inch in diameter, upon a second one fixed in the ground, and then give it a rotary motion by acting with the palms of the hands. This motion, which is at first slow and measured, is at length accelerated, while at the same time the pressure becomes stronger, whereupon the dust from the wood which has formed by friction and accumulated around the point of the movable piece begins to carbonize. This dust, which, after a fashion, constitutes a match, soon bursts into flame. The women of Eap are wonderfully dexterous in their use of this process.”
[Illustration: FIG. 2.–PROCESS EMPLOYED IN NORTH AMERICA FOR PRODUCING FIRE.]
Fig. 3 shows another manner of obtaining fire by rotation which is employed by the Guachos, a half savage, pastoral people who inhabit the pampas of South America. Longitudinal friction must have preceded that obtained by rotation. It is still in use in most of the islands of Oceanica (Fig. 4), and especially in Tahiti and in the Sandwich Islands.
In these latter, says again Chamisso, upon the fixed piece of wood they place another piece of the same kind, about the length of the palm, and press it obliquely at an angle of about 30 degrees. The extremity that touches the fixed piece is blunt, and the other extremity is held with the two hands, the two thumbs downward, in order to allow of a surer pressure. The piece is given an alternating motion, and in such a way that it shall always remain in the same plane inclined at an angle of 30 degrees, and form, through friction, a small groove from six to eight centimeters in length. When the dust thus produced begins to carbonize, the pressure and velocity are increased. Wood of a homogeneous texture, neither too hard nor too soft, is the best for the purpose.
The Malays operate as follows: A dry bamboo rod, about a foot in length, is split longitudinally, and the pith which lines the inside is scraped off, pressed, and made into a small ball which is afterward placed in the center of the cavity of one of the halves of the tube. This latter half is then fixed to the ground in such a way that the cavity and ball face downward. The operator next fashions the other half of the tube into a straight cutting instrument like a knife-blade, which he applies transversely to the fixed half and gives an alternating motion so as to produce a sort of sawing. After a certain length of time, a groove, and finally a hole, is produced. The cutting edge of the instrument is then so hot that it sets on fire the ball with which it has come in contact.
[Illustration: FIG. 3.–GAUCHO OBTAINING FIRE.]
Some peoples, the Fuegians especially, procure fire by striking together two flints. In the Aleutian Islands these latter, having been previously covered with sulphur, are struck against each other over a small saucer of dry moss dusted with sulphur. The Eskimos employ for this purpose pieces of quartz and iron pyrites.
In the Sandwich Islands recourse is had to a process that necessitates much skill. There is arranged in a large dry leaf, rolled into the shape of a funnel, a certain number of flints along with some easily combustible twigs. On attaching the leaf to the end of a rod, and revolving the latter rapidly, it is said that fire is produced.
Processes that are based upon the clashing of two flint stones must be much more inconvenient of application than we would be led to suppose. We are, in fact, accustomed to see the flint and steel used, but here the spark is a bit of iron raised to red heat through a mechanical action that has violently detached it from the mass under the form of a small sliver. In the case of two flint stones, the light that is perceived is of an entirely different nature, for it is a phosphorescence which is produced, even by a very slight friction, not only between two pieces of silex, but also between two pieces of quartz, porcelain, or sugar; and that the heat developed is but slight is proved by the fact that the phenomenon may occur under water. Of course, fragments of stones may be raised to a red heat through percussion; but this does not often occur, so for this reason the Fuegians keep up with the greatest care the fires that they have lighted, and it is this very peculiarity that has given their country a characteristic aspect and caused it to be named Terra del Fuego (land of fire). When they change their residence they always carry with them a few lighted embers which rest in their canoes upon a bed of pebbles or ashes.
The same thing occurs, moreover, among the Australians and Tasmanians, who employ, as we have just seen, the rotary process. There are women among these peoples whose special mission it is to carry day and night lighted torches or cones made of a substance that burns slowly like punk. When, through accident, the fire happens to get extinguished in a tribe, these people often prefer to undertake a long voyage in order to obtain another light from a neighboring tribe rather than have recourse to a direct production of it.
We can understand from what is still taking place in these distant countries why the worship of fire should have existed among our ancestors, and why sacerdotal associations, such as the Brahmins of India, the Guebers of Persia, the Vestals of Rome, the priests of Baal in Chaldea and Phenicia should have been specially instituted for producing and preserving it.
Plutarch narrates (Numa, chap. ii.) that when the sacred fire happened to go out, there was employed for relighting it a brass mirror that had the form of a cone generated by the hypothenuse of an isosceles rectangular triangle revolving around one of the sides of the right angle.
[Illustration: FIG. 4.–NATIVE OF OCEANICA OBTAINING FIRE BY FRICTION.]
In a poem upon stones attributed to Orpheus, it is said that the sacred fire was also lighted by a bit of crystal which concentrated the rays of the sun upon the material to be inflamed. This process must have been the one that was most usually employed before fire became common. In fact, a plano-convex crystal lens has been found among the ruins of Nineveh. Aristophanes, in the _Clouds_, puts on the stage a coarse personage named Strepsiades, who points out to Socrates how he must manage so as not to pay his debts:
“Streps.–Hast thou seen among druggists that beautiful transparent stone that they employ for lighting a fire?
“Socr.–Thou meanest glass.
“Streps.–Yes.
“Socr.–Well! what wouldst thou do with it?
“Streps.–When the registrar shall have made out his summons against me, I will take the glass, and, placing myself thus in the sun, will cause his writing to melt.”
As well known, writing was then traced on waxen tablets. Servius (in _AEn_., xii., 200) affirms that men of ancient times, instead of lighting fire upon the altar themselves, in their sacrifices, caused it to descend from heaven. He adds, according to Pliny, Titus Livius, and several old Latin historians, that Numa, who was initiated into all the wisdom of Etruria, practiced this art with success, but that Tullius Hostilius, having desired to repeat the evocation, guided only by the books of Numa, did not accomplish all the formalities prescribed by the rite and was struck dead by lightning.
Is it not curious that twenty-four centuries afterward, in 1753, the physicist Reichman was killed by lightning in trying to repeat Franklin’s experiment? This coincidence, however, is not the only one. Pliny (ii., 53) recounts that lightning was evoked by King Porsenna at the time when a monster named _Volta_, who was ravaging the country, was directing himself toward the capital, Volsinies.
If we return to the Vedas, who had the habit of personifying all phenomena, we shall find that the fire Agni was the son of the carpenter who had manufactured the instrument by which it was produced, and of _Maya_ (magic). He took the name of Akta (anointed, [Greek: christos]) when, nourished by libations of butter, he had acquired his full development. The Persians attributed likewise to Zoroaster the power of causing fire to descend from heaven through magic. Saint Clement of Alexandria (_Recog_., lib. iv.) and Gregory of Tours (_Hist. de Fr._, i., 5) speak of this. However this may be, the marvelous art was lost at an early date, for it was at such a date that priests began to have recourse to tricks that were more or less ingenious for lighting their sacred fireplaces in an apparently supernatural manner.–_A. De Rochas, in La Nature_.
* * * * *
ST. BLAISE, THE WINNER OF THE DERBY.
St. Blaise, the property of Sir Frederick Johnstone, was bred by Lord Alington, and is by Hermit from Fusee. This is an unexceptionable pedigree, for Hermit is now as successful and fashionable a sire as was even Stockwell in his palmiest days, while Fusee was far more than an average performer on the turf, and won several Queen’s Plates and other races over a distance of ground. St. Blaise is by no means a big colt, standing considerably under sixteen hands. His color is about his worst point, as he is a light, washy chestnut, with a bald face and three white heels. He has a good head and neck, and very powerful back and muscular quarters, added to which his legs and feet are well shaped and thoroughly sound. His first appearance was made in the Twenty-fourth Stockbridge Biennial at the Bibury Club Meeting, when he won easily enough; but there were only four moderate animals behind him. A walk-over for the Troy Stakes followed, and then Macheath beat him easily enough for the Hurstbourne Stakes, though he finished in front of Adriana and Tyndrum. For the Molecomb Stakes at Goodwood, he ran a dead-heat with Elzevir, to whom he was giving 7 lb.; and Bonny Jean, in receipt of 10 lb., was unplaced. A 7 lb. penalty seemed to put him completely out of the Dewhurst Plate; but he must then have been out of form, as, on the following day, it took him all his time to defeat Pebble by a neck in the Troy Stakes. This season he has only run twice. His fourth in the Two Thousand was by no means a bad performance, considering that he was palpably backward; and his victory of last week is too recent to need further allusion. Porter, his trainer, can boast of several other successes in the great race at Epsom; but Charles Wood had never previously ridden a Derby winner. St. Blaise was unfortunately omitted from the entries for the St. Leger, but has several valuable engagements at Ascot next week, and appears to have the Grand Prize of Paris, on Sunday, at his mercy.–_Illustrated London News_.
[Illustration: ST. BLAISE, THE WINNER OF THE DERBY.]
* * * * *
[NATURE.]
SCIENTIFIC PROGRESS IN CHINA AND JAPAN.
Various steps in the progress of China, and Japan in the adoption of Western science and educational methods have from time to time been noticed in these columns. To the popular mind the names of the two countries are synonymous with rigid, unreasoning conservatism and with rapid change, respectively. The grave, dignified Chinese, who maintains his own dress and habits even when isolated among strangers, and whose motto appears to be, _Stare super mas antiquas_, is popularly believed to be animated by a sullen, obstinate hostility toward any introduction from the West, however plain its value may be; while his gayer and more mercurial neighbor, the Japanese, is regarded as the true child of the old age of the West, following assiduously in its parent’s footsteps, and pursuing obediently the path marked out by European experience. There is considerable misconception in this, as indeed there is at all times in the English popular mind with regard to strange peoples. Broadly speaking, it is no doubt correct to say that, Japan has adopted Western inventions and scientific appliances with avidity; that she has shown a desire for change which is abnormal, and a disposition to destroy her charts and sail away into unsurveyed seas, while China remains pretty much where she always was. She is now, with some exceptions, what she was twenty, two hundred, perhaps two thousand years ago, while a new Japan has been created in fifteen years. All this, we say, is true, but it is not the whole truth. China also has had her changes; not indeed so marked or rapid, not so much in the nature of a