This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
Language:
Form:
Genre:
Published:
  • 1888
Collection:
Tags:
Buy it on Amazon FREE Audible 30 days

add more water. At night a little heap of potash may be placed over the hole, and water enough poured on so that a supply of strong lye will flow into the pipe during the night.

Pipes that have been stopped for months may be cleaned out by this method, though it may call for three or four pounds of potash. The crudest kind, however, appears to act as well as the best. If the pipe is partially obstructed, a lump of crude potash should be placed where water will drip slowly upon it, and so reach the pipe. As water comes in contact with the potash, it becomes hot, thus aiding in dissolving the grease. Potash, in combination with grease, forms a “soft” or liquid soap, which easily flows away. It is also destructive to all animal and most mineral matters.

Some of the most dangerous gases come from wash-basin pipes, being, perhaps, the result of the decay of the soap and the animal matter washed from the skin.

When a pipe is once fairly cleaned out, the potash should be used from time to time, in order to dissolve the greasy deposits as they form, and carry them forward to the cesspool or sewer.–_Artisan_.

_What Came from a Neighbor’s Cesspool_.–Keep watch not only of your own premises, but stand on guard against those of your neighbors. Dr. Carpenter cites a case wherein “four members of a certain household were attacked with typhoid fever, one of whom narrowly escaped with her life. The circumstances left no doubt in the mind of the attending physician that the malady originated in the opening of an old cesspool belonging to a neighboring house, then in course of demolition. The house in which the outbreak took place is large and airy, and stands by itself in a most salubrious situation. The most careful examination failed to disclose any defect either in its drainage or its water supply; there was no typhoid in the neighborhood; and the milk supply was unexceptional. But the neighboring house being old, and having been occupied by a school, its removal had been determined on to make way for a house of higher class; and as the offensive odor emanating from the uncovered cesspool was at once perceived in the next garden, and the outbreak of typhoid followed at the usual interval, the case seems one which admits of no reasonable question.”

5. _The Cellar_.–_A Typical Bad Cellar_.–Did the reader ever, when a child, see the cellar afloat at some old home in the country? You creep part way down the cellar stairs with only the light of a single tallow candle, and behold by its dim glimmer an expanse of dark water, boundless as the sea. On its surface, in dire confusion, float barrels and boxes, butter firkins and washtubs, boards, planks, hoops, and staves without number, interspersed with apples, turnips, and cabbages, while half-drowned rats and mice, scrambling up the stairway for dear life, drive you affrighted back to the kitchen….Now consider the case of one of these old farmhouse cellars that has been in use fifty years or more. In it have been stored all the potatoes, turnips, cabbages, onions, and other vegetables for family food. The milk and cream, the pork and beef, and cider and vinegar, have all met with various accidents, and from time to time have had their juices, in various stages of decay, absorbed by the soil of the cellar bottom. The cats have slept there to fight the rats and the mice, who have had their little homes behind the walls for half a century; and the sink spouts have for the same term poured into the soil close by, their fragrant fluids. The water rushes upward and sideways into the cellar, forming, with the savory ingredients at which we have delicately hinted, a sort of broth, quite thin and watery at first, but growing thicker as the water slowly subsides and leaves its grosser parts pervading the surface of the earth, walls, and partitions. All this time the air rushes in at the openings of the cellar, and presses constantly upward, often lifting the carpets from the floors, and is breathed day and night by all who dwell in the house. Does it require learned doctors or boards of health to inform any rational person that these conditions are unfavorable to health?–MRS. PLUNKETT, _Women, Plumbers, and Doctors_.

_What Came from a Crack in a Cellar Wall_.–A few years ago a Boston gentleman inherited a house, situated on one of the most desirable streets of the city. Resolving to make a healthy as well as a beautiful home, he. spent a large sum, and gave personal supervision to all the details of an elaborate system of plumbing. He moved in. Imagine his grief and disappointment when member after member of his family succumbed to diphtheria, and an infant and a grown daughter died. Though so deeply smitten, he did not lose his belief in the connection between cause and effect. He ordered a minute investigation of the premises by experts. A slight crack, so small as to have escaped ordinary observation, was found in the cellar wall. Investigation of the premises next door–the inmates of which were also suffering from diphtheria–showed a choked-up drain, which ought to have connected with the sewer, but did not. The filthy ooze from this was pouring out, just where its effluvium and its disease germs could pass without any hindrance through the crack.

Now that it is shown that gases pass through bricks and many kinds of stone, it is easy to see that the sanitary welfare of one is the sanitary welfare of all.–MRS. PLUNKETT.

6. _The Bedroom_.–_The Bed a Night Garment_.–There is still one of our garments to be considered, which generally is not regarded as such. I mean the bed–that piece of clothing in which we spend such a great part of our time.

The bed is not only a place of rest; it is especially our sleeping garment, and has often to make up for privations endured during the day and the day’s work, and to give us strength for to-morrow. Like our day garments, the bed covering must be airy and warm at the same time. We warm the bed by our body, just as we warm our clothes, and the bed warms the air which is continually flowing through it from below, upward. The regulating strata must be more powerful in their action than in our day clothes, because during rest and sleep the metamorphosis of our tissues and the resulting heat become less; and because in a horizontal position we lose more heat by an ascending current of air than in a vertical position, where the warm ascending current is in more complete and longer contact with our upright body.

The warmth of the bed sustains the circulation in our surface to a certain degree for the benefit of our internal organs at a time when our production of heat is at its lowest ebb. Hence the importance of the bed for our heat and blood economy. Several days without rest in a bed not only make us sensible of a deficiency in the recruiting of our strength, but very often produce quite noticeable perturbations in our bodily economy, from which the bed would have protected us.–DR. MAX VON PETTENKOFFER.

_Bed Ventilation_.–It often happens that the desire of the energetic housekeeper to have her work done at an early hour in the morning, causes her to leave one of the most important items of neatness undone. The most effectual purifying of bed and bedclothes can not take place, if the proper time is not allowed, for the free circulation of pure air, to remove all human impurities which have collected during the hours of slumber. At least two or three hours should be allowed for the complete removal of atoms of insensible perspiration which are absorbed by the bed. Every day the airing should be done; and, occasionally, bedding constantly used should be carried into the open air, and left exposed to the sun and wind for half a day.–_Home and Health_.

CIRCULATION.

THE PULSE (p. 116).–The pulse which is felt by the finger does not correspond precisely with the beat of the heart, but takes place a little after it, and the interval is longer, the greater the distance of the artery from the heart. The beat of the artery on the inner side of the ankle, for example, is a little later than the beat of the artery in the temple.–HUXLEY.

The pulse is increased by exertion, and thus is more rapid in a standing than in a sitting, and in a sitting than in a lying posture. It is quickened by meals, and while varying thus from time to time during the day, is on the whole quicker in the evening than in early morning. It is said to be quicker in summer than in winter. Even independently of muscular exertion, it seems to be quickened by great altitude. Its rate is also profoundly influenced by mental conditions.–FOSTER.

CIRCULATION OF THE BLOOD IN THE BRAIN (p. l20).–Signer Mosso, who has been engaged on the subject for six years, has published some new observations on the different conditions of the circulation of the blood in the brain. He has had the privilege of observing three patients who had holes in their skulls, permitting the examination of the encephalic movements and circulation. No part of the body exhibits a pulsation so varied in its form as the brain. The pulsation may be described as tricuspid; that is, it consists of a strong beat, preceded and followed by lesser beats. It gathers strength when the brain is at work, corresponding with the more rapid flow of blood to the organ. The increase in the volume of the brain does not depend upon any change in the respiratory rhythm; for, if we take the pulse of the forearm simultaneously with that of the brain, we can not perceive that the cerebral labor exercises any influence upon the forearm, although the pulsation in the brain may be considerably modified. The emotions have a similar effect upon the circulation of the brain to that of cerebral labor. Signor Mosso has also observed and registered graphically the variations of the cerebral pulse during sleep. Generally the pulses of the wrist and the brain vary oppositely. At the moment of waking, the pulse of the wrist diminishes, while that of the brain increases. The cerebral pulsations diminish as sleep grows deeper, and at last become very weak. Outward excitations determine the same modifications during sleep as in the waking state, without waking the sleeper. A deep inspiration always produces a diminution in the volume of the brain, in consequence, probably, of the increased flow of blood into the veins of the thoracic cavity; the increase of volume in the brain, when it takes place, is, on the contrary, due to a more abundant flow of arterial blood to the encephalus.–_Popular Science Monthly, March, 1882_.

CATARRHAL COLDS (p. l30).–I maintain that it can be proved, with as absolute certainty as any physiological fact admits of being proved, that warm, vitiated indoor air is the cause, and cold outdoor air the best cure, of catarrh….Fresh cold air is a tonic that invigorates the respiratory organs when all other stimulants fail, and, combined with arm exercise and certain dietetic alternatives, it is the best remedy for all disorders of the lungs and upper air passages….A combination of the three specifics,–exercise, abstinence, and fresh air,–will cure the most obstinate cold….Frost is such a powerful disinfectant, that in very cold nights the lung-poisoning atmosphere of few houses can resist its purifying influence; in spite of padded doors, in spite of “weatherstrips” and double windows, it reduces the indoor temperature enough to paralyze the floating disease germs. The penetrative force of a polar night frost exercises that function with such resistless vigor that it defies the preventive measures of human skill; and all Arctic travelers agree that among the natives of Iceland, Greenland, and Labrador pulmonary diseases are actually unknown. Protracted cold weather thus prevents epidemic catarrhs, but during the first thaw Nature succumbs to art: smoldering stove fires add their fumes to the effluvia of the dormitory, tight- fitting doors and windows exclude the means of salvation; superstition triumphs; the lung poison operates, and the next morning a snuffling, coughing, and red-nosed family discuss the cause of their affliction….It is a mistake to suppose that “colds” can be propagated only by direct transmission or the breathing of recently Vitiated air. Catarrh germs, floating in the atmosphere of an ill-ventilated bedroom, may preserve their vitality for weeks after the house has been abandoned; and the next renter of such a place should not move in till wide-open windows and doors and a thorough draught of several days have removed every trace of a “musty” smell.–DR. FELIX L. OSWALD, _Remedies of Nature, Popular Science Monthly, March, 1884_.

CATCHING COLD.–The phrase “to catch cold,” so often in the mouths of physicians and patients, is a curious solecism. It implies that the term “cold” denotes something positive–a sort of demon which does not catch, but is caught by the unfortunate victims….If most persons outside of the medical profession were to be asked what they consider as chiefly to be avoided in the management of sick people, the answer would probably be “catching cold.” I suspect that this question would be answered in the same way by not a few physicians. Hence it is that sick rooms are poorly ventilated, and patients are oppressed by a superabundance of garments and bedclothes. The air which patients are made to breathe, having been already breathed and rebreathed, is loaded with pulmonary exhalations. Cutaneous emanations are allowed to remain in contact with the body, as well as to pervade the atmosphere. Patients not confined to the bed, especially those affected with pulmonary disease, are overloaded with clothing, which becomes saturated with perspiration, and is seldom changed, for fear of the dreaded “cold.”…

A reform is greatly needed in respect to “catching cold.” Few diseases are referable to the agency of cold, and even the affection commonly called a cold is generally caused by other agencies, or, perhaps, by a special agent, which may prove to be a microbe. Let the axiom, _A fever patient never catches cold_, be reiterated until it becomes a household phrase. Let the restorative influence of cool, fresh, pure atmosphere be inculcated. Let it be understood that in therapeutics, as in hygiene, the single word _comfort_ embodies the principles which should regulate coverings and clothing.–AUSTIN FLINT, M.D., _in a Lecture printed in The New York Medical Journal_.

DIGESTION AND FOOD.

THE WATER WE DRINK (p. l55).–_Qualities of Pure Water_.–“A good drinking water,” says Dr. Simpson (in _The Water We Drink_), “should possess the following physical characters: it should be entirely free from color, taste, or odor; it should, moreover, be cool, well aerated, soft, bright, and entirely free from all deposit. But it should be remembered that a water having all these characteristics may yet be more or less polluted by organic matter, owing to the proximity of drains and sewers….Disease has frequently been traced to the use of perfectly bright and clear water, where there was no sediment, and where the animal organic matter was held in a state of solution.”

In the case of diseases, such as typhoid, which attack the stomach, disease germs are removed along with the excreta; and if, as is often the case, the drainage of an infected town flows into a river, and that river is used in some after portion of its course as a water supply, there is great danger of such diseases being communicated. For, however well the water may be purified and filtered, we have no guarantee that it will not contain some of these disease germs, which are so small that they pass through the finest filters. It is in this way that almost all the great cholera and typhoid epidemics have spread.–_Chambers’s Journal_.

_Well Water Often Dangerous_.–A densely crowded population soon impregnates the soil to some depth with filth, which drains into the water course below, especially if such water is near the surface. This surface water easily penetrates a loosely walled well. Every well, therefore, should not only be widely separated from barnyards, cesspools, pens, sinks, and similar places, but should be made water-tight with cement, so that nothing can reach its interior except water that has been filtered through dense beds of unpolluted ground below. If these precautions are neglected, the best and deepest well may become continually contaminated by infiltration from the surrounding surface. This impure water, even when not used for family drinking, is sometimes supplied to cows, or used for washing dairy pans, or employed in diluting milk for the market, and there are many known cases in which disease has thus been disseminated. Thus, an epidemic of typhoid fever in Cambridge, Mass., was definitely traced to a dairy which supplied the victims with milk. Upon investigation it was found that a short time before there had been a typhoid patient in the farmhouse, and that the well from which water was taken to wash the milk pans had become contaminated with the specific poison brought into it from the surrounding drainage.

All suspected water should be thoroughly boiled before using it to drink. Some physicians insist that the boiling should continue for one or two hours in order entirely to destroy the bacterial germs. The heaviness and insipidity incident to boiled water may be somewhat relieved by afterward filtering it. Filtering, of itself, however, will do little toward ridding the water of microbes, which are much too minute to be arrested by the ordinary apparatus.–When journeying, where one must often take a hasty meal at a railway station, drink hot water in preference to cold. A convenient portable filter may be arranged with a bottle of powdered charcoal, and a piece of filtering paper. A traveler by briskly stirring a tablespoonful of the charcoal into a pint of water, allowing it to stand five or ten minutes, and then filtering it through the paper, may venture to relieve his thirst in almost any part of the country.

_Water an Absorbent of Foul Gases_.–If a pitcher of water be left uncovered in an occupied apartment for only a few hours, it will become foul from the absorption of the respired and perspired gases in the room. The colder the water, the greater the capacity to contain these gases. Water kept in a room over night is therefore unfit for drinking, and should not be used even to brush the teeth or to gargle in the throat.

_Impure Ice, a Breeder of Disease_.–We generally take the purity of our ice for granted, and, like the alligator in the bayou, close our mouths and swallow it. In the country, I have seen during the ice- harvesting season, wagon after wagon passing me on the road, laden with ice that had been collected from canals, rivers, and streams receiving sewerage, and from ponds that are in the summer time reeking with slime, and often offensive from the quantity of decomposed vegetable and animal matter brought in by the washing from the meadow. These streams would be shunned as a source of water supply.

Should you interview a native regarding the slimy mud puddle before you, called Mr. So-and-so’s private “ice pond,” he would say that “in winter it is much better, and when frozen, you know, it makes fine ice,” presenting that popular though ignorant belief that while in the act of crystallizing, water rids itself of all its injurious qualities, however offensive it may be in its liquid state. Unfortunately, there is enough truth in the current idea of the elimination of noxious and foreign matter during the process of freezing to give color to the popular belief, but not enough to make it a safe reliance; therefore all means should be used to enlighten the public regarding this subject. Experiment has shown that freezing produces little change or effect in overcoming the poisonous influences, and ice has often served as a vehicle to convey the germs of typhoid and other low forms of fever. Pure ice can be procured only from water free from impurities, and ice for domestic or surgical purposes should never be collected from ponds or streams which contain animal or vegetable refuse, or stagnant and muddy material.–_Journal of Reconstructives, Oct., 1887_.

THE GLANDULAR COAT OF THE STOMACH, AND HOW IT WEEPS (p. l62).–While the food is thus being continually moved about, it is at the same time subjected to the action of the chemical sac. This is, as we have said, a glandular sac. It is of some thickness, and is made of little glands bound up together with that stringy fibrous packing material which anatomists call _connective tissue_.

If we were to imagine many gross of small India-rubber vials all placed side by side, and bound together with hay or straw into a great mat, and the mat rolled up into a sac, with all the mouths of the vials turned inward, we should have a large and coarse, but tolerably fair image of the glandular coat of the stomach. Each vial would then represent one of the glands of this coat, one of the gastric or peptic glands, as they are called. Each gland, however, is not always a simple tube, but is often branched at the bottom end, and all of them are lined, except just at their mouths, with large rounded bodies, which not unfrequently almost choke up their cavity.

FIG. 72.

[Illustration: BRANCHED GASTRIC GLAND a. _The peptic cells._ b. _The inert cells._]

The rounded masses, or cells, as they are called, in the interior of each gland, form the really active part of the apparatus. Each cell is a little laboratory, which concocts out of the material brought to it or near it by the blood a certain potent, biting fluid, and is hence called a peptic or digestive cell. Each cell is born at the bottom of the tube, and in process of time travels upward toward the mouth. When it reaches the mouth, it bursts, and pours into the stomach the fluid it has elaborated, or perhaps may give it out without bursting, while it is still within its tube.

In those cases in which it has been possible to look in upon the stomach while at work (as in the famous case of Alexis St. Martin), and where the orifices of the tiny glands (for though we have compared them to bottles, they are exceedingly small) appear like little dots, tears were seen to start at the mouths of the glands, gather into drops, and finally trickle down into the lowest part of the stomach. The stomach, as it were, weeps, and indeed the weeping of tears is just such another effect of glandular activity–only ordinary tears form a mild and, chemically speaking, impotent fluid; while the fluid which the tears of the stomach weep–the _gastric juice_–is a sharp, piercing water of excessive chemical power.–Hinton.

POISONOUS MILK, CHEESE, AND ICE CREAM (p. l69).–In late years there have been many cases of poisoning by ice cream, cheese, and milk. The poisonous principle sometimes developed in these articles of food has been made a subject of special investigation, and it has been found to be due to natural causes. Dr. Vaughan, of Michigan, after spending several months in experimenting upon samples of twelve different cheeses, which had caused three hundred cases of poisoning, finally succeeded in isolating certain poison crystals, which he calls _Tyrotoxicon_. He says: “A few drops of an aqueous solution of these crystals placed upon the tongue produces all the symptoms observed in those who had been made sick by eating of the cheese. This was tried repeatedly upon myself, and upon some of my students who kindly offered themselves for experimentation.” Dr. Vaughan afterward procured the poison crystals from milk which had stood some months in a closed bottle, and also from a sample of ice cream by which eighteen persons had been made ill. It was learned in the latter case that the custard, of which the ice cream was made, had been allowed to stand in a foul atmosphere for two hours before it was frozen. By placing small bits of this poisonous cream in good milk, and allowing it to stand twenty-four hours, the whole became vitiated. This proved that the poison is due to the growth of some ferment. In the autumn of 1886, many persons in different hotels at Long Branch were poisoned by milk obtained from a certain milkman. In this case it was found that the cows were milked at noon, the warm milk being immediately placed in cans and carted eight miles during the warmest part of the day, in a very hot month. In June, 1887, nineteen persons in New York city were similarly poisoned by milk which also came from one dairy. Many of these persons had narrow escapes from death. These, and many other like instances, teach us the importance of the greatest care in every detail of milk handling. A little dried milk formed along the seam of a tin pail, or any similar lodging place, may be the starting point of poison generation. A month after his first experiments with the ice cream mentioned above, Dr. Vaughan put small pieces of the dried custard in pans of milk, and afterward made custard from this milk. This yielded tyrotoxicon as before, showing the tenacious vitality of the poison, and also explaining the fact that the precise cause of poisoning is in many cases so difficult to trace.

FISH AS FOOD (p. 169).–It is not desirable that fish should be the sole kind of nitrogenous food eaten by any nation; and even if milk and eggs be added thereto, the vigor of such a people will not be equal to that of flesh-eating nations. At the same time, the value of fish as a part of a dietary is indicated by the larger proportion of phosphorus which it contains, and which renders it especially fitted for the use of those who perform much brain work, or who are the victims of much anxiety and distress.–EDWARD SMITH, _in “Foods_.”

For the mentally exhausted, the worried, the “nervous,” and the distressed in mind, fish is not simply a food; it acts as physic. The brain is nourished by it, the “nerves”–to use the term in its popular sense–are “quieted”; the mind grows stronger, the temper less irritable, and the whole being healthier and happier when fish is substituted for butcher’s meat….I find persons who are greatly excited, even to the extent of seeking to do violence to themselves or to those around them, who can not sleep, and who are in an agony of irritability, become composed and contented when fed almost exclusively on fish. In such cases I have withdrawn butter, milk, eggs, and all the varieties of warm-blooded animal food; and, carefully noting the weight and strength, I find no diminution of either, while fish is supplied in such quantities as fully to satisfy the appetite.–J. MORTIMER GRANVILLE, M.D., “_Fish as Food and Physic_.”

COFFEE AND TEA (p. 170).–Besides the alkaloid _Caffeine_ which coffee contains, it also develops, in roasting, a volatile oil called Caffeone, to which is due its characteristic aroma. The main effects of coffee are due to both the caffeine and the caffeone, which are antagonistic, though not contemporaneous, in action. The volatile oil reduces arterial tension, allows a brisker flow of blood, and so increases the rapidity of the heart’s action. It also acts upon the brain, and intellectual faculties in general; keeps one awake, and his mind clear. Caffeine, on the other hand, like digitalis, produces a high arterial tension, and slows the heart beat. It exerts its chief effect upon the spinal cord, to which, like strychnia, it is an excitant. The shaking hand of the inveterate coffee drinker is caused by caffeine. Thus a cup of coffee produces on the drinker a double effect,–of the oil and the alkaloid; the former sooner and transient, the latter later and lasting….Coffee is not in itself nutritious to any marked degree; but it saves food, and also maintains life, by its exhilarating effect upon the nervous system. It is an excellent antidote to opium, producing the wakefulness that antagonizes the narcotic sleep of the drug; is now and then curative of sick headache, and is one of the standard remedies for certain forms of nausea.

To the chemist, _Tea_ is much the same thing as coffee. It contains considerably more tannin, a volatile oil, and an alkaloid (theine) indistinguishable from caffeine. That the injurious effects of overdoses are due as much to the volatile oil as to the alkaloid, is shown by the fact that tea packers are made ill by long breathing of air filled with it, and that tea tasters in China, who avoid swallowing the infusion, can endure their trade but a few years, and leave the country with shattered nerves.

Probably every one numbers among his friends women who are actual slaves of the tea habit, and who would find tea as hard to forsake as men find tobacco. It is not unlikely that the functional cardiac disorder, often spoken of as the “tobacco heart,” due to nervous derangement, and accompanied by palpitation and pain in the cardiac region, is more often due to tea than tobacco. In fact, the disorders induced by excessive tea drinking have been grasped as a special disease, to which has been given the name of _Theism_. This includes a train of symptoms, usually progressive, loss of appetite, pain after meals, headache, constipation, palpitation, cardiac distress, hysterical manifestations, dizziness, and paresis.–DR. MAURICE D. CLARKE, _Popular Science News_.

Tea drinkers, as a rule, express doubts as regards the correctness of alleged poisonous properties of tea. Numerous instances of individuals of this class have been noticed who were themselves suffering from tea poisoning. Their nerves were in a deplorably abnormal condition, the heart and brain were functionally disturbed, and the sleep less in quantity and less refreshing than it should be….One’s opinion of the physical disturbances which may be caused by rum, tobacco, or tea, are not worth much, when the opinion comes from a victim of the excessive use of these agents.

The tannin found in tea does not differ from that found in oak and other barks which the tanners use to convert the raw hides of animals into leather. It is a powerful astringent, which accounts for some of the peculiar physical evils to which confirmed tea drinkers are subject.

_Theine_ does not differ essentially from _Cocaine_ (see p. 223). They both produce exaltation of the nervous system and increased powers of physical endurance. The brain is largely influenced in its functions, and long periods of wakefulness are induced. Continued use of strong infusions of either coca or tea result in great disturbance of nervous centers and functional offices, and either will produce fatal results by persistent use of inordinate quantities.

A cup of tea as served at tea tables contains usually only a trace of the alkaloidal principle, but infinitesimal quantities are capable of exerting baneful effects upon some tea drinkers….Poisons act in a variety of ways, some slowly, and without producing pain; others act violently, and with speedy, fatal results. Inasmuch as we do not observe a very large number of clearly proved cases of acute poisoning by tea, we must conclude that it is characteristically a slow poison, and also that its influence is unlike in different individuals….Four or six cups of tea, however, taken during each twenty-four hours, will in time produce tea poisoning, and greater or less evil effects.

Tea is well enough, when its use is kept under absolute, intelligent control; but if it becomes master in any case, then it must be promptly abandoned, for danger attends the intemperate tea drinker every hour of his life. Those advanced in life crave its stimulating effects, and it is well for them to use it in moderation; but the young should abstain from it entirely.–_Abridged from “Tea Poisoning,” by_ DR. NICHOLS, _in Popular Science News, December, 1887_.

CAUSES AND EFFECTS OF INDIGESTION (p. l72).–When a light breakfast is eaten, a solid meal is requisite in the middle of the day. If the digestive organs are left too long unemployed, they secrete an excess of mucus, which greatly interferes with their normal functions. One meal has a direct influence on the next; and a poor breakfast leaves the stomach over-active for dinner. This is the secret of much excess in eating. The point to bear in mind is that not to eat a sufficiency at one meal makes you too hungry for the next; and that when you are too hungry, you are apt to overload the stomach, and to give the gastric juices more to do than they have the power to perform.

To eat too often, and to eat irregularly, are other sources of indigestion. People who dine at uncertain hours, and eat one meal too quickly on the last, must expect the stomach to retaliate in the long run. A very fruitful cause of dyspepsia is imperfect mastication. We remember one old gentleman who used always to warn young people on this point by saying: “Remember you have no teeth in your stomach.” Nervous people nearly always eat fast, and as nearly always are the victims of nervous irritability, produced by dyspepsia….To sit much in a stooping posture interferes with the stomach’s action. Well-marked dyspepsia has been traced to sitting immediately after dinner in a low armchair, so that the body was curved forward, and the stomach compressed….

The skin, core, and kernels of fruit should be avoided. Some people are not able to digest raw apples; and dyspepsia has been sometimes greatly aggravated by eating pears. The latter fruit, in its ripest state, contains an abundance of gritty material, which, as it can not be separated in the mouth, on being swallowed irritates the mucous membrane….

Of food itself, bear in mind that hot meat is more digestible than cold; the flesh of full-grown animals than that of young ones; that land birds are more digestible than waterfowl; wild animals than domestic ones; and that in game, newly killed birds are easier of digestion than those which have been kept a long time.–_Hints to Dyspeptics, Chambers’s Journal_.

HOW FOOD DEVELOPS ENERGY (p. 173).–It may appear strange that the small amount of food we eat should suffice to carry our large and bulky bodies through all the varied movement of the day. But this difficulty disappears at once, when we recollect how large an amount of dormant energy can be laid by in a very small piece of matter. A lump of coal no bigger than one’s fist, if judiciously employed, will suffice to keep a small toy engine at work for a considerable time. Now, our food is matter containing large amounts of dormant energy, and our bodies are engines so constructed as to utilize all the energy to the best advantage. A single gramme of beef fat if completely burned (that is, if every atom unites with oxygen), is capable of developing more than 9,000 heat units; and each heat unit, if employed to perform mechanical work, is capable of lifting a weight of one gramme to a height of 424 meters; or, what comes to the same thing, 424 grammes to a height of one meter. Accordingly, the energy contained in one gramme of beef, and the oxygen with which it unites, would be sufficient to raise the little bit of fat itself to a height of 3,816 kilometers, or almost as high as the distance from London to New York.– GRANT ALLEN _in “Why do we Eat our Dinner_?”

_Danger of Too High Pressure_.–A prudent fire engineer, when his water hose is old and weak, would not try to force as much water as he could into it. No; to prevent a rupture he would work it at a low pressure. But men seldom think of carrying out the same simple mechanical principle when there is reason to believe that the vessels of the brain are getting weak and brittle. They eat and drink just as much as they feel inclined to, and sometimes a little more. With a good digestion, nearly all they consume is converted into blood, to the yet further distention of vessels already over-distended. This high-pressure style of living produces high-pressure results. Its effects were painfully illustrated by the death of Charles Dickens. The brain work he performed was immense; he lived generously, taking his wine as he did his meat, with a liberal hand. He disregarded the signs of structural decay, forcing his reluctant brain to do what it had once done with spontaneous ease, until all at once, under a greater tension than ordinary, a weak vessel gave way, flooding the brain with blood.–J. R. BLACK, M.D., _in “Apoplexy,” Popular Science Monthly, April, 1875_.

_Evils of Gluttony_.–“Is it not strange,” says Dr. Hunt, “how people, even the most considerate, will trifle with their stomachs? Many a person seems to prefer taking medicine to avoiding it by a proper regulation of the appetite. You may stuff the stomach to the full, year after year, but as sure as effects follow causes, so sure will you reap the accumulating penalty.” A physician of extensive practice declares that he has never lived through a Christmas or Thanksgiving without frequently being consulted for ailments produced by excessive eating. He says: “It would seem as if multitudes thought they had a gluttonous license once a year, and that the most appropriate method of expressing gratitude, was by stuffing the stomach. Excessive eating produces scrofula. Surfeiting among children results in mental stupidity and unmanageable temper….I am acquainted with a family, in which about the average amount of stuffing is indulged. To my expostulations, the mother has replied: “I may not be able to give my children as much education as some folks, and I may not be able to give them any property, but as long as we can get it, they shall have what they want to eat. I have spoken of their black teeth, bad breath, eruptions, and frequent sickness. “Yes,” she has replied, “I know all that, but would you have me stop them before their appetites are half satisfied, and tell them, ‘there, that is all you can have’? No; as long as I can get it, my children shall have enough to eat; it never shall be said that I have starved them.” This indulgence of children to the full extent of their undiscriminating appetites is extreme folly and genuine unkindness. Pampered with a variety of dishes, they eat enormously, which engenders a craving for another large meal, and so on–their youthful and elastic constitutions enabling them to bear the excess without immediate serious injury. Let them be confined to one or two plain dishes at a meal, and the quantity be determined for them; it will then be found that a growing child does not need to be stuffed, and that his appetite will soon become reasonable; and if the food be plain, and mostly or entirely vegetable, it will soon be observed that the child’s teeth are whiter, its breath sweeter, its skin clearer, its tongue cleaner, its eyes brighter, its sleep quieter, its brains sharper, and its temper more amiable. There are few changes in the management of children which would prove so beneficial as that from the present mode of cramming with a multitude of rich foods, to a plain vegetable diet, eaten in regular and moderate quantities.–DIO LEWIS, _in Weak Lungs, and How to Make them Strong_.

REGULAR PHYSICAL HABITS (p. 177).–Constipation lies at the root of a host of chronic ailments, which seem especially to beset American women. Impaired blood, nervous excitability, sick headaches, mental depression, sleeplessness, and a long train of untold sufferings may be directly traced to this physical sin. We say _sin_, for in the large majority of instances this habit may be prevented; or, if already formed, may, by proper attention, be cured. The principal causes which lead to this deplorable state of the system are:

1. Errors in Food.

2. Errors in Exercise.

3. Inattention to Nature’s laws.

_Errors in Food_ have much to do with the evil in question. Our diet is, in general, too concentrated. We indulge ourselves with animal food two or three times a day, accompanying it with spices, condiments, greasy gravies, fine wheat bread, and a sparse amount of vegetables. We wind up our dinners with rich and heavy pastry, and our luncheons or our suppers with sugared sweetmeats and that indigestible compound often offered under the name of cake. A few cups of strong tea intensify the error. Coffee has a less astringent effect, and therefore can not be so severely arraigned for this particular consequence. When we think what delicious meals can be enjoyed from any of the cereals, well cooked, and taken with milk or cream, bread from unbolted flour, plenty of unsugared fruit, and pure rain or spring water, filtered and cooled or taken hot, with or without milk, we wonder that so many people consent day after day to use greasy pork, fried steaks, fried potatoes, hot biscuit, and in many cases poorly made coffee and tea. These are the people who make up the grand army of sallow- faced sufferers upon which the venders of patent pills and nauseous compounds thrive.

A wise mother will not allow mere culinary convenience to take precedence of the requirements of health. She will study the peculiar physical needs of each one of her children, that she may provide for each the food best suited to his or her constitution. This is not a difficult matter. “Water, not only by itself, but in some of its combinations,” says Dr. Oswald, “is an effective aperient; in watermelons, and whey, for instance, but still more in conjunction with a dish of peas, or beans. No constipation can long withstand the suasion of a dose of pea soup, or baked beans, flavored with a modicum of brown butter, and glorified with a cup of cold spring water. Moreover, the aperient effect thus produced is not followed by an astringent reaction, as in the case of drugs,–the cure, once effected, is permanent.”

_Errors in Exercise_ may lie in two directions, and overexertion, viz., exercise carried to the point of nervous exhaustion, is as mischievous in its effect as is the other extreme. A too long walk, for instance, may cause the very evil it is intended to cure.

As a rule, however, sedentary habits are chargeable with the greater share of influence in this unhappy state of the system. Light gymnastics within doors, a brisk walk or horseback ride without, both taken in garments suspended from the shoulders, and devoid of all constriction so that the abdominal viscera can partake in the general movement of the body, are advisable. For invalids or those incapacitated for active exercise, friction or massage treatment daily, including a vigorous kneading of the abdomen, or a relaxation of the entire muscles of the body with especial thought directed to the desired result, are often of great service.

_Inattention to Physical Laws_ is perhaps the prime culprit. Nature always inclines to regularity, and when we do not respect her dictates, we invite the retribution which, sooner or later, she invariably inflicts. The elimination of waste from the system is an imperative necessity, and whenever it is thwarted, evil must and will follow. Aside from the avoidance of positive discomforts, suffering, and disease, there is the not unimportant consideration of bodily elasticity and a fine complexion. Let every young woman who would possess and retain a fair, delicate complexion, remember that the most important factor in its formation and retention is a clean system.

Proper diet, plenty of fruits, plenty of wholesome drink, enough exercise to send the blood pleasurably bounding through the veins, followed up and enforced by prompt recognition of the immutable laws of Health in this as well as all other organic functions, will soon work a reform that could not be so successfully effected by all the drugs in Christendom.–E. B. S.

THE NERVOUS SYSTEM.

EFFECT OF VIOLENT PASSIONS UPON HEALTH (p. 202).–The man who is given to outbursts of anger is sure to experience a rapid change of the physical organs, in case he does not die in a fit of rage.

Death under such circumstances is of frequent occurrence. Sylla, Valentinian, Nerva, Wenceslas, and Isabeau of Bavaria, all died in consequence of an access of passion. The medical annals of our own time recount many instances of fatal effects following the violent brain disturbance caused by anger. The symptoms usually are pulmonary and cerebral congestions. Still such fatal accidents as these are exceptional; as a rule, the passions of hate and anger deteriorate the constitution by slow, but sure degrees.

How, then, do we explain those morbid phenomena which have their origin in misplaced affection, in disappointed ambition, in hatred, or in anger, and which culminate either in serious chronic maladies, or in death or suicide? They all seem to start from an impairment of the cerebro-spinal centers. The continual excitation of these by ever-present emotions determines a paralysis of the central nerve substance, and thus affects its connections with the nerves extending out to the various organs. These nerves next degenerate by degrees, and soon the great functions are compromised. The heart and the lungs cease to act with their normal rhythm, the circulation grows irregular and languishing. Appetite disappears, the amount of carbonic acid exhaled decreases, and the hair grows white, owing to the interruption of the pigmentary secretion. This general disturbance in nutrition and secretion is attended with a fall of the body’s temperature and anæmia. The flesh dries up and the organism becomes less and less capable of resisting morbific influences. At the same time, in consequence of the reaction of all these disturbances on the brain, the psychic faculties become dull or perverted, and the patient falls into a decline more or less complicated and aggravated by grave symptoms. Under these conditions he dies or makes away with himself.

Two organs, the stomach and the liver, are often affected in a peculiar and characteristic way in the course of this pathological evolution. The modifications produced in the innervation, under the influence of cephalic excitement, cause a disturbance of the blood circulation in the liver. This disturbance is of such a nature that the bile, now secreted in larger quantity, is resorbed into the blood instead of passing into the biliary vesicle. Then appears what we call jaundice. The skin becomes pale, then yellow, owing to the presence in the blood of the coloring matter of the bile. This change in the liver is usually developed slowly: sometimes, however, jaundice makes its appearance suddenly. Villeneuve mentions the case of two youths who brought a discussion to an end by grasping their swords; suddenly one of them turned yellow, and the other, alarmed at this transformation, dropped his weapon. The same author speaks of a priest who became jaundiced on seeing a mad dog jump at him. Whatever may be said of these cases, we must reckon painful affections of the soul among the efficient causes of chronic diseases of the liver.

The digestion, says the author of a work published some years ago, is completely subjected to the influence of the moral and intellectual state. When the brain is wearied by the passions, appetite and digestion are almost gone….There is nowhere perfect health, save when the passions are well regulated, harmonized, and equipoised. Moral temperance is as indispensable to a calm and tranquil life as physiological temperance….If it is your desire that your circulatory, respiratory, and digestive functions should be discharged properly, normally, if you want your appetite to be good, your sleep sound, your humor equable, avoid all emotions that are overstrong, all pleasures that are too intense, and meet the inevitable sorrows and the cruel agonies of life with a firm and resigned soul. Ever have some occupation to employ and divert your mind, and to make it proof against the temptations of want or of desire. Thus will you attain the term of life without overmuch disquiet and affliction.–FERNAND PAPILLON, _in the Revue des Deux Mondes_.

BRAIN WORK, OVERWORK, AND WORRY (p. 205).–_Overstimulation of the Brain in Childhood_.–Most civilized communities have enacted laws against the employment of children in severe physical labor. This is well enough, for the muscles of young persons are tender and weak, and not, therefore, adapted to the work to which cupidity or ignorance would otherwise subject them. But no such fostering care does the State take of the brains of the young. There are no laws to prevent the undeveloped nervous system being overtasked and brought to disease, or even absolute destruction. Every physician sees cases of the kind, and wonders how parents of intelligence can be so blind to the welfare of their offspring as to force, or even to allow, their brains to be worked to a degree that, in many cases, results in idiocy or death. Only a few months ago I saw for the first time a boy of five years of age, with a large head, a prominent forehead, and all the other signs of mental precocity. He had read the first volume of Bryant’s “History of the United States,” and was preparing to tackle the other volumes! He read the magazines of the day with as much interest as did his father, and conversed with equal facility on the politics of the period. But a few weeks before I saw him he had begun to walk in his sleep, then chorea had made its appearance, and on the day before he was brought to me he had had a well-marked epileptic paroxysm. Already his mind is weakened –perhaps permanently so. Such cases are not isolated ones. They are continually occurring.

The period of early childhood–say up to seven or eight years of age–is that during which the brain and other parts of the nervous system are most actively developing, in order to fit them for the great work before them. It is safe to say that the only instruction given during this time should be that which consists in teaching children how to observe. The perceptive faculties alone should be made the subjects of systematic attempts at development. The child should be taught how to use his senses, and especially how to see, hear, and touch. In this manner, knowledge would be acquired in the way that is preeminently the natural way, and ample food would be furnished for the child’s reflective powers.–DK. WM. A. HAMMOND, _Popular Science Monthly, November, 1884_.

_Reserve Force_.–The part which “a stock of energy” plays in brain work can scarcely be exaggerated. Reserves are of high moment everywhere in the animal economy, and the reserve of mental force is in a practical sense more important than any other….Without this reserve, healthy brain work is impossible. Pain, hunger, anxiety, and a sense of mind weariness, are warning tokens of exhaustion. When the laborious worker, overcome with fatigue, “rouses” himself with alcohol, coffee, tea, or any other agent which may chance to suit him, he does not add a unit of force to his stock of energy; he simply narcotizes the sense of weariness, and, the guard being drugged, he appropriates the reserve….Meanwhile, the effort to work becomes daily more laborious, the task of fixing the attention grows increasingly difficult, thoughts wander, memory fails, the reasoning power is enfeebled; physical nerve or brain disturbance may supervene, and the crash will then come suddenly, unexpected by on-lookers, perhaps unperceived by the sufferer himself.

_Overwork and Worry_.–The miseries of “overwork,” pure and simple, are few and comparatively insignificant….The natural safeguards are so well fitted for their task that neither body nor mind is exposed to the peril of serious exhaustion so long as their functions are duly performed. Overwork is _impossible_ so long as the effort made is natural….There is then no excuse for idleness in the pretense of possible injury. If insane asylums were searched for the victims of “overwork,” they would nearly all be found to have fallen a prey to “worry,” or to the degeneracy which results from lack of purpose in life, and of steady employment ….The cause or condition which most commonly exposes the reserve of mental energy to loss and injury is worry. When a strong and active mind breaks down suddenly in the midst of business, it is usually worn out by this cause rather than by the other….Work in the teeth of worry is fraught with peril. The unhappy victim is ever on the verge of a catastrophe; if he escape, the marvel is not at his strength of intellect so much as at his good fortune. Worry is disorder, however induced, and disorderly work is abhorred by the laws of nature, which leave it wholly without remedy.

The pernicious system of _Cram_ slays its thousands, because uneducated, undeveloped, inelastic intellects are burdened and strained with information adroitly deposited in the memory,–as an expert valet packs a portmanteau, with the articles likely to be first wanted on the top. _Desultory occupation_, mere play with objects of which the true interest is not appreciated, ruins a still larger number. But _worry_, that bane of brain work and mental energy, counts its victims by tens of thousands.–DR. J. MORTIMER GRANVILLE, _in “Worry,” Nineteenth Century_.

SLEEP (p. 206).–_Some Curiosities of Sleep_.–One of the most refined and exquisite methods of torture is long continued deprivation of sleep. The demand for unconscious rest is so imperious that nature will accommodate itself to the most unfavorable surrounding conditions. Thus, in forced marches, regiments have been known to sleep while walking; men have slept soundly in the saddle; and persons will sometimes sleep during the din of battle. It is remarkable how noises to which we have been accustomed will fail to disturb our natural rest. Those who have been long habituated to the endless noise of a crowded city frequently find difficulty in sleeping in the oppressive stillness of the country. Prolonged exposure to intense cold induces excessive somnolence, and if this be induced, the sleep passes into stupor, the power of resistance to cold becomes rapidly diminished, and death is the inevitable result. Intense heat often produces drowsiness, but, as is well known, is not favorable to natural sleep….It is difficult to determine with exactness the phenomena of sleep that are absolutely physiological, and to separate those that are slightly abnormal. We can not assert, for example, that a dreamless sleep is the only normal condition of repose of the system; nor can we determine what dreams are due to previous trains of thought, or to such impressions from the external world received during sleep as are purely physiological, and what are due to abnormal nervous influence, disordered digestion, etc.

The most remarkable experiments upon the production of dreams of a definite character, by subjecting a person during sleep to peculiar influences, are those of Maury. The hallucinations produced in this way are called hypnagogic (from its derivation this term is properly applied only to phenomena observed at the instant when we fall asleep, or when we are imperfectly awakened, and not to the period of most perfect repose), and they occur when the subject is not in a condition favorable to sound sleep.

The experiments made by Maury upon himself are so curious and interesting that we quote the most striking of them in full.

_First Observation_.–I am tickled with a feather successively on the lips and inside of the nostrils. I dream that I am subjected to a horrible punishment, that a mask of pitch is applied to my face, and then roughly torn off, tearing the skin of the lip, the nose, and the face.

_Second Observation_.–A pair of pincers is held at a little distance from my ear, and rubbed with steel scissors. I dream that I hear the ringing of bells; this soon becomes a tocsin, and I imagine myself in the days of June, 1848. (The time of the French Revolution.)

_Third Observation_.–I am caused to inhale Cologne water. I dream I am in a perfumer’s shop; the idea of perfumes doubtless awakens the idea of the East; I am in Cairo, in the shop of Jean Farina….

_Fifth Observation_.–I am slightly pinched on the nape of the neck. I dream that a blister is applied, which recalls to my mind a physician who had treated me in infancy.

_Seventh Observation_….The words Azar, Castor, Leonore, were pronounced in my ear; on awaking I recollected that I had heard the last two words, which I attributed to one of the persons who had conversed with me in my dream.–FLINT’S _Physiology of Man_.

The transition stage between the dream simple and the dream acted is witnessed in the spasmodic movements which a vivid dream produces in the limbs or person of the sleeper. The dreamer engages in a fierce struggle, and twitchings of his legs and arms indicate the feeble response of body to the promptings of mind removed from its wonted power over the frame. Even the dog, as he sleeps, apparently dreams of the chase, and gives vent to his sensations by the short, sharp bark, or sniffs the air, and starts in his slumber as if in response to the activity with which, in his dreaming, he is hurrying along after the object of pursuit….Persons have been known to swim for a considerable time in the somnambulistic state without waking at the termination of their journey; others have safely descended the shaft of a mine, while some have ascended steep cliffs, and have returned home in safety during a prolonged sleep vigil. (See p. 204.)–DR. ANDREW WILSON, F.R.S.E., _What Dreams are Made of_.

_Sleep and Conscience_.–Edward Everett Hale says: Never go to bed in any danger of being hungry. People are kept awake by hunger quite as much as by a bad conscience. Remembering that sleep is the essential force which starts the whole system, decline tea or coffee within the last six hours before going to bed. Avoid all mathematics or intricate study of any sort in the last six hours. This is the stuff dreams are made of, and hot heads, and the nuisances of waking hours. Keep your conscience clear. Remember that because the work of life is infinite, you can not do the whole of it in any limited period of time, and that therefore you may just as well leave off in one place as another.

_The Art of Rising Early_.–The proper time to rise is when sleep ends. Dozing should not be allowed. True sleep is the aggregate of sleeps, or is a state consisting in the sleeping or rest of all the several parts of the organism. Sometimes one and at other times another part of the body, as a whole, may be the least fatigued, and so the first to awake; or the most exhausted, and therefore the most difficult to arouse. The secret of good sleep is, the physiological conditions of rest being established, so to work and weary the several parts of the organism as to give them a proportionately equal need of rest at the same moment. To wake early, and feel ready to rise, a fair and equal start of the sleepers should be secured; and the wise self-manager should not allow a drowsy feeling of unconsciousness, or weary senses, or an exhausted muscular system, to beguile him into the folly of going to sleep again when once he has been aroused. After a few days of self-discipline, the man who resolves not to doze, that is, not to allow some sleepy part of his body to keep him in bed after his brain has once awakened, will find himself, without knowing why, an early riser.

INFLUENCE OF SUNLIGHT (p. 207).–Light is an essential element in producing the grand phenomena of life, though its action is ill understood. Where there is light there is life, and any deprivation of this principle is rapidly followed by disease of the animal frame, and the destruction of the mental faculties. We have proof of this in the squalor of those whose necessities compel them to labor in places to which the blessings of sunshine never penetrate, as in our coal mines, where men having everything necessary for health, except light, exhibit a singularly unhealthy appearance. The state of fatuity and wretchedness to which those individuals have been reduced, who have been subjected for years to incarceration in dark dungeons, may be referred to the same deprivation.– ROBERT HUNT, _Poetry of Science_.

_Effect of Dungeon Life_.–“You can not imagine, Mr. Kennan,” said a condemned revolutionist to me in Siberia, “the misery of prolonged confinement in a casemate of the fortress under what are known as dungeon conditions. My casemate was sometimes cold, generally damp, and always gloomy. Day after day, week after week, month after month, I lay there in solitude, hearing no sound save that of the high-pitched, melancholy bells of the fortress cathedral, which slowly chimed the quarter hours, and which always seemed to say: ‘Here thou liest–lie here still.’ I had absolutely nothing to do except to pace my cell from corner to corner, and think. For a long time I used to talk to myself in a whisper; to repeat softly everything in the shape of literature that I could remember, and to compose speeches which, under certain imagined conditions, I would deliver; but I finally ceased to have energy enough to do even this, and used to sit for hours in a sort of stupor, in which, so far as I can now remember, I was not conscious of thinking at all. Before the end of the first year, I grew so weak, mentally and physically, that I began to forget words. I knew what ideas I desired to express, but some of the words that I needed had gone from me, and it was with the greatest difficulty that I could recover them. It seemed sometimes as if my own language were a strange one to me, or one which, from long disuse, I had forgotten. I greatly feared insanity, and my apprehension was increased by the fact that two or three of my comrades in cells on the same corridor were either insane or subject to hallucinations; and I was often roused at night and thrown into a violent chill of nervous excitement by their hysterical weeping, their cries to the guard to come and take away somebody, or something which they imagined they saw, or their groans and entreaties when, in cases of violent delirium, they were strapped to their beds by the _gendarmes_.”–GEORGE KENNAN, _in Russian State Prisoners, The Century, March, 1888_.

THE GROWTH AND POWER OF POISON HABITS (p. 218).–In order to distinguish a poison stimulant from a harmless and nutritive substance, Nature has furnished us three infallible tests:

1. The first taste of every poison is either insipid or repulsive.

2. The persistent obtrusion of the noxious substance changes that aversion into a specific craving.

3. The more or less pleasurable excitement produced by a gratification of that craving is always followed by a depressing reaction….

One radical fallacy identifies the stimulant habit in all its disguises: its victims mistake a process of irritation for one of invigoration…. Sooner or later the tonic is sure to pall while the morbid craving remains, and forces its victims either to increase the quantity of the wonted stimulant, or else to resort to a stronger poison. A boy begins with ginger beer and ends in ginger rum; the medical “tonic” delusion progresses from malt extract to Mumford’s Elixir; and the nicotine habit once introduced, the alcohol habit often follows. The tendency of every stimulant habit is toward a stronger tonic….We have found that the road to the rum shop is paved with “mild stimulants,” and that every bottle of medical bitters is apt to get the vender a permanent customer. We have found that cider and mild ale lead to strong ale, to lager beer, and finally to rum, and the truth at last dawns upon us that the only safe, consistent, and effective plan is Total Abstinence from all Poisons.

…More than the hunger after bread, more than the frenzy of love or hatred, the poison hunger overpowers every other instinct, even the fear of death. Dr. Isaac Jennings has illustrated this by the following example: A clergyman of his acquaintance attempted to dissuade a young man of great promise from habits of intemperance. “Hear me first a few words,” said the young man, “and then you may proceed. I am sensible that an indulgence in this habit will lead to the loss of property, the loss of reputation and domestic happiness, to premature death, and to the irretrievable loss of my immortal soul; and now, with all this conviction resting firmly on my mind and flashing over my conscience like lightning, if I still continue to drink, do you suppose anything you can say will deter me from the practice?”

…Ignorance is a chief cause of intemperance. The seductions of vice would not mislead so many of our young men if they could realize the significance of their mistake. There is still a lingering belief that, with due precaution against excess and adulteration, a dram drinker might “get ahead” of Nature, and, as it were, trick her out of some extra enjoyment. There is no hope of a radical reform till intelligent people have realized the fact that this “trick” is in every instance a losing game, entailing penalties which far outweigh the pleasures that the novice may mistake for enjoyments. For the depression of the vital energy increases with every repetition of the stimulating process, and in a year after the first dose all the “grateful and exhilarating tonics” of our professional poison venders can not restore the vigor, the courage, and the cheerfulness which the mere consciousness of perfect health imparts to the total abstainer. A great plurality of all beginners underrate the difficulty of controlling the cravings of a morbid appetite. They remember that their natural inclinations at first opposed, rather than encouraged, the indulgence; and they feel that at the present stage of its development they could abjure the passion without difficulty. But they overlook the fact that the moral power of resistance decreases with each repetition of the dose, and that the time will come when only the practical impossibility of procuring their wonted tipple will enable them to keep their pledge of total abstinence. It is true that, by the exercise of a constant self-restraint, a person of great will force may resist the progressive tendency of the poison habit and confine himself for years to a single cigar or a single bottle of wine per day….But the attempt to resist that bias will overtask the strength of most individuals. According to the allegory of the Grecian myth, the car of Bacchus was drawn by tigers; and it is a significant circumstance that war, famine, and pestilence have so often been the forerunners of veritable alcohol epidemics….The explanation is that, after the stimulant habit has once been initiated, every unusual depression of mental or physical vigor calls for an increased application of the accustomed method of relief….Nations who are addicted to the worship of a poison god will use his temple as a place of refuge from every calamity; and children whose petty ailments have been palliated with narcotics, wine, and cordials, will afterward be tempted to drown their greater sorrows in deeper draughts of the same nepenthe.–FELIX L. OSWALD, M.D., _Remedies of Nature, Popular Science Monthly, October and November, 1883_.

DANGERS FROM THE USE OF NARCOTICS.–It may seem a paradox, it is a truism, to say that in the value of narcotics lies their peril. Because they have such power for good, because the suffering which they alleviate is in its lighter forms so common, because neuralgia and sleeplessness are ailments as familiar to the present generation as gout, rheumatism, and catarrh were to our grandfathers, therefore the medicines which immediately relieve sleeplessness and neuralgic pain are among the most dangerous possessions, the most subtle temptations of civilized life. Every one of these drugs has, besides its instant and beneficial effect, other and injurious tendencies. The relief which it gives is purchased at a certain price; for, at each repetition of the dose, the immediate relief is lessened or rendered uncertain, while the mischievous influence is enhanced and aggravated; till, when the drug has become a necessity of life it has lost the greater part, if not the whole, of its value, and serves only to satisfy the need which itself alone has created….We read weekly of men and women poisoned by an overdose of some favorite sedative, burned to death or otherwise fatally injured, while insensible from self- administered ether or chloroform….The narcotist keeps chloroform or chloral always at hand, forgetful or ignorant that one sure effect of the first dose is to produce a semistupor more dangerous than actual somnolence. In that semistupor the patient is aware, or fancies, that the dose has failed. The pain that has induced a lady to hold a chloroformed handkerchief under her nostrils returns while her will and her judgment are half paralyzed. She takes the bottle from the table beside her bed, intending to pour an additional supply upon her handkerchief. The unsteady hand perhaps spills a quantity on the sheet, perhaps sinks with the unstoppered bottle under her nostrils, and in a few moments she has inhaled enough utterly to stupefy, if not to kill. The sleepless brain worker also feels that his usual dose of chloral has failed to bring sleep; he is not aware how completely it has stupefied the brain, to which it has not given rest. His judgment is gone, so is his steadiness of hand; and he pours out a second and too often a fatal dose….But the cases that end in a death terrible to the family, though probably involving little or no suffering to the victim himself, are by no means the worst. A life poisoned, paralyzed, rendered worthless for all the uses of intellectual, rational, we might almost say of human existence, is worse for the sufferer himself and for all around him than a quick and painless death; and for one such death there must be twenty, if not a hundred, instances of this worst death in life….The demoralization of the narcotist is not, like that of the drunkard, rapid, violent, and palpable; but gradual, insidious, perceptible at first only to close observers and intimate friends. Here and there we find a constitution upon which opium exerts few or none of its characteristic effects. Such cases are, of course, wholly exceptional; but their very existence is a danger to others, misleading them into the idea that they may dally with the tempter without falling under its yoke, or may fall under that yoke and find it a light one. I doubt, however, whether the most fortunate of its victims would encourage the latter idea; whether there be an opium eater who would not give a limb never to have known what opium slavery means….Besides, no one can be sure, or indeed reasonably hope, that the mischief will be confined to the individual victim. That the children of drunkards are often predisposed to insanity is notorious; that the children of habitual opium eaters inherit an unmistakable taint, whether in a diseased brain, in morbid cravings, or simply in a will too weak to resist temptation, is less notorious, but equally certain.–PERCY GREG, _Narcotics and Stimulants, Contemporary Review_.

Thus also in America scarcely a week passes but we see announced in the public prints deaths or suicides resulting from the use of narcotics. Now, it is from tobacco: A Yale College student dies from excessive smoking; another student in the same college, and as a result of the same habit, commits suicide; a third young man is found dead in his bed in New York, from heart disease induced by cigarettes; and so, month by month, and year by year, grows in rapid increase the list of tobacco deaths.–Or, again, it is from opium. A Harvard student with two of his college companions in search of a new sensation, tries opium smoking one fatal night and dies before morning; a woman in Ohio, belonging to a prominent family, dies at the age of thirty-three years, from an overdose of morphine, her body covered with hypodermic scars; another, once the respected wife of a Baptist clergyman, becomes a morphine drunkard, drifts, step by step, into a Central New York Almshouse, and there hangs herself; a third, young, accomplished, and wealthy, falls first a victim to the morphine habit, then to opium smoking, finally becomes the frequenter of a New York opium joint, and so is lost forever to home, friends, and respectability.– Occasionally it is cocaine, as in the case of the Chicago physician, who, for the purposes of investigation, experiments with this new drug upon himself, his wife, and finally upon his innocent children; the entire family being found unconscious from the effects of the subtle narcotic. These are but solitary instances in an appallingly long list of similar cases, most of which have occurred within the last two years (1887-’88).

_Cigarette Smoking_ is chargeable with a growing demoralization and mortality among boys and young men. It is no uncommon sight to see lads of ten years old and under, with the irresponsibility of ignorant childhood, puffing the dangerous cigarette, and thus undermining health and intellect at the very outset of useful existence. Even when told of the near and remote perils thus incurred, they scarcely listen, for do not they see their elders smoke and prosper?–Most of them do not understand that there is more danger to the young than to the old in the tobacco habit, more danger to some constitutions than to others, and more danger in the cigarette than even in the pipe or the cigar. Pause a moment to consider it, boys, when you are tempted to light the clean-looking, paper-covered roll and place it in your mouth. Think of the heated smoke irritating the delicate membrane in your throat, dulling your brain, and vitiating the blood which should be bounding fresh and pure through your veins. Think of the many filthy and diseased mouths from which have been cast away the tobacco refuse, picked up in streets and public places to reappear in the “Cheap and Popular Brand” which looks to you so innocent and so attractive. It is astonishing, indeed, how an otherwise cleanly boy will consent to defile himself with these vile abominations. And yet, I have known lads who–not always with perfect politeness–would fastidiously refuse “hash” at their mother’s breakfast table, but who would shortly afterward serenely place one of these unknowable compounds between their lips and walk away with the air of superior manhood!

_Of Chloral Hydrate_, Dr. Fothergill remarks: “When this was announced with a flourish of trumpets as a perfectly innocuous narcotic, the sleepless folk hailed its advent with eager acclamation. But a little experience soon demonstrated that the innocuous, harmless drug was far from the boon it was proclaimed. In fact, the impression of its harmlessness was the outcome of ignorance of its properties. Death after death, even among medical men themselves, as well as nonprofessional persons, have already resulted from the use, or rather misuse, of this narcotic agent.”

_The Bromides_ (of Soda or Potash), also, should be used with caution, and only on the prescription of a conscientious physician. “The bromide of potash,” says Percy Greg, “is claimed not to produce sleep by stupefaction, like chloral or opium, but, at least in small doses, to allay the nervous irritability which is often the sole cause of sleeplessness. But in larger quantities and in its ultimate effects, it is scarcely less to be dreaded than chloral.” Overdoses of the bromides will produce among other evil effects a peculiar eruption upon the face, which, though generally temporary, is liable to reappear from time to time under certain conditions of the system, and especially upon a subsequent dose, however dilute.

_Absinthe_ is a compound of absinthium (the essence of wormwood), various aromatic oils, and alcohol. Absinthium, taken in small doses, induces trembling, stupor, and insensibility; in larger doses, epilepsy. When, therefore, this dangerous essence is added to alcohol, it strengthens its influence to specific disease. Absinthe drinking is recognized in France as such a serious vice that it has been officially prohibited in the army and navy.

_Hasheesh_ is a syrup prepared from the leaves and flowers of Indian Hemp. Though its use in this country is comparatively small, instances are not unknown in which reckless or curious persons have fatally experimented with it. As a medicine, it is in limited use, and with results not always satisfactory. It acts in a peculiar manner upon the nervous centers, occasioning that strange condition of the nervous system called catalepsy, in which the limbs of the unconscious patient remain stationary in whatever position they may be placed. After an average dose of hasheesh, the subject becomes the helpless victim of rapidly shifting ideas, a prominent characteristic of which is an entire loss of judgment as to time and place. A larger dose produces hallucinations and delirium, with that distressing sensation of falling through endless space which is induced in some people by opium. [Footnote: In an article entitled “An Overdose of Hasheesh” (_Popular Science Monthly_, February, 1884), Miss MARY A. HUNGERFORD gives a vivid description of a painful experience with this drug, some portion of which is as follows:

“Being one of the grand army of sufferers from headache, I took, last summer, by order of my physician, three small daily doses of hasheesh in the hope of holding my intimate enemy in check….I grew to regard the drug as a harmless medicine, and one day, when I was assured by some familiar symptoms that my headache was about to assume an aggravated form, I took a larger quantity than had been prescribed. Twenty minutes later I was seized with a strange sinking or faintness which gave my family so much alarm that they telephoned at once for the doctor.

“…One terrible reality–I can hardly term it a fancy even now–that came to me again and again, was so painful that it must, I fear, always be a vividly remembered agony….I died, as I believed, although by a strange double consciousness I knew that I should again reanimate the body I had left. In leaving it I did not soar away, as one delights to think of the freed spirits soaring….I sank, an intangible, impalpable shape, through the bed, the floors, the cellar, the earth, down, down, down! Like a fragment of glass dropping through the ocean, I dropped uninterruptedly through the earth and its atmosphere, and then fell on and on forever….As time went on, and my dropping through space continued, I became filled with the most profound loneliness, and a desperate fear took hold of me that I should be thus alone for evermore, and fall and fall eternally….There was, it seemed to me, a forgotten text which, if remembered, would be the spell to stop my fatal falling. I sought in my memory for it, I prayed to recall it, I fought for it madly, wrestling against the terrible fate which seemed to withhold it. Single words of it came to me in disconnected mockery, but erased themselves instantaneously. Mentally, I writhed in such hopeless agony that, in thinking of it, I wonder I could have borne such excess of emotion and lived….I began, then, without having reached any goal, to ascend. As I rose, a great and terrible voice from a vast distance pronounced my doom: ‘Fall, fall, fall, to rise again in hopeless misery, and sink again in lonely agony forever.’ …Then ensued a wild and terrible commingling of unsyllabled sounds, so unearthly that it is not in the power of language to fitly describe them. It was something like a mighty Niagara of shrieks and groans, combined with the fearful din and crash of thousands of battles and the thunderous roar of a stormy sea….I fought my upward way in an agony which resembled nothing so much as the terrible moment when, from strangling or suffocation, all the forces of life struggle against death, and wrestle madly for another breath. In place of the woeful sounds now reigned a deadly stillness, broken only at long but regular intervals by a loud report, as if a cannon, louder than any I ever heard on earth, were discharged at my side, almost shot into me, I might say, for the sound appeared to rend me from head to foot, and then to die away into the dark chaos about me in strange, shuddering reverberations. Even in the misery of my ascending I was filled with a dread expectancy of the cruel sound. It gave me a feeling of acute physical torture, with a lingering intensity that bodily suffering could not have. It was repeated an incredible number of times, and always with the same suffering and shock to me. At last the sound came oftener, but with less force, and I seemed again nearing the shores of time. Dimly in the far distance I saw the room I had left, myself lying still and deathlike upon the bed, and the friends watching me….Then, silently and invisibly I floated into the room, and was one with myself again.

“…’She is conscious now,’ I heard one of the doctors say, and he gently lifted the lids of my eyes and looked into them. I tried my best to throw all the intelligence I could into them, and returned his look with one of recognition. But, even with my eyes fixed on his, I felt myself going again in spite of my craving to stay. I longed to implore the doctor to save me, to keep me from the unutterable anguish of falling into the vastness and vagueness of that shadowy sea of nothingness again. I clasped my hands in wild entreaty; I was shaken by horrible convulsions–so, at least, it seemed to me at the time–but, beyond a slight quivering of the fingers, no movement was discernible by the others….For five hours I remained in the same condition–short intervals of half-consciousness and then long lapses into the agonizing experiences I have described….Coming out of the last trance, I discovered that the measured rending report like the discharge of a cannon, which attended my upward way, was the throbbing of my own heart.”]

Concerning all these and other narcotics, it should never be forgotten that they are true poisons, sold with the mark of skull and crossbones, useful, like strychnine and henbane, in the hands of a skillful physician, but fraught with deadly danger when otherwise employed. Their private use is never safe. The weak and nervous invalid, who can not by hygienic means build up new strength, need never hope to gain it by surreptitiously indulging in popular narcotics. Instead, he will soon discover that he has but added to his list of ills a new and fatal one.–E. B. S.

THE SPECIAL SENSES.

AN EDUCATED SENSE OF TOUCH (p. 230).–Laura Dewey Bridgman, teacher in the Perkins Institute for the Blind, South Boston, lost her sight, hearing, and sense of smell, when she was two years of age. At the age of eight years she was taken to the institution where she yet remains. At this time, by following her mother around the house she had become familiar with home appointments, and by feeling her mother’s hands and arms had also learned to sew and knit. When she first became an inmate of the Perkins Institute, she was bewildered by her strange surroundings, but after she had become used to place and people, through her one and only sense, her education was carefully begun. Through indomitable effort on the part of her preceptor, she was taught to write, read, and spell, by means of her fingers, and thus to exchange sentiments with her teachers and with others skilled in the mysterious language of the blind and the mute. She is now as proficient in the ordinary branches of learning as is the average person, possessed of all the senses. Her studies include geography, arithmetic, algebra, geometry, history, and philosophy. She makes her own clothing, can run a sewing machine, and observes great neatness in her dress and the arrangements of her room. Her character is religious, and she has great success as a teacher. Not long since, she celebrated, on the same day, her fifty-eighth birthday and the fiftieth anniversary of her entrance to the Perkins Institute. During her earlier years, it was her practice to keep a journal, and she now has about forty manuscript books of her own making. She has also written three autobiographical sketches, several poems, and is an accomplished correspondent. When Miss Bridgman expresses pleasure, she clasps her hands and smiles. So keen and refined are her sensibilities, that it is said she can, in a small way, appreciate the beauty of music by means of the sound vibrations on the floor.–MRS. GEORGE ARCHIBALD. (Laura D. Bridgman died in 1889.)

THE NOSE (p. 232).–_The Anatomy of the Nose_.–Probably most of us look upon the nose as a double hole in the head, by which we get, with more or less acuteness, a sense of smell, and through which we occasionally breathe. The intricate mechanism, and the skillful adaptation of means to end, which, in common with the other organs of special sense, it exhibits, naturally do not reveal themselves to any but the students of anatomy and physiology. Its fourteen bones are probably better hidden than any other fourteen bones of the body, and assist in converting what would otherwise be a mere channel of communication, into a series of cavities designed and adapted for particular purposes. The arch of four bones which forms the bridge of the nose, and which is of such strength as to enable the gymnast of the circus to perform the feat of supporting with it a man on a ladder, is pieced on with cartilage to form the nostrils, through which the nose communicates with the outer air. Similar openings behind connect it with the upper and posterior parts of the mouth. The space between these anterior and posterior openings makes a large chamber, divided by a vertical wall into halves, each of which is still further separated into three irregular cavities by three bones, called spongy, from the porosity and delicacy of their texture. The ceiling of these chambers is formed by a bone of the thinness of paper, upon which lies the front part of the brain,–a fact the Egyptians made use of in embalming their corpses, easily crushing this bone, and extracting the brain through the nostrils. This bone is called cribriform (sieve-like), because it is perforated by many minute holes, through which, from the olfactory bulbs (specialized parts of the brain in which is resident the capacity of smell) that rest on its upper surface, issue the delicate filaments of the olfactory nerves, to spread themselves over the lining membrane of the two upper spongy bones. It is in the upper chambers of the nose, therefore, that the function of smell is performed; the nerves that supply the lower spongy bone being entirely unconnected with the organs of smell. Over these latter, however, sweep in and out the currents of air when the act of respiration is properly carried out, and it is these that are especially concerned in its abnormal performance. Usually but a very little of the volume of air that traverses the lower chamber of the nose has any influence upon its upper regions; and therefore, when our attention is attracted by an odor, we sniff, in order to bring a larger quantity of air into contact with the higher parts of the nose, or olfactory cavities, where odors are perceived.

But the half has not been told of the anatomical and physiological arrangements of the nose. By minute openings its chambers have communication with many other parts of the head,–with the hollow that forms the greater part of the cheek bone; with the eye by a minute spout that carries off the lachrymal secretion, unless the tears are so abundant as to roll down the cheeks; with the front of the roof of the mouth; with the abundant cells of the bone that makes the forehead, and the congestion of whose lining membrane probably accounts for the severe headache that so often accompanies and aggravates a “cold in the head.” The gateway to the inner air passages, its abundant surfaces raise the air inspired to the temperature of the body, supply it with the moisture it lacks, and sift from it more or less of the mechanical impurities with which the atmosphere of our houses and shops is laden.–MAURICE D. CLARKE, M.D., _Popular Science News, April, 1888_.

_Smell Necessary to Taste_.–What we are in the habit of calling a “taste,” is in most cases a compound of smell, taste, temperature, and touch–these four sensations ranking in gastronomic importance in the order in which they are here named….Amusing experiments may be made, showing that without the sense of smell it is commonly quite impossible to distinguish between different articles of food and drink. Blindfold a person and make him clasp his nose tightly, then put successively into his mouth small pieces of beef, mutton, veal, and pork, and it is safe to predict that he will not be able to tell one morsel from another. The same result will be obtained with chicken, turkey, and duck; with pieces of almond, walnut, and hazel-nut; with slices of apple, peach, and pear; or with different kinds of cheese, if care be taken that such kinds are chosen as do not, by their peculiar composition, betray their identity through the nerves of touch in the mouth. To hold an article of food under the nose at table would be justly considered a breach of etiquette. But there is a second way of smelling, of which most people are quite unconscious, viz., by _exhaling through the nose_ while eating and drinking….It is well known that only a small portion of the mucous membrane which lines the nostrils is the seat of the endings of the nerves of smell. In ordinary expiration, the air does not touch this olfactory region, but by a special effort it can be turned into that direction….Instinct teaches most persons while eating to guide the air, impregnated with the fragrance of the food, to a part of the nostrils different from that used during ordinary exhalation; but, being unaccustomed to psychologic analysis of their sensations, they remain quite unconscious of this proceeding, and are, indeed, in the habit of confusing their sensations of taste, smell, touch, and temperature in a most absurd manner….

In trying to ascertain by experiment how far smell, touch, and temperature enter into this compound sensation, popularly known as “taste,” it is best to make use of the pungent condiments. Mustard and horse-radish, for example, have little or no taste, but reserve their pungent effect for the mucous membrane of the nose during expiration. It is an advantage to know this, for if care is taken to breathe only through the mouth, we need no longer prepare to shed tears every time we help ourselves to the mustard. The pungent quality of mustard, the fiery quality of ginger, and the cool sensation in the mouth after eating peppermint, are due to the nerves of touch and temperature, which are commonly classed as one sense, though they are quite as distinct sensations as sight and hearing, or taste and smell….

There are two ways in which the effort to extract all its fragrance from a morsel of food confers a benefit.

(1.) It is necessary to keep the morsel in the mouth as long as possible. Now the habit thus formed of eating very slowly is of the utmost importance, for if farinaceous articles of food are swallowed before the saliva has had time to act on them, they are little better than so much waste material taken into the system; and if meat is not thoroughly masticated, the stomach is overloaded with work which should have been done by the teeth; the result, in either case, is dyspepsia. It has been suggested that Mr. Gladstone owes his remarkable physical vigor to certain rules for chewing food, which he adopted in 1848, and to which he has adhered ever since. “He had always,” we are told, “paid great attention to the requirements of Nature, but he then laid down as a rule for his children that thirty-two bites should be given to each mouthful of meat, and a somewhat lesser number to bread, fish, etc.”

(2.) Besides this indirect advantage resulting from the effort to get at the fragrant odors of food, there is a still more remarkable direct advantage. It is one of the most curious psychologic facts that odors exert a strong influence on our system, either exhilarating or depressing. While an unpleasant odor may cause a person to faint, the fumes of the smelling bottle will restore him to consciousness. The magic and value of gastronomic odors lies in this, that they stimulate the flow of saliva and other alimentary juices, thus making sure that the food eaten will be thoroughly utilized in renovating the system.–HENRY T. FINCK, _in “The Gastronomic Value of Odors_.” HYGIENE OF THE EAR (p. 236).–_Never Box a Child’s Ear_.–Children and grown persons alike may be entirely deafened by falls or heavy blows upon the head. Boxing the ears produces a similar effect, though more slowly and in less degree, and tends to dull the sensibility of the nerve, even if it does not hurt the membrane. I knew a youth who died from a terrible disease of the ear. There had been a discharge from it since he was a child. Of course his hearing had been dull; and _his father had often boxed his ear for inattention!_ Most likely that boxing on the ear, diseased as it was, had much to do with his death. And this brings me to the second point. Children should never be blamed for being inattentive, until it has been found out whether they are not a little deaf. This is easily done by placing them at a few yards’ distance, and trying whether they can understand what is said to them in a rather low tone of voice. Each ear should be tried, while the other is stopped by the finger. Three things should be remembered here: 1. That slight degrees of deafness, often lasting only for a time, are very common among children, especially during or after colds. 2. That a slight deafness, which does not prevent a person from hearing when he is expecting to be spoken to, will make him very dull to what he is not expecting. 3. That there is a kind of deafness in which a person can hear pretty well while listening, but is really very hard of hearing when not listening.

_Avoid Direct Draughts in the Ear_.–There are some exposures especially to be guarded against. One is sitting or driving with the ear exposed to a side wind. Deafness has also been known to come from letting rain or sleet drive into the ear.

_Do not Remove the Earwax_.–It ought to be understood that the passage of the ear does not require cleaning by us. Nature undertakes that task, and, in the healthy state, fulfills it perfectly. Her means for cleansing the ear is _the wax_. Perhaps the reader has never wondered what becomes of the earwax. I will tell him. It dries up into thin fine scales, and these peel off, one by one, from the surface of the passage, and fall out imperceptibly, leaving behind them a perfectly clean, smooth surface. In health the passage of the ear is never dirty; but, if we attempt to clean it, we infallibly make it so. Washing the ear out frequently with soap and water keeps the wax moist when it ought to become dry and scaly, increases its quantity unduly, and makes it absorb the dust with which the air always abounds. But the most hurtful thing is introducing the corner of the towel, screwed up, and twisting it round. This does more harm to ears than all other mistakes together. It drives down the wax upon the membrane, much more than it gets it out. But this plan does much more mischief than merely pressing down the wax. It irritates the passage, and makes it cast off small flakes of skin, which dry up, and become extremely hard, and these also are pressed down upon the membrane. Often it is not only deafness which ensues, but pain and inflammation, and then matter is formed which the hard mass prevents from escaping, and the membrane becomes permanently diseased.

_The Eustachian Tube_.–The use of this tube is twofold. First, it supplies the drum with air, and keeps the membrane exactly balanced, and free to move, with equal air pressure on each side; and, secondly, it carries off any fluid which may be in the drum, and prevents it from being choked by its own moisture. It is not always open, however, but is opened during the act of swallowing, by a little muscle which is attached to it just as it reaches the throat. Most persons can distinctly feel that this is the case, by gently closing the nose and swallowing, when a distinct sensation is felt in the ears. This sensation is due to a little air being drawn out of the ears through the open tube during swallowing; and it lasts for a few minutes, unless the air is again restored by swallowing with the nose unclosed, which allows for the moment a free communication between the ear and the throat. We thus see a reason for the tube being closed. If it were always open, all the sounds produced in the throat would pass directly into the drum of the ear, and totally confuse us. We should hear every breath, and live in a constant bewilderment of internal sounds. At the same time the closure, being but a light contact of the walls of the tube, easily allows a slight escape of air _from_ the drum, and thus not only facilitates and regulates the oscillations of the air before the vibrating membrane, but provides a safety valve, to a certain extent, against the injurious influence of loud sounds.

The chief use of the Eustachian tube is to allow a free interchange of air between the ear and the throat, and it is very important that its use in this respect should be understood. Persons who go down in diving bells soon begin to feel a great pressure in the ears, and, if the depth is great, the feeling becomes extremely painful. This arises from the fact that in the diving bell the pressure of the air is very much increased, in order to balance the weight of the water above; and thus it presses with great force upon the membrane of the drum, which, if the Eustachian tube has been kept closed, has only the ordinary uncompressed air on the inner side to sustain it. It is therefore forced inward and put upon the stretch, and might be even broken. Many cases, indeed, have occurred of injury to the ear, producing permanent deafness, from descents in diving bells, undertaken by persons ignorant of the way in which the ear is made; though the simple precaution of frequent swallowing suffices to ward off all mischief. For, if the Eustachian tube is thus opened, again and again, as the pressure of the outside air increases, the same compressed air that exists outside passes also into the inside of the drum, and the membrane is equally pressed upon from both sides by the air, and so is free from strain. The same precaution is necessary in ascending lofty mountains.– DR. JAMES HINTON.

THE COLORED CURTAIN IN THE EYE (p. 238).–This ring-like curtain in the eye, of gray, green, bluish-green, brown, and other colors, is one among the very many remarkable contrivances of the organic world. The eye can not bear the entrance of too much light, and the colored curtain so regulates its own movements as to serve this requirement. The dark circular aperture in the center, known as the pupil, is consequently forever altering in size; on a bright, sunshiny day, out in the open, it may be only the size of a pin’s head, but at night, when there is no light stronger than starlight, it is even bigger than a pea. The eye curtain is fixed at its outer edge, leaving the inner edge to contract or expand, which it does automatically and quite independent of the will, ever preserving its circular outline. Its movements may be watched in a variety of ways, some of which we shall describe.

The common way of watching the movements of the iris is to regard it closely in a looking-glass while the amount of light entering the eyes is varied. Place yourself before a looking-glass and with your face to the window. Probably the iris will be expanded, and there will only be a very small opening or pupil in the center. Now shut one eye suddenly, while narrowly watching the other in the glass all the time. At the moment the light is cut off from one eye, the iris of the other contracts or is drawn up so as to enlarge the pupil. This shows that there is a remarkable interdependence between the curtains of the two eyes, as well as that they are affected by variations in the quantity of light falling on them.

Perhaps one of the most interesting ways of watching the movements of these sympathetic eye curtains is one which may be followed while you are out walking on the street some dark winter night. A gas lamp seen at a distance is, comparatively speaking, a point of light, with bars of light emanating from it in many directions. These bars, which give the peculiar spoked appearance to a star, are probably formed by optical defects of the lens within the eye, or by the tear fluid on the exterior surface of the eye, or by a combination of all these causes. Be that as it may, the lengths of the spokes of light are limited by the inner margin of the eye curtain; if the curtain be drawn up, then the spokes are long; if the curtain be let down, or, in other words, if the pupil be very small and contracted, then one can not see any spokes at all. Hence, as I look at a distant gaslight, with its radiating golden spokes, I am looking at something which will give me a sure indication of any movements of the eye curtains. I strike a match and allow its light to fall into the eyes; the spokes of the distant gas lamp have retreated into the point of flame as if by magic; as I take the burning match away from before my eyes, the spokes of the gas-lamp venture forth again. The experiment may be utilized to see how much light is required to move the window curtains of the eyes. Suppose you are walking toward two gas lamps, A and B; B about fifty yards behind A. If you steadfastly look at B and at the golden spokes apparently issuing from it, you may make these spokes a test of how soon the light of A will move your iris. As you gradually approach A, you come at last to a position where its light is strong enough to make the spokes of B begin to shorten; a little nearer still and they vanish altogether. I have found that about a third of the light which is competent to contract the pupil very markedly will serve to commence its movement.–WILLIAM ACKROYD.

PURKINJE’S FIGURES (p. 222).–Stand in a dark room with a lighted candle in hand. Shutting the left, hold the candle very near the right eye, within three or four inches, obliquely outward and forward, so that the light shall strongly illuminate the retina. Now move the light about gently, upward, downward, back and forth, while you gaze intently on the wall opposite. Presently the field of view becomes dark from the intense impression of the light, and then, as you move the light about, there appears projected on the wall and covering its whole surface, a shadowy, ghost-like image, like a branching, leafless tree, or like a great bodiless spider with many branching legs. What is it? It is an exact but enlarged image of the _blood vessels of the retina_. These come in at the entrance of the optic nerve, ramify in the middle layer, and therefore in the strong light cast their shadows on the bacillary layer of the retina. The impression of these shadows is projected outward into the field of view, and seen there as an enlarged shadowy image. These have been called Purkinje’s Figures, from the discoverer.–PROF. JOSEPH LE CONTE, _in Sight_.

XI.

APPENDIX.

QUESTIONS FOR CLASS USE.

_The questions include the Notes and the Selected Readings. The figures refer to the pages_.

INTRODUCTION.

Illustrate the value of physiological knowledge. Why should physiology be studied in youth? When are our habits formed? How do habits help us? Why should children prize the lessons of experience? How does Nature punish a violation of her laws? Name some of Nature’s laws. What is the penalty of their violation? Name some bad habits and their punishments. Some good habits and their rewards. How do the young ruin their health? Compare one’s constitution with a deposit in the bank. Can one in youth lay up health as he can money for middle or old age? Is not the preservation of one’s health a moral duty? What is suicide?

THE SKELETON.

3. How many bones are there in the body? Is the number fixed? Is the length of the different bones proportional? What is an organ? A function? Name the three uses of the bones. Why do the bones have such different shapes?

4. Why are certain bones hollow? Round? Illustrate. Compare the resisting property of bone with that of solid oak. What is the composition of bone? How does it vary? How can you remove the mineral matter? The animal matter? Why is a burned bone white and porous? What food do dogs find in bones?

5. What is the use of each of the constituents of a bone? What is “boneblack”? What is ossification? Why are not the bones of children as easily broken as those of aged persons? Why do they unite so much quicker? What are the fontanelles?

6. Describe the structure of a bone. What is the object of the filling? Why does the amount vary in different parts of a bone? What is the appearance of a bone seen through a microscope?

7. What is the periosteum? Is a bone once removed ever restored? What are the lacunæ? The Haversian canals? Why so called? _Ans_. From their discoverer, Havers. Define a bone. [Footnote: Bone structure may be summarized as follows: A bone is a collection of _Haversian elements_, or rods. An Haversian element consists of a tube surrounded by _lamellæ_, which contain _lacunæ_, connected by _canaliculi_.–DR. T. B. STOWELL.] What occupies the lacunæ? _Ans_. The bone cells (osteoblasts). How do bones grow?

8. Illustrate. How does a broken bone heal? How rapidly is bone produced? Illustrate. Objects of “splints”? Describe how a joint is packed. Lubricated.

9. How are the bones tied together? What is a tissue? Illustrate. Name the three general divisions of the bones. What is the object of the skull? Which bone is movable? How is the lower jaw hinged? Describe the construction of the skull. What is a suture?

10. Tell how the peculiar form and structure of the skull adapt it for its use. Illustrate the impenetrability of the skull.

11. Describe the experiment of the balls. What does it show? What two cavities are in the trunk? Name its principal bones. Describe the spine.

12. What is the object of the processes? Of the pads? Why is a man shorter at night than in the morning? Describe the perfection of the spine.

13. Describe the articulation of the skull with the spine. Why is the atlas so called?

14. Describe the ribs. What is the natural form of the chest? Why is it made in separate pieces? How does the oblique position of the ribs aid in respiration? (See note, p. 80.)

15. How do the hipbones give solidity? What two sets of limbs branch from the trunk? State their mutual resemblance. Name the bones of the shoulder. Describe the collar bone.

16. Describe the shoulder blade. Can you describe the indirect articulation of the shoulder blade with the trunk? Name the bones of the arm. Describe the shoulder joint. The elbow-joint.

17. Describe the wrist. Name the bones of the hand. How many bones in the fingers? The thumb? What gives the thumb its freedom of motion?

18, 19. Name and describe the fingers. In what lies the perfection of the hand? How do the gestures of the hand enforce our ideas and feelings? Describe the hip joint. What gives the upper limbs more freedom of motion than the lower? How does the pressure of the air aid us in walking? Illustrate.

20. Name the bones of the lower limbs. Describe the knee joint. The patella. What is the use of the fibula? Can you show how the lower extremity of the fibula, below its juncture with the tibia, is prolonged to form a part of the ankle joint? Name the bones of the foot. What is the use of the arch of the foot? What makes the step elastic? Describe the action of the foot as we step.

21. In graceful walking, should the toes or the heel touch the ground first? What are the causes of deformed feet? What is the natural position of the big toe? Did you ever see a big toe lying in a straight line with the foot, as shown in statuary and paintings? How should we have our boots and shoes made? What are the effects of high heels? Of narrow heels? Of narrow toes? Of tight-laced boots? Of thin soles? What are the rickets? Cause of this disease? Cure? Is there any provision for remedying defects in the body? Name one.

22, 23. What is a felon? Cure? Cause of bowlegs? How can they be prevented? Causes of spinal curvature? Cure? What is the correct position in sitting at one’s desk? Is there any necessity for walking and sitting erect? Any advantage aside from health? Describe the bad effects of a stooping position. What is a sprain? Why does it need special care? What is a dislocation? How is it generally caused? How soon should it be treated?

269. What relation does man, in his general structure, bear to other vertebrates? Mention some marked physical peculiarities which distinguish him from the lower mammals.

270, 271. Describe the state of a fracture a week after its occurrence. What is this new formation called? What marks the termination of the first stage of curative progress? How do the broken ends of the bone now appear? What is the state of the fracture at the end of the second stage? What is the condition of the callus at this time? Describe the third and last series of changes. Is the process of union completed sooner in old people or in young? In the upper or lower extremities? In smaller animals or man? What length of time is required to heal a broken arm? A broken leg?

272. What gives the human hand its peculiar prehensile power? What advantage has the human thumb over that of the ape? Compare the foot of man with that of the ape. What peculiarity of the foot is particularly noticeable in man? Contrast the function of the great toe in man and in the ape.

273. Are the toes naturally flexible? How are their powers crippled? Give an instance in which the toes were trained to do the work of the fingers.

274. Why are an elastic step and a graceful carriage such rare accomplishments? What is the natural shape of the foot? Which is the longer, the great toe or the second toe? Is an even-sided symmetry necessary to the beauty of a boot?

THE MUSCLES. 29. What relations do the skeleton and the muscles bear to each other? How is the skeleton concealed? Why is it the image of death? What are the muscles? How many are there? What peculiar property have they? Name other properties of muscles. _Ans_. Tonicity, elasticity.

30. How are they arranged? Where is the biceps? The triceps? How do the muscles move the limbs? Illustrate. What is the cause of squinting? Cure? (See p. 244.)

31. Name and define the two kinds of muscles. Illustrate each. What is the structure of a muscle? Of what is a fibril itself composed? How does the peculiar construction of the muscle confer strength?

32. Describe the tendons. What is their use? Illustrate the advantages of this mode of attachment.

33. What two special arrangements of the tendons in the hand? Their use? How is the rotary motion of the eye obtained?

34, 35. What is a lever? Describe the three classes of levers. Illustrate each. Describe the head as a lever. What parts of the body illustrate the three kinds of levers? Give an illustration of the second class of levers. The third class. Why is the Tendon of Achilles so named? What is the advantage of the third class of levers? Why desirable in the hand? What class of lever is the lower jaw?

36. What advantages are gained by the enlargement of the bones at the joints? Illustrate. How do we stand erect? Is it an involuntary act?

37. Why can not a child walk at once, as many young animals do? Why can we not hold up the head easily when we walk on “all fours”? Why can not an animal stand erect as man does?

38. Describe the process of walking. Show that walking is a process of falling. Describe the process of running. What causes the swinging of the hand in walking? Why are we shorter when walking? [Footnote: Stand a boy erect against a wall. Mark his height with a stick. Now have him step off a part of a pace, and then several whole paces. Next, let him close his eyes, and walk to the wall again. He will be perceptibly lower than the stick, until he straightens up once more from a walking position.] Why does a person when lost often go in a circle? In which direction does one always turn in that case? [Footnote: Take several boys into a smooth grass lot. Set up a stick at a distance for them to walk toward. Test the boys, to find which are left-handed, or right-handed; which left-legged or right-legged. Then blindfold the boys and let them walk, as they think, toward the mark. See who varies toward the right, and who turns to the left.]

39. What is the muscular sense? Value of educating it? How do we gratify it?

40. What effect has exercise upon a muscle? Is there any danger in violent exercise? For what purpose should we exercise? Should exercise be in the open air? What is the rule for exercise? Is a young person excusable, who leads a sedentary life, and yet takes no daily outdoor exercise? What will be Nature’s penalty for such a violation of her law? Will a postponement of the penalty show that we have escaped it?

41. Ought a scholar to study during the time of recess? Will a promenade in the vitiated air of the schoolroom furnish suitable exercise? What is the best time for taking exercise? What class of persons can safely exercise before breakfast?

42. What are the advantages of the different kinds of exercise? Should we not walk more? What is the general influence upon the body of vigorous exercise?

43. State some of the wonders of the muscles. What is the St. Vitus’s Dance? Cure?

44. What are convulsions? What is the locked-jaw? Causes? The gout? Cause? Cure? The rheumatism? Its two forms? Peculiarity of the acute?

45. Danger in acute rheumatism? In what does chronic rheumatism often result? What is lumbago? Give instances. What is a ganglion? Its cure? A bursa?

275. What is meant by the origin of a muscle? The attachment? Is a muscle always extended between two contiguous bones? Give an illustration. Can the points of origin and of attachment change offices? Illustrate. What is an important consequence of the attachment of the muscles to the bones? If, in the limb of a dead body, one end of a muscle is separated from its point of attachment, what occurs? Would the result be the same during life? To what is this phenomenon due?

276. Why are the muscles continually striving to shorten? Describe the effect when several opposing muscles are attached to one bone. When is the balanced position of the limbs best observed? Are the muscles always attached to bones? Give example. How does the flesh of man differ from that of an ox? How may the structure of muscular fibers be rudely illustrated? Describe smooth muscle fibers. How do they differ from striated muscle fibers?

277. In what form do smooth muscle fibers frequently occur? In such cases, how are they usually arranged? What is the effect of their contraction? Of what especial use is this power in case of the smaller arteries? In case of the intestine?

278. In the latter instance, how does the contraction take place? Are the striated muscle fibers voluntary or involuntary? Name an exception to this rule. Give other peculiarities of the muscle fibers of the heart. What causes the contraction of smooth muscle fibers? Of striated muscle fibers? Why do little children seldom injure themselves by overexertion? How is the danger increased in youth?

279. What class of people are in most peril from violent or excessive exercise? Why? At what age should one cease from haste of all kinds? Give instances of valuable lives lost from personal imprudence.

280. What are the effects of insufficient exercise upon the young? How does it predispose to disease? What makes the children of the laboring classes so hardy? Is a regulation step desirable in walking? Why not? Why is it more fatiguing to walk uphill than on level ground?

281. How does the management of the breath affect this fatigue? How should a belt be worn, if used during exercise? Can other forms of exercise be successfully substituted for walking? Why not? What is the difference in movement between walking and skating? Which is the better exercise? What are the dangers from skating? What precaution should be used by those who have weak ankles?

282. Name the different action of the muscles in the forward and backward movements in rowing. What is the comparative value of rowing as an exercise? Why is it especially desirable for women? How should women dress when rowing, horseback riding, tennis playing, etc.? What rules should be observed by rowers? Why should the breath be allowed to escape while the oar is in the water?

283. What sanitary measures should be observed after a row? What effect has too frequent and too prolonged immersion on young swimmers? Does swimming require much muscular exertion? Why? Why does an occasional swimmer become exhausted sooner than an experienced one? On what do ease and speed in swimming depend? Is the habit of diving desirable? Should diving ever be practiced in shallow water?

284. Why is lawn tennis the most desirable of outdoor games? _Ans_. Not only because nearly every muscle of the body is brought into exercise, but because it is one of the few field sports in which women can gracefully join. In this it shares the honor with croquet. What are the dangers attendant on lawn tennis? From what do many of them arise? Why should tennis shoes have heels? To what class of people is horseback riding particularly suited? What class of invalids should not indulge in bicycling and tricycling? To what class is it peculiarly beneficial?

285. What are the dangers attendant on baseball games? Football? When may light and heavy gymnastics be profitably employed? Name a sufficient apparatus. What are the objections to gymnasium exercise? Its advantages?

THE SKIN.

49. What are the uses of the skin? Describe its adaptation to its place. What is its function as an organ? Describe the structure of the skin. The sensitiveness of the cutis. The insensitiveness of the cuticle.

50. How is the skin constantly changing? The shape and number of the cells? Value of the cuticle? How is the cuticle formed? _Ans_. By secretion from the cutis.

51. What is the complexion? Its cause? Why is a scar white? What is the cause of “tanning”? What are freckles? Albinos? Describe the action of the sun on the skin.

52. Why are the hairs and the nails spoken of under the title of the skin? Uses of the hair? Its structure? How can it be examined? What is the hair bulb? What is it called? How does a hair grow? At what rate? When can it be restored, if destroyed? Does hair grow after death?

53. When hair has become gray, can its original color be naturally restored? What is the danger of hair dyes? Are they of any real value? How can the hair stand on end? How do horses move their skin? Is there any feeling in a hair?

54. Illustrate the indestructibility of the hair. What are the uses of the nails? How do the nails grow? What is the mucous membrane?

55. Its composition? The connective tissue? Why so called? What uses does it subserve?

56. What is its character? How does the fat exist in the body? Its uses? State the various uses of membrane in the body. Where is there no fat? Where is there always fat?

57. Why are the teeth spoken of in connection with the mucous membrane? Name and describe the four kinds of teeth. What are the milk teeth? Describe them. What teeth appear first?

58. Give the order and age at which they appear. When do the permanent teeth appear? Describe their growth. Which one comes first? Last?

59. Describe the structure of the teeth. How are the teeth fitted in the jaw?

60. Why do the teeth decay? What care should be taken of the teeth? What caution should be observed? What are the oil glands?

61. Use of this secretion? What are the perspiratory glands? State their number. Their total length. What are the “pores” of the skin?

62, 63. What is the perspiration? What is the constitution of the perspiration? Illustrate its value. Name the three uses of the skin. Illustrate the absorbing power of the skin. What precaution should be observed in handling a dead body? Why are cosmetics and hair dyes injurious? What relation exists between the skin and the lungs? What lesson does this teach? When is the best time for a bath? Why?

64, 65. What is the value of friction? Why should not a bath be taken just before or after a meal? Is an excess of soap beneficial? What is the “reaction”? Explain its invigorating influence. How is it secured? General effect of a cold bath? Of a warm bath? If we feel chilly and depressed after a bath, what is the teaching? Describe the Russian vapor bath. Why is the sea bath so stimulating?

66. How long should one remain in any bath? How does clothing keep us warm? Explain the use of linen as an article of clothing. Cotton. Wool. Flannel. How can we best protect ourselves against the changes of our climate?

67. What colored clothing is best adapted for all seasons? Value of the nap? Furs? Thick _vs_. thin clothing? Should we wear thick clothing during the day, and in the evening put on thin clothing? Can children endure exposure better than grown persons? What is the erysipelas? How relieved?

68, 69. Eczema? What do its various forms denote? Corns? Cause? Cure? Ingrowing nails? Cure? Warts? Cure? Chilblain? Cause? Preventive?

286. Name some causes of baldness. Give Dr. Nichols’s opinion. Why is