This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
Language:
Form:
Genre:
Published:
  • 1910
Edition:
Collection:
Tags:
Buy it on Amazon Listen via Audible FREE Audible 30 days

[6] Briefly stated, the essential difference between Bell’s telephone and Edison’s is this: With the former the sound vibrations impinge upon a steel diaphragm arranged adjacent to the pole of a bar electromagnet, whereby the diaphragm acts as an armature, and by its vibrations induces very weak electric impulses in the magnetic coil. These impulses, according to Bell’s theory, correspond in form to the sound-waves, and passing over the line energize the magnet coil at the receiving end, and by varying the magnetism cause the receiving diaphragm to be similarly vibrated to reproduce the sounds. A single apparatus is therefore used at each end, performing the double function of transmitter and receiver. With Edison’s telephone a closed circuit is used on which is constantly flowing a battery current, and included in that circuit is a pair of electrodes, one or both of which is of carbon. These electrodes are always in contact with a certain initial pressure, so that current will be always flowing over the circuit. One of the electrodes is connected with the diaphragm on which the sound-waves impinge, and the vibration of this diaphragm causes the pressure between the electrodes to be correspondingly varied, and thereby effects a variation in the current, resulting in the production of impulses which actuate the receiving magnet. In other words, with Bell’s telephone the sound-waves themselves generate the electric impulses, which are hence extremely faint. With the Edison telephone, the sound-waves actuate an electric valve, so to speak, and permit variations in a current of any desired strength.

A second distinction between the two telephones is this: With the Bell apparatus the very weak electric impulses generated by the vibration of the transmitting diaphragm pass over the entire line to the receiving end, and in consequence the permissible length of line is limited to a few miles under ideal conditions. With Edison’s telephone the battery current does not flow on the main line, but passes through the primary circuit of an induction coil, by which corresponding impulses of enormously higher potential are sent out on the main line to the receiving end. In consequence, the line may be hundreds of miles in length. No modern telephone system in use to-day lacks these characteristic features–the varying resistance and the induction coil.

The principle of the electromotograph was utilized by Edison in more ways than one, first of all in telegraphy at this juncture. The well-known Page patent, which had lingered in the Patent Office for years, had just been issued, and was considered a formidable weapon. It related to the use of a retractile spring to withdraw the armature lever from the magnet of a telegraph or other relay or sounder, and thus controlled the art of telegraphy, except in simple circuits. “There was no known way,” remarks Edison, “whereby this patent could be evaded, and its possessor would eventually control the use of what is known as the relay and sounder, and this was vital to telegraphy. Gould was pounding the Western Union on the Stock Exchange, disturbing its railroad contracts, and, being advised by his lawyers that this patent was of great value, bought it. The moment Mr. Orton heard this he sent for me and explained the situation, and wanted me to go to work immediately and see if I couldn’t evade it or discover some other means that could be used in case Gould sustained the patent. It seemed a pretty hard job, because there was no known means of moving a lever at the other end of a telegraph wire except by the use of a magnet. I said I would go at it that night. In experimenting some years previously, I had discovered a very peculiar phenomenon, and that was that if a piece of metal connected to a battery was rubbed over a moistened piece of chalk resting on a metal connected to the other pole, when the current passed the friction was greatly diminished. When the current was reversed the friction was greatly increased over what it was when no current was passing. Remembering this, I substituted a piece of chalk rotated by a small electric motor for the magnet, and connecting a sounder to a metallic finger resting on the chalk, the combination claim of Page was made worthless. A hitherto unknown means was introduced in the electric art. Two or three of the devices were made and tested by the company’s expert. Mr. Orton, after he had me sign the patent application and got it in the Patent Office, wanted to settle for it at once. He asked my price. Again I said: `Make me an offer.’ Again he named $100,000. I accepted, providing he would pay it at the rate of $6000 a year for seventeen years. This was done, and thus, with the telephone money, I received $12,000 yearly for that period from the Western Union Telegraph Company.”

A year or two later the motograph cropped up again in Edison’s work in a curious manner. The telephone was being developed in England, and Edison had made arrangements with Colonel Gouraud, his old associate in the automatic telegraph, to represent his interests. A company was formed, a large number of instruments were made and sent to Gouraud in London, and prospects were bright. Then there came a threat of litigation from the owners of the Bell patent, and Gouraud found he could not push the enterprise unless he could avoid using what was asserted to be an infringement of the Bell receiver. He cabled for help to Edison, who sent back word telling him to hold the fort. “I had recourse again,” says Edison, “to the phenomenon discovered by me years previous, that the friction of a rubbing electrode passing over a moist chalk surface was varied by electricity. I devised a telephone receiver which was afterward known as the `loud-speaking telephone,’ or `chalk receiver.’ There was no magnet, simply a diaphragm and a cylinder of compressed chalk about the size of a thimble. A thin spring connected to the centre of the diaphragm extended outwardly and rested on the chalk cylinder, and was pressed against it with a pressure equal to that which would be due to a weight of about six pounds. The chalk was rotated by hand. The volume of sound was very great. A person talking into the carbon transmitter in New York had his voice so amplified that he could be heard one thousand feet away in an open field at Menlo Park. This great excess of power was due to the fact that the latter came from the person turning the handle. The voice, instead of furnishing all the power as with the present receiver, merely controlled the power, just as an engineer working a valve would control a powerful engine.

“I made six of these receivers and sent them in charge of an expert on the first steamer. They were welcomed and tested, and shortly afterward I shipped a hundred more. At the same time I was ordered to send twenty young men, after teaching them to become expert. I set up an exchange, around the laboratory, of ten instruments. I would then go out and get each one out of order in every conceivable way, cutting the wires of one, short-circuiting another, destroying the adjustment of a third, putting dirt between the electrodes of a fourth, and so on. A man would be sent to each to find out the trouble. When he could find the trouble ten consecutive times, using five minutes each, he was sent to London. About sixty men were sifted to get twenty. Before all had arrived, the Bell company there, seeing we could not be stopped, entered into negotiations for consolidation. One day I received a cable from Gouraud offering `30,000′ for my interest. I cabled back I would accept. When the draft came I was astonished to find it was for L30,000. I had thought it was dollars.”

In regard to this singular and happy conclusion, Edison makes some interesting comments as to the attitude of the courts toward inventors, and the difference between American and English courts. “The men I sent over were used to establish telephone exchanges all over the Continent, and some of them became wealthy. It was among this crowd in London that Bernard Shaw was employed before he became famous. The chalk telephone was finally discarded in favor of the Bell receiver–the latter being more simple and cheaper. Extensive litigation with new-comers followed. My carbon-transmitter patent was sustained, and preserved the monopoly of the telephone in England for many years. Bell’s patent was not sustained by the courts. Sir Richard Webster, now Chief-Justice of England, was my counsel, and sustained all of my patents in England for many years. Webster has a marvellous capacity for understanding things scientific; and his address before the courts was lucidity itself. His brain is highly organized. My experience with the legal fraternity is that scientific subjects are distasteful to them, and it is rare in this country, on account of the system of trying patent suits, for a judge really to reach the meat of the controversy, and inventors scarcely ever get a decision squarely and entirely in their favor. The fault rests, in my judgment, almost wholly with the system under which testimony to the extent of thousands of pages bearing on all conceivable subjects, many of them having no possible connection with the invention in dispute, is presented to an over- worked judge in an hour or two of argument supported by several hundred pages of briefs; and the judge is supposed to extract some essence of justice from this mass of conflicting, blind, and misleading statements. It is a human impossibility, no matter how able and fair-minded the judge may be. In England the case is different. There the judges are face to face with the experts and other witnesses. They get the testimony first-hand and only so much as they need, and there are no long-winded briefs and arguments, and the case is decided then and there, a few months perhaps after suit is brought, instead of many years afterward, as in this country. And in England, when a case is once finally decided it is settled for the whole country, while here it is not so. Here a patent having once been sustained, say, in Boston, may have to be litigated all over again in New York, and again in Philadelphia, and so on for all the Federal circuits. Furthermore, it seems to me that scientific disputes should be decided by some court containing at least one or two scientific men– men capable of comprehending the significance of an invention and the difficulties of its accomplishment –if justice is ever to be given to an inventor. And I think, also, that this court should have the power to summon before it and examine any recognized expert in the special art, who might be able to testify to FACTS for or against the patent, instead of trying to gather the truth from the tedious essays of hired experts, whose depositions are really nothing but sworn arguments. The real gist of patent suits is generally very simple, and I have no doubt that any judge of fair intelligence, assisted by one or more scientific advisers, could in a couple of days at the most examine all the necessary witnesses; hear all the necessary arguments, and actually decide an ordinary patent suit in a way that would more nearly be just, than can now be done at an expenditure of a hundred times as much money and months and years of preparation. And I have no doubt that the time taken by the court would be enormously less, because if a judge attempts to read the bulky records and briefs, that work alone would require several days.

“Acting as judges, inventors would not be very apt to correctly decide a complicated law point; and on the other hand, it is hard to see how a lawyer can decide a complicated scientific point rightly. Some inventors complain of our Patent Office, but my own experience with the Patent Office is that the examiners are fair-minded and intelligent, and when they refuse a patent they are generally right; but I think the whole trouble lies with the system in vogue in the Federal courts for trying patent suits, and in the fact, which cannot be disputed, that the Federal judges, with but few exceptions, do not comprehend complicated scientific questions. To secure uniformity in the several Federal circuits and correct errors, it has been proposed to establish a central court of patent appeals in Washington. This I believe in; but this court should also contain at least two scientific men, who would not be blind to the sophistry of paid experts.[7] Men whose inventions would have created wealth of millions have been ruined and prevented from making any money whereby they could continue their careers as creators of wealth for the general good, just because the experts befuddled the judge by their misleading statements.”

[7] As an illustration of the perplexing nature of expert evidence in patent cases, the reader will probably be interested in perusing the following extracts from the opinion of Judge Dayton, in the suit of Bryce Bros. Co. vs. Seneca Glass Co., tried in the United States Circuit Court, Northern District of West Virginia, reported in The Federal Reporter, 140, page 161:

“On this subject of the validity of this patent, a vast amount of conflicting, technical, perplexing, and almost hypercritical discussion and opinion has been indulged, both in the testimony and in the able and exhaustive arguments and briefs of counsel. Expert Osborn for defendant, after setting forth minutely his superior qualifications mechanical education, and great experience, takes up in detail the patent claims, and shows to his own entire satisfaction that none of them are new; that all of them have been applied, under one form or another, in some twenty- two previous patents, and in two other machines, not patented, to-wit, the Central Glass and Kuny Kahbel ones; that the whole machine is only `an aggregation of well-known mechanical elements that any skilled designer would bring to his use in the construction of such a machine.’ This certainly, under ordinary conditions, would settle the matter beyond peradventure; for this witness is a very wise and learned man in these things, and very positive. But expert Clarke appears for the plaintiff, and after setting forth just as minutely his superior qualifications, mechanical education, and great experience, which appear fully equal in all respects to those of expert Osborn, proceeds to take up in detail the patent claims, and shows to his entire satisfaction that all, with possibly one exception, are new, show inventive genius, and distinct advances upon the prior art. In the most lucid, and even fascinating, way he discusses all the parts of this machine, compares it with the others, draws distinctions, points out the merits of the one in controversy and the defects of all the others, considers the twenty-odd patents referred to by Osborn, and in the politest, but neatest, manner imaginable shows that expert Osborn did not know what he was talking about, and sums the whole matter up by declaring this `invention of Mr. Schrader’s, as embodied in the patent in suit, a radical and wide departure, from the Kahbel machine’ (admitted on all sides to be nearest prior approach to it), `a distinct and important advance in the art of engraving glassware, and generally a machine for this purpose which has involved the exercise of the inventive faculty in the highest degree.’

“Thus a more radical and irreconcilable disagreement between experts touching the same thing could hardly be found. So it is with the testimony. If we take that for the defendant, the Central Glass Company machine, and especially the Kuny Kahbel machine, built and operated years before this patent issued, and not patented, are just as good, just as effective and practical, as this one, and capable of turning out just as perfect work and as great a variety of it. On the other hand, if we take that produced by the plaintiff, we are driven to the conclusion that these prior machines, the product of the same mind, were only progressive steps forward from utter darkness, so to speak, into full inventive sunlight, which made clear to him the solution of the problem in this patented machine. The shortcomings of the earlier machines are minutely set forth, and the witnesses for the plaintiff are clear that they are neither practical nor profitable.

“But this is not all of the trouble that confronts us in this case. Counsel of both sides, with an indomitable courage that must command admiration, a courage that has led them to a vast amount of study, investigation, and thought, that in fact has made them all experts, have dissected this record of 356 closely printed pages, applied all mechanical principles and laws to the facts as they see them, and, besides, have ransacked the law- books and cited an enormous number of cases, more or less in point, as illustration of their respective contentions. The courts find nothing more difficult than to apply an abstract principle to all classes of cases that may arise. The facts in each case so frequently create an exception to the general rule that such rule must be honored rather in its breach than in its observance. Therefore, after a careful examination of these cases, it is no criticism of the courts to say that both sides have found abundant and about an equal amount of authority to sustain their respective contentions, and, as a result, counsel have submitted, in briefs, a sum total of 225 closely printed pages, in which they have clearly, yet, almost to a mathematical certainty, demonstrated on the one side that this Schrader machine is new and patentable, and on the other that it is old and not so. Under these circumstances, it would be unnecessary labor and a fruitless task for me to enter into any further technical discussion of the mechanical problems involved, for the purpose of seeking to convince either side of its error. In cases of such perplexity as this generally some incidents appear that speak more unerringly than do the tongues of the witnesses, and to some of these I purpose to now refer.”

Mr. Bernard Shaw, the distinguished English author, has given a most vivid and amusing picture of this introduction of Edison’s telephone into England, describing the apparatus as “a much too ingenious invention, being nothing less than a telephone of such stentorian efficiency that it bellowed your most private communications all over the house, instead of whispering them with some sort of discretion.” Shaw, as a young man, was employed by the Edison Telephone Company, and was very much alive to his
surroundings, often assisting in public demonstra- tions of the apparatus “in a manner which I am persuaded laid the foundation of Mr. Edison’s reputation.” The sketch of the men sent over from America is graphic: “Whilst the Edison Telephone Company lasted it crowded the basement of a high pile of offices in Queen Victoria Street with American artificers. These deluded and romantic men gave me a glimpse of the skilled proletariat of the United States. They sang obsolete sentimental songs with genuine emotion; and their language was frightful even to an Irishman. They worked with a ferocious energy which was out of all proportion to the actual result achieved. Indomitably resolved to assert their republican manhood by taking no orders from a tall- hatted Englishman whose stiff politeness covered his conviction that they were relatively to himself inferior and common persons, they insisted on being slave-driven with genuine American oaths by a genuine free and equal American foreman. They utterly despised the artfully slow British workman, who did as little for his wages as he possibly could; never hurried himself; and had a deep reverence for one whose pocket could be tapped by respectful behavior. Need I add that they were contemptuously wondered at by this same British workman as a parcel of outlandish adult boys who sweated themselves for their employer’s benefit instead of looking after their own interest? They adored Mr. Edison as the greatest man of all time in every possible department of science, art, and philosophy, and execrated Mr. Graham Bell, the inventor of the rival telephone, as his Satanic adversary; but each of them had (or intended to have) on the brink of completion an improvement on the telephone, usually a new transmitter. They were free-souled creatures, excellent company, sensitive, cheerful, and profane; liars, braggarts, and hustlers, with an air of making slow old England hum, which never left them even when, as often happened, they were wrestling with difficulties of their own making, or struggling in no- thoroughfares, from which they had to be retrieved like stray sheep by Englishmen without imagination enough to go wrong.”

Mr. Samuel Insull, who afterward became private secretary to Mr. Edison, and a leader in the development of American electrical manufacturing and the central-station art, was also in close touch with the London situation thus depicted, being at the time private secretary to Colonel Gouraud, and acting for the first half hour as the amateur telephone operator in the first experimental exchange erected in Europe. He took notes of an early meeting where the affairs of the company were discussed by leading men like Sir John Lubbock (Lord Avebury) and the Right Hon. E. P. Bouverie (then a cabinet minister), none of whom could see in the telephone much more than an auxiliary for getting out promptly in the next morning’s papers the midnight debates in Parliament. “I remember another incident,” says Mr. Insull. “It was at some celebration of one of the Royal Societies at the Burlington House, Piccadilly. We had a telephone line running across the roofs to the basement of the building. I think it was to Tyndall’s laboratory in Burlington Street. As the ladies and gentle- men came through, they naturally wanted to look at the great curiosity, the loud-speaking telephone: in fact, any telephone was a curiosity then. Mr. and Mrs. Gladstone came through. I was handling the telephone at the Burlington House end. Mrs. Gladstone asked the man over the telephone whether he knew if a man or woman was speaking; and the reply came in quite loud tones that it was a man!”

With Mr. E. H. Johnson, who represented Edison, there went to England for the furtherance of this telephone enterprise, Mr. Charles Edison, a nephew of the inventor. He died in Paris, October, 1879, not twenty years of age. Stimulated by the example of his uncle, this brilliant youth had already made a mark for himself as a student and inventor, and when only eighteen he secured in open competition the contract to install a complete fire-alarm telegraph system for Port Huron. A few months later he was eagerly welcomed by his uncle at Menlo Park, and after working on the telephone was sent to London to aid in its introduction. There he made the acquaintance of Professor Tyndall, exhibited the telephone to the late King of England; and also won the friendship of the late King of the Belgians, with whom he took up the project of establishing telephonic communication between Belgium and England. At the time of his premature death he was engaged in installing the Edison quadruplex between Brussels and Paris, being one of the very few persons then in Europe familiar with the working of that invention.

Meantime, the telephonic art in America was undergoing very rapid development. In March, 1878, addressing “the capitalists of the Electric Telephone Company” on the future of his invention, Bell outlined with prophetic foresight and remarkable clearness the coming of the modern telephone exchange. Comparing with gas and water distribution, he said: “In a similar manner, it is conceivable that cables of telephone wires could be laid underground or suspended overhead communicating by
branch wires with private dwellings, country houses, shops, manufactories, etc., uniting them through the main cable with a central office, where the wire could be connected as desired, establishing direct communication between any two places in the city…. Not only so, but I believe, in the future, wires will unite the head offices of telephone companies in different cities; and a man in one part of the country may communicate by word of mouth with another in a distant place.”

All of which has come to pass. Professor Bell also suggested how this could be done by “the employ of a man in each central office for the purpose of connecting the wires as directed.” He also indicated the two methods of telephonic tariff–a fixed rental and a toll; and mentioned the practice, now in use on long-distance lines, of a time charge. As a matter of fact, this “centralizing” was attempted in May, 1877, in Boston, with the circuits of the Holmes burglar-alarm system, four banking-houses being thus interconnected; while in January of 1878 the Bell telephone central-office system at New Haven, Connecticut, was opened for business, “the first fully equipped commercial telephone exchange ever established for public or general service.”

All through this formative period Bell had adhered to and introduced the magneto form of telephone, now used only as a receiver, and very poorly adapted for the vital function of a speech-transmitter. From August, 1877, the Western Union Telegraph Company worked along the other line, and in 1878, with its allied Gold & Stock Telegraph Company, it brought into existence the American Speaking Telephone Company to introduce the Edison apparatus, and to create telephone exchanges all over the country. In this warfare, the possession of a good battery transmitter counted very heavily in favor of the Western Union, for upon that the real expansion of the whole industry depended; but in a few months the Bell system had its battery transmitter, too, tending to equalize matters. Late in the same year patent litigation was begun which brought out clearly the merits of Bell, through his patent, as the original and first inventor of the electric speaking telephone; and the Western Union Telegraph Company made terms with its rival. A famous contract bearing date of November 10, 1879, showed that under the Edison and other controlling patents the Western Union Company had already set going some eighty- five exchanges, and was making large quantities of telephonic apparatus. In return for its voluntary retirement from the telephonic field, the Western Union Telegraph Company, under this contract, received a royalty of 20 per cent. of all the telephone earnings of the Bell system while the Bell patents ran; and thus came to enjoy an annual income of several hundred thousand dollars for some years, based chiefly on its modest investment in Edison’s work. It was also paid several thousand dollars in cash for the Edison, Phelps, Gray, and other apparatus on hand. It secured further 40 per cent. of the stock of the local telephone systems of New York and Chicago; and last, but by no means least, it exacted from the Bell interests an agreement to stay out of the telegraph field.

By March, 1881, there were in the United States only nine cities of more than ten thousand inhabitants, and only one of more than fifteen thousand, without a telephone exchange. The industry thrived under competition, and the absence of it now had a decided effect in checking growth; for when the Bell patent expired in 1893, the total of telephone sets in operation in the United States was only 291,253. To quote from an official Bell statement:

“The brief but vigorous Western Union competition was a kind of blessing in disguise. The very fact that two distinct interests were actively engaged in the work of organizing and establishing competing telephone exchanges all over the country, greatly facilitated the spread of the idea and the growth of the business, and familiarized the people with the use of the telephone as a business agency; while the keenness of the competition, extending to the agents and employees of both companies, brought about a swift but quite unforeseen and unlooked- for expansion in the individual exchanges of the larger cities, and a corresponding advance in their importance, value, and usefulness.”

The truth of this was immediately shown in 1894, after the Bell patents had expired, by the tremendous outburst of new competitive activity, in “independent” country systems and toll lines through
sparsely settled districts–work for which the Edison apparatus and methods were peculiarly adapted, yet against which the influence of the Edison patent was invoked. The data secured by the United States Census Office in 1902 showed that the whole industry had made gigantic leaps in eight years, and had 2,371,044 telephone stations in service, of which 1,053,866 were wholly or nominally independent of the Bell. By 1907 an even more notable increase was shown, and the Census figures for that year included no fewer than 6,118,578 stations, of which 1,986,575 were “independent.” These six million instruments every single set employing the principle of the carbon transmitter–were grouped into 15,527 public exchanges, in the very manner predicted by Bell thirty years before, and they gave service in the shape of over eleven billions of talks. The outstanding capitalized value of the plant was $814,616,004, the income for the year was nearly $185,000,000, and the people employed were 140,000. If Edison had done nothing else, his share in the creation of such an industry would have entitled him to a high place among inventors.

This chapter is of necessity brief in its reference to many extremely interesting points and details; and to some readers it may seem incomplete in its references to the work of other men than Edison, whose influence on telephony as an art has also been con- siderable. In reply to this pertinent criticism, it may be pointed out that this is a life of Edison, and not of any one else; and that even the discussion of his achievements alone in these various fields requires more space than the authors have at their disposal. The attempt has been made, however, to indicate the course of events and deal fairly with the facts. The controversy that once waged with great excitement over the invention of the microphone, but has long since died away, is suggestive of the difficulties involved in trying to do justice to everybody. A standard history describes the microphone thus:

“A form of apparatus produced during the early days of the telephone by Professor Hughes, of England, for the purpose of rendering faint, indistinct sounds distinctly audible, depended for its operation on the changes that result in the resistance of loose contacts. This apparatus was called the microphone, and was in reality but one of the many forms that it is possible to give to the telephone transmitter. For example, the Edison granular transmitter was a variety of microphone, as was also Edison’s transmitter, in which the solid button of carbon was employed. Indeed, even the platinum point, which in the early form of the Reis transmitter pressed against the platinum contact cemented to the centre of the diaphragm, was a microphone.”

At a time when most people were amazed at the idea of hearing, with the aid of a “microphone,” a fly walk at a distance of many miles, the priority of invention of such a device was hotly disputed. Yet without desiring to take anything from the credit of the brilliant American, Hughes, whose telegraphic apparatus is still in use all over Europe, it may be pointed out that this passage gives Edison the attribution of at least two original forms of which those suggested by Hughes were mere variations and modifications. With regard to this matter, Mr. Edison
himself remarks: “After I sent one of my men over to London especially, to show Preece the carbon transmitter, and where Hughes first saw it, and heard it–then within a month he came out with the microphone, without any acknowledgment whatever. Published dates will show that Hughes came along after me.”

There have been other ways also in which Edison has utilized the peculiar property that carbon possesses of altering its resistance to the passage of current, according to the pressure to which it is subjected, whether at the surface, or through closer union of the mass. A loose road with a few inches of dust or pebbles on it offers appreciable resistance to the wheels of vehicles travelling over it; but if the surface is kept hard and smooth the effect is quite different. In the same way carbon, whether solid or in the shape of finely divided powder, offers a high resistance to the passage of electricity; but if the carbon is squeezed together the conditions change, with less resistance to electricity in the circuit. For his quadruplex system, Mr. Edison utilized this fact in the construction of a rheostat or resistance box. It consists of a series of silk disks saturated with a sizing of plumbago and well dried. The disks are compressed by means of an adjustable screw; and in this manner the resistance of a circuit can be varied over a wide range.

In like manner Edison developed a “pressure” or carbon relay, adapted to the transference of signals of variable strength from one circuit to another. An ordinary relay consists of an electromagnet inserted in the main line for telegraphing, which brings a local battery and sounder circuit into play, reproducing in the local circuit the signals sent over the main line. The relay is adjusted to the weaker currents likely to be received, but the signals reproduced on the sounder by the agency of the relay are, of course, all of equal strength, as they depend upon the local battery, which has only this steady work to perform. In cases where it is desirable to reproduce the signals in the local circuit with the same variations in strength as they are received by the relay, the Edison carbon pressure relay does the work. The poles of the electromagnet in the local circuit are hollowed out and filled up with carbon disks or powdered plumbago. The armature and the carbon-tipped poles of the electromagnet form part of the local circuit; and if the relay is actuated by a weak current the armature will be attracted but feebly. The carbon being only slightly compressed will offer considerable resistance to the flow of current from the local battery, and therefore the signal on the local sounder will be weak. If, on the contrary, the incoming current on the main line be strong, the armature will be strongly attracted, the carbon will be sharply compressed, the resistance in the local circuit will be proportionately lowered, and the signal heard on the local sounder will be a loud one. Thus it will be seen, by another clever juggle with the willing agent, carbon, for which he has found so many duties, Edison is able to transfer or transmit exactly, to the local circuit, the main-line current in all its minutest variations.

In his researches to determine the nature of the motograph phenomena, and to open up other sources of electrical current generation, Edison has worked out a very ingenious and somewhat perplexing piece of apparatus known as the “chalk battery.” It consists of a series of chalk cylinders mounted on a shaft revolved by hand. Resting against each of these cylinders is a palladium-faced spring, and similar springs make contact with the shaft between each cylinder. By connecting all these springs in circuit with a galvanometer and revolving the shaft rapidly, a notable deflection is obtained of the galvanometer needle, indicating the production of electrical energy. The reason for this does not appear to have been determined.

Last but not least, in this beautiful and ingenious series, comes the “tasimeter,” an instrument of most delicate sensibility in the presence of heat. The name is derived from the Greek, the use of the apparatus being primarily to measure extremely minute differences of pressure. A strip of hard rubber with pointed ends rests perpendicularly on a platinum plate, beneath which is a carbon button, under which again lies another platinum plate. The two plates and the carbon button form part of an electric circuit containing a battery and a galvanometer. The hard-rubber strip is exceedingly sensitive to heat. The slightest degree of heat imparted to it causes it to expand invisibly, thus increasing the pressure contact on the carbon button and producing a variation in the resistance of the circuit, registered immediately by the little swinging needle of the galvanometer. The instrument is so sensitive that with a delicate galvanometer it will show the impingement of the heat from a person’s hand thirty feet away. The suggestion to employ such an apparatus in astronomical observations occurs at once, and it may be noted that in one instance the heat of rays of light from the remote star Arcturus gave results.

CHAPTER X

THE PHONOGRAPH

AT the opening of the Electrical Show in New York City in October, 1908, to celebrate the jubilee of the Atlantic Cable and the first quarter century of lighting with the Edison service on Manhattan Island, the exercises were all conducted by means of the Edison phonograph. This included the dedicatory speech of Governor Hughes, of New York; the modest remarks of Mr. Edison, as president; the congratulations of the presidents of several national electric bodies, and a number of vocal and instrumental selections of operatic nature. All this was heard clearly by a very large audience, and was repeated on other evenings. The same speeches were used again phonographically at the Electrical Show in Chicago in 1909–and now the records are preserved for reproduction a hundred or a thousand years hence. This tour de force, never attempted before, was merely an exemplification of the value of the phonograph not only in establishing at first hand the facts of history, but in preserving the human voice. What would we not give to listen to the very accents and tones of the Sermon on the Mount, the orations of Demosthenes, the first Pitt’s appeal for American liberty, the Farewell of Washington, or the Address at Gettysburg? Until Edison made his wonderful invention in 1877, the human race was entirely without means for preserving or passing on to posterity its own linguistic utterances or any other vocal sound. We have some idea how the ancients looked and felt and wrote; the abundant evidence takes us back to the cave-dwellers. But all the old languages are dead, and the literary form is their embalmment. We do not even know definitely how Shakespeare’s and Goldsmith’s plays were pronounced on the stage in the theatres of the time; while it is only a guess that perhaps Chaucer would sound much more modern than he scans.

The analysis of sound, which owes so much to Helmholtz, was one step toward recording; and the various means of illustrating the phenomena of sound to the eye and ear, prior to the phonograph, were all ingenious. One can watch the dancing little flames of Koenig, and see a voice expressed in tongues of fire; but the record can only be photographic. In like manner, the simple phonautograph of Leon Scott, invented about 1858, records on a revolving cylinder of blackened paper the sound vibrations transmitted through a membrane to which a tiny stylus is attached; so that a human mouth uses a pen and inscribes its sign vocal. Yet after all we are just as far away as ever from enabling the young actors at Harvard to give Aristophanes with all the true, subtle intonation and inflection of the Athens of 400 B.C. The instrument is dumb. Ingenuity has been shown also in the invention of “talking-machines,” like Faber’s, based on the reed organ pipe. These autom- ata can be made by dexterous manipulation to jabber a little, like a doll with its monotonous “ma-ma,” or a cuckoo clock; but they lack even the sterile utility of the imitative art of ventriloquism. The real great invention lies in creating devices that shall be able to evoke from tinfoil, wax, or composition at any time to-day or in the future the sound that once was as evanescent as the vibrations it made on the air.

Contrary to the general notion, very few of the great modern inventions have been the result of a sudden inspiration by which, Minerva-like, they have sprung full-fledged from their creators’ brain; but, on the contrary, they have been evolved by slow and gradual steps, so that frequently the final advance has been often almost imperceptible. The Edison phonograph is an important exception to the general rule; not, of course, the phonograph of the present day with all of its mechanical perfection, but as an instrument capable of recording and reproducing sound. Its invention has been frequently attributed to the discovery that a point attached to a telephone diaphragm would, under the effect of sound-waves, vibrate with sufficient force to prick the finger. The story, though interesting, is not founded on fact; but, if true, it is difficult to see how the discovery in question could have contributed materially to the ultimate accomplishment. To a man of Edison’s perception it is absurd to suppose that the effect of the so-called discovery would not have been made as a matter of deduction long before the physical sensation was experienced. As a matter of fact, the invention of the phonograph was the result of pure reason. Some time prior to 1877, Edison had been experimenting on an automatic telegraph in which the
letters were formed by embossing strips of paper with the proper arrangement of dots and dashes. By drawing this strip beneath a contact lever, the latter was actuated so as to control the circuits and send the desired signals over the line. It was observed that when the strip was moved very rapidly the vibration of the lever resulted in the production of an audible note. With these facts before him, Edison reasoned that if the paper strip could be imprinted with elevations and depressions representative of sound-waves, they might be caused to actuate a diaphragm so as to reproduce the corresponding sounds. The next step in the line of development was to form the necessary undulations on the strip, and it was then reasoned that original sounds themselves might be utilized to form a graphic record by actuating a diaphragm and causing a cutting or indenting point carried thereby to vibrate in contact with a moving surface, so as to cut or indent the record therein. Strange as it may seem, therefore, and contrary to the general belief, the phonograph was developed backward, the production of the sounds being of prior development to the idea of actually recording them.

Mr. Edison’s own account of the invention of the phonograph is intensely interesting. “I was experimenting,” he says, “on an automatic method of recording telegraph messages on a disk of paper laid on a revolving platen, exactly the same as the disk talking-machine of to-day. The platen had a spiral groove on its surface, like the disk. Over this was placed a circular disk of paper; an electromagnet with the embossing point connected to an arm travelled over the disk; and any signals given through the magnets were embossed on the disk of paper. If this disk was removed from the machine and put on a similar machine provided with a contact point, the embossed record would cause the signals to be repeated into another wire. The ordinary speed of telegraphic signals is thirty-five to forty words a minute; but with this machine several hundred words were possible.

“From my experiments on the telephone I knew of the power of a diaphragm to take up sound vibrations, as I had made a little toy which, when you recited loudly in the funnel, would work a pawl connected to the diaphragm; and this engaging a ratchet- wheel served to give continuous rotation to a pulley. This pulley was connected by a cord to a little paper toy representing a man sawing wood. Hence, if one shouted: `Mary had a little lamb,’ etc., the paper man would start sawing wood. I reached the conclusion that if I could record the movements of the diaphragm properly, I could cause such record to reproduce the original movements imparted to the diaphragm by the voice, and thus succeed in recording and reproducing the human voice.

“Instead of using a disk I designed a little machine using a cylinder provided with grooves around the surface. Over this was to be placed tinfoil, which easily received and recorded the movements of the diaphragm. A sketch was made, and the piece-work price, $18, was marked on the sketch. I was in the habit of marking the price I would pay on each sketch. If the workman lost, I would pay his regular wages; if he made more than the wages, he kept it. The workman who got the sketch was John Kruesi. I didn’t have much faith that it would work, expecting that I might possibly hear a word or so that would give hope of a future for the idea. Kruesi, when he had nearly finished it, asked what it was for. I told him I was going to record talking, and then have the machine talk back. He thought it absurd. However, it was finished, the foil was put on; I then shouted `Mary had a little lamb,’ etc. I adjusted the reproducer, and the machine reproduced it perfectly. I was never so taken aback in my life. Everybody was astonished. I was always afraid of things that worked the first time. Long experience proved that there were great drawbacks found generally before they could be got commercial; but here was something there was no doubt of.”

No wonder that honest John Kruesi, as he stood and listened to the marvellous performance of the simple little machine he had himself just finished, ejaculated in an awe-stricken tone: “Mein Gott im Himmel!” And yet he had already seen Edison do a few clever things. No wonder they sat up all night fixing and adjusting it so as to get better and better results–reciting and singing, trying each other’s voices, and then listening with involuntary awe as the words came back again and again, just as long as they were willing to revolve the little cylinder with its dotted spiral indentations in the tinfoil under the vibrating stylus of the reproducing diaphragm. It took a little time to acquire the knack of turning the crank steadily while leaning over the recorder to talk into the machine; and there was some deftness required also in fastening down the tinfoil on the cylinder where it was held by a pin running in a longitudinal slot. Paraffined paper appears also to have been experimented with as an impressible material. It is said that Carman, the foreman of the machine shop, had gone the length of wagering Edison a box of cigars that the device would not work. All the world knows that he lost.

The original Edison phonograph thus built by Kruesi is preserved in the South Kensington Museum, London. That repository can certainly have no greater treasure of its kind. But as to its immediate use, the inventor says: “That morning I took it over to New York and walked into the office of the Scientific American, went up to Mr. Beach’s desk, and said I had something to show him. He asked what it was. I told him I had a machine that would record and reproduce the human voice. I opened the package, set up the machine and recited, `Mary had a little lamb,’ etc. Then I reproduced it so that it could be heard all over the room. They kept me at it until the crowd got so great Mr. Beach was afraid the floor would collapse; and we were compelled to stop. The papers next morning contained columns. None of the writers seemed to understand how it was done. I tried to explain, it was so very simple, but the results were so surprising they made up their minds probably that they never would understand it–and they didn’t.

“I started immediately making several larger and better machines, which I exhibited at Menlo Park to crowds. The Pennsylvania Railroad ran special trains. Washington people telegraphed me to come on. I took a phonograph to Washington and exhibited it in the room of James G. Blaine’s niece (Gail Hamilton); and members of Congress and notable people of that city came all day long until late in the evening. I made one break. I recited `Mary,’ etc., and another ditty:

`There was a little girl, who had a little curl Right in the middle of her forehead;
And when she was good she was very, very good, But when she was bad she was horrid.’

It will be remembered that Senator Roscoe Conkling, then very prominent, had a curl of hair on his forehead; and all the caricaturists developed it abnormally. He was very sensitive about the subject. When he came in he was introduced; but being rather deaf, I didn’t catch his name, but sat down and started the curl ditty. Everybody tittered, and I was told that Mr. Conkling was displeased. About 11 o’clock at night word was received from President Hayes that he would be very much pleased if I would come up to the White House. I was taken there, and found Mr. Hayes and several others waiting. Among them I remember Carl Schurz, who was playing the piano when I entered the room. The exhibition continued till about 12.30 A.M., when Mrs. Hayes and several other ladies, who had been induced to get up and dress, appeared. I left at 3.30 A,M,

“For a long time some people thought there was trickery. One morning at Menlo Park a gentleman came to the laboratory and asked to see the phonograph. It was Bishop Vincent, who helped Lewis
Miller found the Chautauqua I exhibited it, and then he asked if he could speak a few words. I put on a fresh foil and told him to go ahead. He commenced to recite Biblical names with immense rapidity. On reproducing it he said: `I am satisfied, now. There isn’t a man in the United States who could recite those names with the same rapidity.’ “

The phonograph was now fairly launched as a world sensation, and a reference to the newspapers of 1878 will show the extent to which it and Edison were themes of universal discussion. Some of the press notices of the period were most amazing–and amusing. As though the real achievements of this young man, barely thirty, were not tangible and solid enough to justify admiration of his genius, the “yellow journalists” of the period began busily to create an “Edison myth,” with gross absurdities of assertion and attribution from which the modest subject of it all has not yet ceased to suffer with unthinking people. A brilliantly vicious example of this method of treatment is to be found in the Paris Figaro of that year, which under the appropriate title of “This Astounding Eddison” lay bare before the French public the most startling revelations as to the inventor’s life and character. “It should be understood,” said this journal, “that Mr. Eddison does not belong to himself. He is the property of the telegraph company which lodges him in New York at a superb hotel; keeps him on a luxurious footing, and pays him a formidable salary so as to be the one to know of and profit by his discoveries. The company has, in the dwelling of Eddison, men in its employ who do not quit him for a moment, at the table, on the street, in the laboratory. So that this wretched man, watched more
closely than ever was any malefactor, cannot even give a moment’s thought to his own private affairs without one of his guards asking him what he is thinking about.” This foolish “blague” was accompanied by a description of Edison’s new “aerophone,” a steam machine which carried the voice a distance of one and a half miles. “You speak to a jet of vapor. A friend previously advised can answer you by the same method.” Nor were American journals backward in this wild exaggeration.

The furor had its effect in stimulating a desire everywhere on the part of everybody to see and hear the phonograph. A small commercial organization was formed to build and exploit the apparatus, and the shops at Menlo Park laboratory were assisted by the little Bergmann shop in New York. Offices were taken for the new enterprise at 203 Broadway, where the Mail and Express building now stands, and where, in a general way, under the auspices of a talented dwarf, C. A. Cheever, the embryonic phonograph and the crude telephone shared rooms and expenses. Gardiner G. Hubbard, father-in-law of Alex. Graham Bell, was one of the stockholders in the Phonograph Company, which paid Edison $10,000 cash and a 20 per cent. royalty. This curious part- nership was maintained for some time, even when the Bell Telephone offices were removed to Reade Street, New York, whither the phonograph went also; and was perhaps explained by the fact that just then the ability of the phonograph as a money-maker was much more easily demonstrated than was that of the telephone, still in its short range magneto stage and awaiting development with the aid of the carbon transmitter.

The earning capacity of the phonograph then, as largely now, lay in its exhibition qualities. The royalties from Boston, ever intellectually awake and ready for something new, ran as high as $1800 a week. In New York there was a ceaseless demand for it, and with the aid of Hilbourne L. Roosevelt, a famous organ builder, and uncle of ex-President Roosevelt, concerts were given at which the phonograph was “featured.” To manage this novel show business the services of James Redpath were called into requisition with great success. Redpath, famous as a friend and biographer of John Brown, as a Civil War correspondent, and as founder of the celebrated Redpath Lyceum Bureau in Boston, divided the country into territories, each section being leased for exhibition purposes on a basis of a percentage of the “gate money.” To 203 Broadway from all over the Union flocked a swarm of showmen, cranks, and particularly of old operators, who, the seedier they were in appearance, the more insistent they were that “Tom” should give them, for the sake of “Auld lang syne,” this chance to make a fortune for him and for themselves. At the top of the building was a floor on which these novices were graduated in the use and care of the machine, and then, with an equipment of tinfoil and other supplies, they were sent out on the road. It was a diverting experience while it lasted. The excitement over the phonograph was maintained for many months, until a large proportion of the inhabitants of the country had seen it; and then the show receipts declined and dwindled away. Many of the old operators, taken on out of good-nature, were poor exhibitors and worse accountants, and at last they and the machines with which they had been intrusted faded from sight. But in the mean time Edison had learned many lessons as to this practical side of development that were not forgotten when the renascence of the phonograph began a few years later, leading up to the present enormous and steady demand for both machines and records.

It deserves to be pointed out that the phonograph has changed little in the intervening years from the first crude instruments of 1877-78. It has simply been refined and made more perfect in a mechanical sense. Edison was immensely impressed with its possibilities, and greatly inclined to work upon it, but the coming of the electric light compelled him to throw all his energies for a time into the vast new field awaiting conquest. The original phonograph, as briefly noted above, was rotated by hand, and the cylinder was fed slowly longitudinally by means of a nut engaging a screw thread on the cylinder shaft. Wrapped around the cylinder was a sheet of tinfoil, with which engaged a small chisel-like recording needle, connected adhesively with the centre of an iron diaphragm. Obviously, as the cylinder was turned, the needle followed a spiral path whose pitch depended upon that of the feed screw. Along this path a thread was cut in the cylinder so as to permit the needle to indent the foil readily as the diaphragm vibrated. By rotating the cylinder and by causing the diaphragm to vibrate under the effect of vocal or musical sounds, the needle-like point would form a series of indentations in the foil corresponding to and characteristic of the sound-waves. By now engaging the point with the beginning of the grooved record so formed, and by again rotating the cylinder, the undulations of the record would cause the needle and its attached diaphragm to vibrate so as to effect the reproduction. Such an apparatus was necessarily undeveloped, and was interesting only from a scientific point of view. It had many mechanical defects which prevented its use as a practical apparatus. Since the cylinder was rotated by hand, the speed at which the record was formed would vary considerably, even with the same manipulator, so that it would have been impossible to record and reproduce music satisfactorily; in doing which exact uniformity of speed is essential. The formation of the record in tinfoil was also objectionable from a practical standpoint, since such a record was faint and would be substantially obliterated after two or three reproductions. Furthermore, the foil could not be easily removed from and replaced upon the instrument, and consequently the reproduction had to follow the recording immediately, and the successive tinfoils were thrown away. The instrument was also heavy and bulky. Notwithstanding these objections the original phonograph created, as already remarked, an enormous popular excitement, and the exhibitions were considered by many sceptical persons as nothing more than clever ventriloquism. The possibilities of the instrument as a commercial apparatus were recognized from the very first, and some of the fields in which it was predicted that the phonograph would be used are now fully occupied. Some have not yet been realized. Writing in 1878 in the North American-Review, Mr. Edison thus summed up his own ideas as to the future applications of the new invention:

“Among the many uses to which the phonograph will be applied are the following:

1. Letter writing and all kinds of dictation without the aid of a stenographer.

2. Phonographic books, which will speak to blind people without effort on their part.

3. The teaching of elocution.

4. Reproduction of music.

5. The `Family Record’–a registry of sayings, reminiscences, etc., by members of a family in their own voices, and of the last words of dying persons.

6. Music-boxes and toys.

7. Clocks that should announce in articulate speech the time for going home, going to meals, etc.

8. The preservation of languages by exact reproduction of the manner of pronouncing.

9. Educational purposes; such as preserving the explanations made by a teacher, so that the pupil can refer to them at any moment, and spelling or other lessons placed upon the phonograph for convenience in committing to memory.

10. Connection with the telephone, so as to make that instrument an auxiliary in the transmission of permanent and invaluable records, instead of being the recipient of momentary and fleeting communication.”

Of the above fields of usefulness in which it was expected that the phonograph might be applied, only three have been commercially realized–namely, the reproduction of musical, including vaudeville or talking selections, for which purpose a very large proportion of the phonographs now made is used; the employment of the machine as a mechanical stenographer, which field has been taken up actively only within the past few years; and the utilization of the device for the teaching of languages, for which purpose it has been successfully employed, for example, by the International Correspondence Schools of Scranton, Pennsylvania, for several years. The other uses, however, which were early predicted for the phonograph have not as yet been worked out practically, although the time seems not far distant when its general utility will be widely enlarged. Both dolls and clocks have been made, but thus far the world has not taken them seriously.

The original phonograph, as invented by Edison, remained in its crude and immature state for almost ten years–still the object of philosophical interest, and as a convenient text-book illustration of the effect of sound vibration. It continued to be a theme of curious interest to the imaginative, and the subject of much fiction, while its neglected commercial possibilities were still more or less vaguely referred to. During this period of arrested development, Edison was continuously working on the invention and commercial exploitation of the incandescent lamp. In 1887 his time was comparatively free, and the phonograph was then taken up with renewed energy, and the effort made to overcome its mechanical defects and to furnish a commercial instrument, so that its early promise might be realized. The important changes made from that time up to 1890 converted the phonograph from a scientific toy into a successful industrial apparatus. The idea of forming the record on tinfoil had been early abandoned, and in its stead was substituted a cylinder of wax-like material, in which the record was cut by a minute chisel-like gouging tool. Such a record or phonogram, as it was then called, could be removed from the machine or replaced at any time, many reproductions could be obtained without wearing out the record, and whenever desired the record could be shaved off by a turning-tool so as to present a fresh surface on which a new record could be formed, something like an ancient palimpsest. A wax cylinder having walls less than one-quarter of an inch in thickness could be used for receiving a large number of records, since the maximum depth of the record groove is hardly ever greater than one one-thousandth of an inch. Later on, and as the crowning achievement in the phonograph field, from a commercial point of view, came the duplication of records to the extent of many thousands from a single “master.” This work was actively developed between the years 1890 and 1898, and its difficulties may be appreciated when the problem is stated; the copying from a single master of many millions of excessively minute sound-waves having a maximum width of one hundredth of an inch, and a maximum depth of one thousandth of an inch, or less than the thickness of a sheet of tissue-paper. Among the interesting developments of this process was the coating of the original or master record with a homogeneous film of gold so thin that three hundred thousand of these piled one on top of the other would present a thickness of only one inch!

Another important change was in the nature of a reversal of the original arrangement, the cylinder or mandrel carrying the record being mounted in fixed bearings, and the recording or reproducing device being fed lengthwise, like the cutting-tool of a lathe, as the blank or record was rotated. It was early recognized that a single needle for forming the record and the reproduction therefrom was an undesirable arrangement, since the formation of the record required a very sharp cutting-tool, while satisfactory and repeated reproduction suggested the use of a stylus which would result in the minimum wear. After many experiments and the production of a number of types of machines, the present recorders and reproducers were evolved, the former consisting of a very small cylindrical gouging tool having a diameter of about forty thousandths of an inch, and the latter a ball or button-shaped stylus with a diameter of about thirty-five thousandths of an inch. By using an incisor of this sort, the record is formed of a series of connected gouges with rounded sides, varying in depth and width, and with which the reproducer automatically engages and maintains its engagement. Another difficulty encountered in the commercial development of the phonograph was the adjustment of the recording stylus so as to enter the wax-like surface to a very slight depth, and of the reproducer so as to engage exactly the record when formed. The earlier types of machines were provided with separate screws for effecting these adjustments; but considerable skill was required to
obtain good results, and great difficulty was experienced in meeting the variations in the wax-like cylinders, due to the warping under atmospheric changes. Consequently, with the early types of commercial phonographs, it was first necessary to shave off the blank accurately before a record was formed thereon, in order that an absolutely true surface might be presented. To overcome these troubles, the very ingenious suggestion was then made and adopted, of connecting the recording and reproducing styluses to their respective diaphragms through the instrumentality of a compensating weight, which acted practically as a fixed support under the very rapid sound vibrations, but which yielded readily to distortions or variations in the wax-like cylinders. By reason of this improvement, it became possible to do away with all adjustments, the mass of the compensating weight causing the recorder to engage the blank automatically to the required depth, and to maintain the reproducing stylus always with the desired pressure on the record when formed. These automatic adjustments were maintained even though the blank or record might be so much out of true as an eighth of an inch, equal to more than two hundred times the maximum depth of the record groove.

Another improvement that followed along the lines adopted by Edison for the commercial development of the phonograph was making the recording and reproducing styluses of sapphire, an extremely hard, non-oxidizable jewel, so that those tiny instruments would always retain their true form and effectively resist wear. Of course, in this work many other things were done that may still be found on the perfected phonograph as it stands to-day, and many other suggestions were made which were contemporaneously
adopted, but which were later abandoned. For the curious-minded, reference is made to the records in the Patent Office, which will show that up to 1893 Edison had obtained upward of sixty-five patents in this art, from which his line of thought can be very closely traced. The phonograph of to-day, except for the perfection of its mechanical features, in its beauty of manufacture and design, and in small details, may be considered identical with the machine of 1889, with the exception that with the latter the rotation of the record cylinder was effected by an electric motor.

Its essential use as then contemplated was as a substitute for stenographers, and the most extravagant fancies were indulged in as to utility in that field. To exploit the device commercially, the patents were sold to Philadelphia capitalists, who organized the North American Phonograph Company, through which leases for limited periods were granted to local companies doing business in special territories, gen- erally within the confines of a single State. Under that plan, resembling the methods of 1878, the machines and blank cylinders were manufactured by the Edison Phonograph Works, which still retains its factories at Orange, New Jersey. The marketing enterprise was early doomed to failure, principally because the instruments were not well understood, and did not possess the necessary refinements that would fit them for the special field in which they were to be used. At first the instruments were leased; but it was found that the leases were seldom renewed. Efforts were then made to sell them, but the prices were high–from $100 to $150. In the midst of these difficulties, the chief promoter of the enterprise, Mr. Lippincott, died; and it was soon found that the roseate dreams of success entertained by the sanguine promoters were not to be realized. The North American Phonograph Company failed, its principal creditor being Mr. Edison, who, having acquired the assets of the defunct concern, organized the National Phonograph Company, to which he turned over the patents; and with characteristic energy he attempted again to build up a business with which his favorite and, to him, most interesting invention might be successfully identified. The National Phonograph Company from the very start determined to retire at least temporarily from the field of stenographic use, and to exploit the phonograph for musical purposes as a competitor of the music-box. Hence it was necessary that for such work the relatively heavy and expensive electric motor should be discarded, and a simple spring motor constructed with a sufficiently sensitive governor to permit accurate musical reproduction. Such a motor was designed, and is now used on all phonographs except on such special instruments as may be made with electric motors, as well as on the successful apparatus that has more recently been designed and introduced for stenographic use. Improved factory facilities were introduced; new tools were made, and various types of machines were designed so that phonographs can now be bought at prices ranging from $10 to $200. Even with the changes which were thus made in the two machines, the work of developing the business was slow, as a demand had to be created; and the early prejudice of the public against the phonograph, due to its failure as a stenographic apparatus, had to be overcome. The story of the phonograph as an industrial enterprise, from this point of departure, is itself full of interest, but embraces so many details that it is necessarily given in a separate later chapter. We must return to the days of 1878, when Edison, with at least three first-class inventions to his credit–the quadruplex, the carbon telephone, and the phonograph –had become a man of mark and a “world
character.”

The invention of the phonograph was immediately followed, as usual, by the appearance of several other incidental and auxiliary devices, some patented, and others remaining simply the application of the principles of apparatus that had been worked out. One of these was the telephonograph, a combination of a telephone at a distant station with a phonograph. The diaphragm of the phonograph mouthpiece is actuated by an electromagnet in the same way as that of an ordinary telephone receiver, and in this manner a record of the message spoken from a distance can be obtained and turned into sound at will. Evidently such a process is reversible, and the phonograph can send a message to the distant receiver.

This idea was brilliantly demonstrated in practice in February, 1889, by Mr. W. J. Hammer, one of Edison’s earliest and most capable associates, who carried on telephonographic communication between New York and an audience in Philadelphia. The record made in New York on the Edison phonograph was repeated into an Edison carbon transmitter, sent over one hundred and three miles of circuit, including six miles of underground cable; received by an Edison motograph; repeated by that on to a phonograph; transferred from the phonograph to an Edison carbon transmitter, and by that delivered to the Edison motograph receiver in the enthusiastic lecture-hall, where every one could hear each sound and syllable distinctly. In real practice this spectacular playing with sound vibrations, as if they were lacrosse balls to toss around between the goals, could be materially simplified.

The modern megaphone, now used universally in making announcements to large crowds, particularly at sporting events, is also due to this period as a perfection by Edison of many antecedent devices going back, perhaps, much further than the legendary funnels through which Alexander the Great is said to have sent commands to his outlying forces. The improved Edison megaphone for long-distance work comprised two horns of wood or metal about six feet long, tapering from a diameter of two feet six inches at the mouth to a small aperture provided with ear- tubes. These converging horns or funnels, with a large speaking-trumpet in between them, are mounted on a tripod, and the megaphone is complete. Conversation can be carried on with this megaphone at a distance of over two miles, as with a ship or the balloon. The modern megaphone now employs the receiver form thus introduced as its very effective transmitter, with which the old-fashioned speaking- trumpet cannot possibly compete; and the word “megaphone” is universally applied to the single, side-flaring horn.

A further step in this line brought Edison to the “aerophone,” around which the Figaro weaved its fanciful description. In the construction of the aerophone the same kind of tympanum is used as in the phonograph, but the imitation of the human voice, or the transmission of sound, is effected by the quick opening and closing of valves placed within a steam- whistle or an organ-pipe. The vibrations of the diaphragm communicated to the valves cause them to operate in synchronism, so that the vibrations are thrown upon the escaping air or steam; and the result is an instrument with a capacity of magnifying the sounds two hundred times, and of hurling them to great distances intelligibly, like a huge fog-siren, but with immense clearness and penetration. All this study of sound transmission over long distances without wires led up to the consideration and inven- tion of pioneer apparatus for wireless telegraphy– but that also is another chapter.

Yet one more ingenious device of this period must be noted–Edison’s vocal engine, the patent application for which was executed in August, 1878, the patent being granted the following December. Reference to this by Edison himself has already been quoted. The “voice-engine,” or “phonomotor,” converts the vibrations of the voice or of music, acting on the diaphragm, into motion which is utilized to drive some secondary appliance, whether as a toy or for some useful purpose. Thus a man can actually talk a hole through a board.

Somewhat weary of all this work and excitement, and not having enjoyed any cessation from toil, or period of rest, for ten years, Edison jumped eagerly at the opportunity afforded him in the summer of 1878 of making a westward trip. Just thirty years later, on a similar trip over the same ground, he jotted down for this volume some of his reminiscences. The lure of 1878 was the opportunity to try the ability of his delicate tasimeter during the total eclipse of the sun, July 29. His admiring friend, Prof. George F. Barker, of the University of Pennsylvania, with whom he had now been on terms of intimacy for some years, suggested the holiday, and was himself a member of the excursion party that made its rendezvous at Rawlins, Wyoming Territory. Edison had tested his tasimeter, and was satisfied that it would measure down to the millionth part of a degree Fahrenheit. It was just ten years since he had left the West in poverty and obscurity, a penni- less operator in search of a job; but now he was a great inventor and famous, a welcome addition to the band of astronomers and physicists assembled to observe the eclipse and the corona.

“There were astronomers from nearly every nation,” says Mr. Edison. “We had a special car.
The country at that time was rather new; game was in great abundance, and could be seen all day long from the car window, especially antelope. We arrived at Rawlins about 4 P.M. It had a small machine shop, and was the point where locomotives were changed for the next section. The hotel was a very small one, and by doubling up we were barely accommodated. My room-mate was Fox, the correspondent of the New York Herald. After we retired and were asleep a thundering knock on the door awakened us. Upon opening the door a tall, handsome man with flowing hair dressed in western style entered the room. His eyes were bloodshot, and he was somewhat inebriated. He introduced himself as `Texas Jack’–Joe Chromondo–and said he wanted to see Edison, as he had read about me in the newspapers. Both Fox and I were rather scared, and
didn’t know what was to be the result of the interview. The landlord requested him not to make so much noise, and was thrown out into the hall. Jack explained that he had just come in with a party which had been hunting, and that he felt fine. He explained, also, that he was the boss pistol-shot of the West; that it was he who taught the celebrated Doctor Carver how to shoot. Then suddenly pointing to a weather-vane on the freight depot, he pulled out a Colt revolver and fired through the window, hitting the vane. The shot awakened all the people, and they rushed in to see who was killed. It was only after I told him I was tired and would see him in the morning that he left. Both Fox and I were so nervous we didn’t sleep any that night.

“We were told in the morning that Jack was a pretty good fellow, and was not one of the `bad men,’ of whom they had a good supply. They had one in the jail, and Fox and I went over to see him. A few days before he had held up a Union Pacific train and robbed all the passengers. In the jail also was a half-breed horse-thief. We interviewed the bad man through bars as big as railroad rails. He looked like a `bad man.’ The rim of his ear all around came to a sharp edge and was serrated. His eyes were nearly white, and appeared as if made of glass and set in wrong, like the life-size figures of Indians in the Smithsonian Institution. His face was also extremely irregular. He wouldn’t answer a single question. I learned afterward that he got seven years in prison, while the horse-thief was hanged. As horses ran wild, and there was no protection, it meant death to steal one.”

This was one interlude among others. “The first thing the astronomers did was to determine with precision their exact locality upon the earth. A number of observations were made, and Watson, of Michigan University, with two others, worked all night computing, until they agreed. They said they were not in error more than one hundred feet, and that the station was twelve miles out of the position given on the maps. It seemed to take an immense amount of mathematics. I preserved one of the sheets, which looked like the time-table of a Chinese railroad. The instruments of the various parties were then set up in different parts of the little town, and got ready for the eclipse which was to occur in three or four days. Two days before the event we all got together, and obtaining an engine and car, went twelve miles farther west to visit the United States Government astronomers at a place called Separation, the apex of the Great Divide, where the waters run east to the Mississippi and west to the Pacific. Fox and I took our Winchester rifles with an idea of doing a little shooting. After calling on the Government people we started to interview the telegraph operator at this most lonely and desolate spot. After talking over old acquaintances I asked him if there was any game around. He said, `Plenty of jack-rabbits.’ These jack-rabbits are a very peculiar species. They have ears about six inches long and very slender legs, about three times as long as those of an ordinary rabbit, and travel at a great speed by a series of jumps, each about thirty feet long, as near as I could judge. The local people called them `narrow-gauge mules.’ Asking the operator the best direction, he pointed west, and noticing a rabbit in a clear space in the sage bushes, I said, `There is one now.’ I advanced cautiously to within one hundred feet and shot. The rabbit paid no attention. I then advanced to within ten feet and shot again–the rabbit was still immovable. On looking around, the whole crowd at the station were watching–and then I knew the rabbit was stuffed! However, we did shoot a number of live ones until Fox ran out of cartridges. On returning to the station I passed away the time shooting at cans set on a pile of tins. Finally the operator said to Fox: `I have a fine Springfield musket, suppose you try it!’ So Fox took the musket and fired. It knocked him nearly over. It seems that the musket had been run over by a handcar, which slightly bent the long barrel, but not sufficiently for an amateur like Fox to notice. After Fox had his shoulder treated with arnica at the Government hospital tent, we returned to Rawlins.”

The eclipse was, however, the prime consideration, and Edison followed the example of his colleagues in making ready. The place which he secured for setting up his tasimeter was an enclosure hardly suitable for the purpose, and he describes the results as follows:

“I had my apparatus in a small yard enclosed by a board fence six feet high, at one end there was a house for hens. I noticed that they all went to roost just before totality. At the same time a slight wind arose, and at the moment of totality the atmosphere was filled with thistle-down and other light articles. I noticed one feather, whose weight was at least one hundred and fifty milligrams, rise perpendicularly to the top of the fence, where it floated away on the wind. My apparatus was entirely too sensitive, and I got no results.” It was found that the heat from the corona of the sun was ten times the index capacity of the instrument; but this result did not leave the value of the device in doubt. The Scientific American remarked;

“Seeing that the tasimeter is affected by a wider range of etheric undulations than the eye can take cognizance of, and is withal far more acutely sensitive, the probabilities are that it will open up hitherto inaccessible regions of space, and possibly extend the range of aerial knowledge as far beyond the limit obtained by the telescope as that is beyond the narrow reach of unaided vision.”

The eclipse over, Edison, with Professor Barker, Major Thornberg, several soldiers, and a number of railroad officials, went hunting about one hundred miles south of the railroad in the Ute country. A few months later the Major and thirty soldiers were ambushed near the spot at which the hunting-party had camped, and all were killed. Through an introduction from Mr. Jay Gould, who then controlled the Union Pacific, Edison was allowed to ride on the cow-catchers of the locomotives. “The different engineers gave me a small cushion, and every day I rode in this manner, from Omaha to the Sacramento Valley, except through the snow-shed on the summit of the Sierras, without dust or anything else to obstruct the view. Only once was I in danger when the locomotive struck an animal about the size of a small cub bear–which I think was a badger. This animal struck the front of the locomotive just under the headlight with great violence, and was then thrown off by the rebound. I was sitting to one side grasping the angle brace, so no harm was done.”

This welcome vacation lasted nearly two months; but Edison was back in his laboratory and hard at work before the end of August, gathering up many loose ends, and trying out many thoughts and ideas that had accumulated on the trip. One hot afternoon –August 30th, as shown by the document in the case–Mr. Edison was found by one of the authors of this biography employed most busily in making a mysterious series of tests on paper, using for ink acids that corrugated and blistered the paper where written upon. When interrogated as to his object, he stated that the plan was to afford blind people the means of writing directly to each other, especially if they were also deaf and could not hear a message on the phonograph. The characters which he was thus forming on the paper were high enough in relief to be legible to the delicate touch of a blind man’s fingers, and with simple apparatus letters could be thus written, sent, and read. There was certainly no question as to the result obtained at the moment, which was all that was asked; but the Edison autograph thus and then written now shows the paper eaten out by the acid used, although covered with glass for many years. Mr. Edison does not remember that he ever recurred to this very interesting test.

He was, however, ready for anything new or novel, and no record can ever be made or presented that would do justice to a tithe of the thoughts and fancies daily and hourly put upon the rack. The famous note-books, to which reference will be made later, were not begun as a regular series, as it was only the profusion of these ideas that suggested the vital value of such systematic registration. Then as now, the propositions brought to Edison ranged over every conceivable subject, but the years have taught him caution in grappling with them. He tells an amusing story of one dilemma into which his good-nature led him at this period: “At Menlo Park one day, a farmer came in and asked if I knew any way to kill potato- bugs. He had twenty acres of potatoes, and the vines were being destroyed. I sent men out and culled two quarts of bugs, and tried every chemical I had to destroy them. Bisulphide of carbon was found to do it instantly. I got a drum and went over to the potato farm and sprinkled it on the vines with a pot. Every bug dropped dead. The next morning the farmer came in very excited and reported that the stuff had killed the vines as well. I had to pay $300 for not experimenting properly.”

During this year, 1878, the phonograph made its way also to Europe, and various sums of money were paid there to secure the rights to its manufacture and exploitation. In England, for example, the Microscopic Company paid $7500 down and agreed to a
royalty, while arrangements were effected also in France, Russia, and other countries. In every instance, as in this country, the commercial development had to wait several years, for in the mean time another great art had been brought into existence, demanding exclusive attention and exhaustive toil. And when the work was done the reward was a new heaven and a new earth–in the art of illumination.

CHAPTER XI

THE INVENTION OF THE INCANDESCENT LAMP

IT is possible to imagine a time to come when the hours of work and rest will once more be regulated by the sun. But the course of civilization has been marked by an artificial lengthening of the day, and by a constant striving after more perfect means of illumination. Why mankind should sleep through several hours of sunlight in the morning, and stay awake through a needless time in the evening, can probably only be attributed to total depravity. It is certainly a most stupid, expensive, and harmful habit. In no one thing has man shown greater fertility of invention than in lighting; to nothing does he cling more tenaciously than to his devices for furnishing light. Electricity to-day reigns supreme in the field of illumination, but every other kind of artificial light that has ever been known is still in use somewhere. Toward its light-bringers the race has assumed an attitude of veneration, though it has forgotten, if it ever heard, the names of those who first brightened its gloom and dissipated its darkness. If the tallow candle, hitherto unknown, were now invented, its creator would be hailed as one of the greatest benefactors of the present age.

Up to the close of the eighteenth century, the means of house and street illumination were of two generic kinds–grease and oil; but then came a swift and revolutionary change in the adoption of gas. The ideas and methods of Murdoch and Lebon soon took definite shape, and “coal smoke” was piped from its place of origin to distant points of consumption. As early as 1804, the first company ever organized for gas lighting was formed in London, one side of Pall Mall being lit up by the enthusiastic pioneer, Winsor, in 1807. Equal activity was shown in America, and Baltimore began the practice of gas lighting in 1816. It is true that there were explosions, and distinguished men like Davy and Watt opined that the illuminant was too dangerous; but the “spirit of coal” had demonstrated its usefulness convincingly, and a commercial development began, which, for extent and rapidity, was not inferior to that marking the concurrent adoption of steam in industry and transportation.

Meantime the wax candle and the Argand oil lamp held their own bravely. The whaling fleets, long after gas came into use, were one of the greatest sources of our national wealth. To New Bedford, Massachusetts, alone, some three or four hundred ships
brought their whale and sperm oil, spermaceti, and whalebone; and at one time that port was accounted the richest city in the United States in proportion to its population. The ship-owners and refiners of that whaling metropolis were slow to believe that their monopoly could ever be threatened by newer sources of illumination; but gas had become available in the cities, and coal-oil and petroleum were now added to the list of illuminating materials. The American whaling fleet, which at the time of Edison’s birth mustered over seven hundred sail, had dwindled probably to a bare tenth when he took up the problem of illumination; and the competition of oil from the ground with oil from the sea, and with coal-gas, had made the artificial production of light cheaper than ever before, when up to the middle of the century it had remained one of the heaviest items of domestic expense. Moreover, just about the time that Edison took up incandescent lighting, water-gas was being introduced on a large scale as a commercial illuminant that could be produced at a much lower cost than coal-gas.

Throughout the first half of the nineteenth century the search for a practical electric light was almost wholly in the direction of employing methods analogous to those already familiar; in other words, obtaining the illumination from the actual consumption of the light-giving material. In the third quarter of the century these methods were brought to practicality, but all may be referred back to the brilliant demonstrations of Sir Humphry Davy at the Royal Institution, circa 1809-10, when, with the current from a battery of two thousand cells, he produced an intense voltaic arc between the points of consuming sticks of charcoal. For more than thirty years the arc light remained an expensive laboratory experiment; but the coming of the dynamo placed that illuminant on a commercial basis. The mere fact that electrical energy from the least expensive chemical battery using up zinc and acids costs twenty times as much as that from a dynamo–driven by steam-engine–is in itself enough to explain why so many of the electric arts lingered in embryo after their fundamental principles had been discovered. Here is seen also further proof of the great truth that one invention often waits for another.

From 1850 onward the improvements in both the arc lamp and the dynamo were rapid; and under the superintendence of the great Faraday, in 1858, protecting beams of intense electric light from the voltaic arc were shed over the waters of the Straits of Dover from the beacons of South Foreland and Dungeness. By 1878 the arc-lighting industry had sprung into existence in so promising a manner as to engender an extraordinary fever and furor of speculation. At the Philadelphia Centennial Exposition of 1876, Wallace-Farmer dynamos built at Ansonia, Connecticut, were shown, with the current from which arc lamps were there put in actual service. A year or two later the work of Charles F. Brush and Edward Weston laid the deep foundation of modern arc lighting in America, securing as well substantial recognition abroad.

Thus the new era had been ushered in, but it was based altogether on the consumption of some material –carbon–in a lamp open to the air. Every lamp the world had ever known did this, in one way or another. Edison himself began at that point, and his note-books show that he made various experiments with this type of lamp at a very early stage. Indeed, his experiments had led him so far as to anticipate in 1875 what are now known as “flaming arcs,” the exceedingly bright and generally orange or rose-colored lights which have been introduced within the last few years, and are now so frequently seen in streets and public places. While the arcs with plain carbons are bluish-white, those with carbons containing calcium fluoride have a notable golden glow.

He was convinced, however, that the greatest field of lighting lay in the illumination of houses and other comparatively enclosed areas, to replace the ordinary gas light, rather than in the illumination of streets and other outdoor places by lights of great volume and brilliancy. Dismissing from his mind quickly the commercial impossibility of using arc lights for general indoor illumination, he arrived at the conclusion that an electric lamp giving light by incandescence was the solution of the problem.

Edison was familiar with the numerous but impracticable and commercially unsuccessful efforts that had been previously made by other inventors and investigators to produce electric light by incandescence, and at the time that he began his experiments, in 1877, almost the whole scientific world had pronounced such an idea as impossible of fulfilment. The leading electricians, physicists, and experts of the period had been studying the subject for more than a quarter of a century, and with but one known exception had proven mathematically and by close reasoning that the “Subdivision of the Electric Light,” as it was then termed, was practically beyond attainment. Opinions of this nature have ever been but a stimulus to Edison when he has given deep thought to a subject, and has become impressed with strong convictions of possibility, and in this particular case he was satisfied that the subdivision of the electric light–or, more correctly, the subdivision of the electric current–was not only possible but entirely practicable.

It will have been perceived from the foregoing chapters that from the time of boyhood, when he first began to rub against the world, his commercial instincts were alert and predominated in almost all of the enterprises that he set in motion. This characteristic trait had grown stronger as he matured, having received, as it did, fresh impetus and strength from his one lapse in the case of his first patented invention, the vote-recorder. The lesson he then learned was to devote his inventive faculties only to things for which there was a real, genuine demand, and that would subserve the actual necessities of humanity; and it was probably a fortunate circumstance that this lesson was learned at the outset of his career as an inventor. He has never assumed to be a philosopher or “pure scientist.”

In order that the reader may grasp an adequate idea of the magnitude and importance of Edison’s invention of the incandescent lamp, it will be necessary to review briefly the “state of the art” at the time he began his experiments on that line. After the invention of the voltaic battery, early in the last century, experiments were made which determined that heat could be produced by the passage of the electric current through wires of platinum and other metals, and through pieces of carbon, as noted al- ready, and it was, of course, also observed that if sufficient current were passed through these conductors they could be brought from the lower stage of redness up to the brilliant white heat of incandescence. As early as 1845 the results of these experiments were taken advantage of when Starr, a
talented American who died at the early age of twenty-five, suggested, in his English patent of that year, two forms of small incandescent electric lamps, one having a burner made from platinum foil placed under a glass cover without excluding the air; and the other composed of a thin plate or pencil of carbon enclosed in a Torricellian vacuum. These suggestions of young Starr were followed by many other experimenters, whose improvements consisted principally in devices to increase the compactness and portability of the lamp, in the sealing of the lamp chamber to prevent the admission of air, and in means for renewing the carbon burner when it had been consumed. Thus Roberts, in 1852, proposed to cement the neck of the glass globe into a metallic cup, and to provide it with a tube or stop-cock for exhaustion by means of a hand-pump. Lodyguine, Konn, Kosloff, and Khotinsky, between 1872 and 1877, proposed various ingenious devices for perfecting the