instrument depends is a strip of some material extremely sensitive to heat, such as vulcanite. shown at A, and firmly clamped at B. Its lower end fits into a slot in a metal plate, C, which in turn rests upon a carbon button. This latter and the metal plate are connected in an electric circuit which includes a battery and a sensitive galvanometer. A vulcanite or other strip is easily affected by differences of temperature, expanding and contracting by reason of the minutest changes. Thus, an infinitesimal variation in its length through expansion or contraction changes the press- ure on the carbon and affects the resistance of the circuit to a corresponding degree, thereby causing a deflection of the galvanometer; a movement of the needle in one direction denoting expansion, and in the other contraction. The strip, A, is first put under a slight pressure, deflecting the needle a few degrees from zero. Any subsequent expansion or contraction of the strip may readily be noted by further movements of the needle. In practice, and for measurements of a very delicate nature, the tasimeter is inserted in one arm of a Wheatstone bridge, as shown at A in the diagram (Fig. 2). The galvanometer is shown at B in the bridge wire, and at C, D, and E there are shown the resistances in the other arms of the bridge, which are adjusted to equal the resistance of the tasimeter circuit. The battery is shown at F. This arrangement tends to obviate any misleading deflections that might arise through changes in the battery.
The dial on the front of the instrument is intended to indicate the exact amount of physical expansion or contraction of the strip. This is ascertained by means of a micrometer screw, S, which moves a needle, T, in front of the dial. This screw engages with a second and similar screw which is so arranged as to move the strip of vulcanite up or down. After a galvanometer deflection has been obtained through the expansion or contraction of the strip by reason of a change of temperature, a similar deflection is obtained mechanically by turning the screw, S, one way or the other. This causes the vulcanite strip to press more or less upon the carbon button, and thus produces the desired change in the resistance of the circuit. When the galvanometer shows the desired deflection, the needle, T, will indicate upon the dial, in decimal fractions of an inch, the exact distance through which the strip has been moved.
With such an instrument as the above, Edison demonstrated the existence of heat in the corona at the above- mentioned total eclipse of the sun, but exact determinations could not be made at that time, because the tasimeter adjustment was too delicate, and at the best the galvanometer deflections were so marked that they could not be kept within the limits of the
scale. The sensitiveness
of the instrument may
be easily comprehended
when it is stated that
the heat of the hand
thirty feet away from
the cone-like funnel of
the tasimeter will so
affect the galvanometer
as to cause the spot of
light to leave the scale.
This instrument can also be used to indicate minute changes of moisture in the air by substituting a strip of gelatine in place of the vulcanite. When so arranged a moistened piece of paper held several feet away will cause a minute expansion of the gelatine strip, which effects a pressure on the carbon, and causes a variation in the circuit sufficient to throw the spot of light from the galvanometer mirror off the scale.
The tasimeter has been used to demonstrate heat from remote stars (suns), such as Arcturus.
VIII
THE EDISON PHONOGRAPH
THE first patent that was ever granted on a device for permanently recording the human voice and other sounds, and for reproducing the same audibly at any future time, was United States Patent No. 200,251, issued to Thomas A. Edison on February 19, 1878, the application having been filed December 24, 1877. It is worthy of note that no references whatever were cited against the application while under examination in the Patent Office. This invention therefore, marked the very beginning of an entirely new art, which, with the new industries attendant upon its development, has since grown to occupy a position of worldwide reputation.
That the invention was of a truly fundamental character is also evident from the fact that although all “talking- machines” of to-day differ very widely in refinement from the first crude but successful phonograph of Edison, their performance is absolutely dependent upon the employment of the principles stated by him in his Patent No. 200,251. Quoting from the specification attached to this patent, we find that Edison said:
“The invention consists in arranging a plate, diaphragm or other flexible body capable of being vibrated by the human voice or other sounds, in conjunction with a material capable of registering the movements of such vibrating body by embossing or indenting or altering such material, in such a manner that such register marks will be sufficient to cause a second vibrating plate or body to be set in motion by them, and thus reproduce the motions of the first vibrating body.”
It will be at once obvious that these words describe perfectly the basic principle of every modern phonograph or other talking-machine, irrespective of its manufacture or trade name.
Edison’s first model of the phonograph is shown in the following illustration.
It consisted of a metallic cylinder having a helical indenting groove cut upon it from end to end. This cylinder was mounted on a shaft supported on two standards. This shaft at one end was fitted with a handle, by means of which the cylinder was rotated. There were two diaphragms, one on each side of the cylinder, one being for recording and the other for reproducing speech or other sounds. Each diaphragm had attached to it a needle. By means of the needle attached to the recording diaphragm, indentations were made in a sheet of tin-foil stretched over the peripheral sur- face of the cylinder when the diaphragm was vibrated by reason of speech or other sounds. The needle on the other diaphragm subsequently followed these indentations, thus reproducing the original sounds.
Crude as this first model appears in comparison with machines of later development and refinement, it embodied their fundamental essentials, and was in fact a complete, practical phonograph from the first moment of its operation.
The next step toward the evolution of the improved phono- graph of to-day was another form of tin-foil machine, as seen in the illustration.
It will be noted that this was merely an elaborated form of the first model, and embodied several mechanical modifications, among which was the employment of only one diaphragm for recording and reproducing. Such was the general type of phonograph used for exhibition purposes in America and other countries in the three or four years immediately succeeding the date of this invention.
In operating the machine the recording diaphragm was advanced nearly to the cylinder, so that as the diaphragm was vibrated by the voice the needle would prick or indent a wave-like record in the tin-foil that was on the cylinder. The cylinder was constantly turned during the recording, and in turning, was simultaneously moved forward. Thus the record would be formed on the tin-foil in a continuous spiral line. To reproduce this record it was only necessary to again start at the beginning and cause the needle to retrace its path in the spiral line. The needle, in passing rapidly in contact with the recorded waves, was vibrated up and down, causing corresponding vibrations of the diaphragm. In this way sound-waves similar to those caused by the original sounds would be set up in the air, thus reproducing the original speech.
The modern phonograph operates in a precisely similar way, the only difference being in details of refinement. In- stead of tin-foil, a wax cylinder is employed, the record being cut thereon by a cutting-tool attached to a diaphragm, while the reproduction is effected by means of a blunt stylus similarly attached.
The cutting-tool and stylus are devices made of sapphire, a gem next in hardness to a diamond, and they have to be cut and formed to an exact nicety by means of diamond dust, most of the work being performed under high-powered microscopes. The minute proportions of these devices will be apparent by a glance at the accompanying illustrations, in which the object on the left represents a common pin, and the objects on the right the cutting-tool and reproducing stylus, all actual sizes.
In the next illustration (Fig. 4) there is shown in the upper sketch, greatly magnified, the cutting or recording tool in the
act of forming the record, being vibrated rapidly by the diaphragm; and in the
lower sketch, similarly enlarged, a representation of the stylus travelling over the
record thus made, in the act of effecting a reproduction.
From the late summer of 1878 and to the fall of 1887 Edison was intensely busy on the electric light, electric railway, and other problems, and virtually gave no attention to the phonograph. Hence, just
prior to the latter-named period
the instrument was still
in its tin-foil age; but he
then began to devote serious
attention to the development
of an improved type that
should be of greater commercial
importance. The practical
results are too well known
to call for further comment.
That his efforts were not limited
in extent may be inferred
from the fact that since the fall of 1887 to the present writing he has been granted in the United States one hun- dred and four patents relating to the phonograph and its accessories.
Interesting as the numerous inventions are, it would be a work of supererogation to digest all these patents in the present pages, as they represent not only the inception but also the gradual development and growth of the wax-record type of phonograph from its infancy to the present perfected machine and records now so widely known all over the world. From among these many inventions, however, we will select two or three as examples of ingenuity and importance in their bearing upon present perfection of results
One of the difficulties of reproduction for many years was the trouble experienced in keeping the stylus in perfect en- gagement with the wave-like record, so that every minute vibration would be reproduced. It should be remembered that the deepest cut of the recording tool is only about one- third the thickness of tissue-paper. Hence, it will be quite apparent that the slightest inequality in the surface of the wax would be sufficient to cause false vibration, and thus give rise to distorted effects in such music or other sounds as were being reproduced. To remedy this, Edison added an attachment which is called a “floating weight,” and is shown at A in the illustration above.
The function of the floating weight is to automatically keep the stylus in close engagement with the record, thus insuring accuracy of reproduction. The weight presses the stylus to its work, but because of its mass it cannot respond to the extremely rapid vibrations of the stylus. They are therefore communicated to the diaphragm.
Some of Edison’s most remarkable inventions are revealed in a number of interesting patents relating to the duplication of phonograph records. It would be obviously impossible, from a commercial standpoint, to obtain a musical record from a high-class artist and sell such an original to the public, as its cost might be from one hundred to several thousand dollars. Consequently, it is necessary to provide some way by which duplicates may be made cheaply enough to permit their purchase by the public at a reasonable price.
The making of a perfect original musical or other record is a matter of no small difficulty, as it requires special technical knowledge and skill gathered from many years of actual experience; but in the exact copying, or duplication, of such a record, with its many millions of microscopic waves and sub-waves, the difficulties are enormously increased. The duplicates must be microscopically identical with the original, they must be free from false vibrations or other defects, although both original and duplicates are of such easily defacable material as wax; and the process must be cheap and commercial not a scientific laboratory possibility.
For making duplicates it was obviously necessary to first secure a mold carrying the record in negative or reversed form. From this could be molded, or cast, positive copies which would be identical with the original. While the art of electroplating would naturally suggest itself as the means of making such a mold, an apparently insurmountable obstacle appeared on the very threshold. Wax, being a non- conductor, cannot be electroplated unless a conducting surface be first applied. The coatings ordinarily used in electro- deposition were entirely out of the question on account of coarseness, the deepest waves of the record being less than one-thousandth of an inch in depth, and many of them probably ten to one hundred times as shallow. Edison finally decided to apply a preliminary metallic coating of infinitesimal thinness, and accomplished this object by a remarkable process known as the vacuous deposit. With this he ap- plied to the original record a film of gold probably no thicker than one three-hundred-thousandth of an inch, or several hundred times less than the depth of an average wave. Three hundred such layers placed one on top of the other would make a sheet no thicker than tissue-paper.
The process consists in placing in a vacuum two leaves, or electrodes, of gold, and between them the original record. A constant discharge of electricity of high tension between the electrodes is effected by means of an induction-coil. The metal is vaporized by this discharge, and is carried by it directly toward and deposited upon the original record, thus forming the minute film of gold above mentioned. The record is constantly rotated until its entire surface is coated. A sectional diagram of the apparatus (Fig. 6.) will aid to a clearer understanding of this ingenious process.
After the gold film is formed in the manner described above, a heavy backing of baser metal is electroplated upon it, thus forming a substantial mold, from which the original record is extracted by breakage or shrinkage.
Duplicate records in any quantity may now be made from this mold by surrounding it with a cold-water jacket and dipping it in a molten wax-like material. This congeals on the record surface just as melted butter would collect on a cold knife, and when the mold is removed the surplus wax falls out, leaving a heavy deposit of the material which forms the duplicate record. Numerous ingenious inventions have been made by Edison providing for a variety of rapid and economical methods of duplication, including methods of shrinking a newly made copy to facilitate its quick removal from the mold; methods of reaming, of forming ribs on the interior, and for many other important and essential details, which limits of space will not permit of elaboration. Those mentioned above are but fair examples of the persistent and effective work he has done to bring the phonograph to its present state of perfection.
In perusing Chapter X of the foregoing narrative, the reader undoubtedly noted Edison’s clear apprehension of the practical uses of the phonograph, as evidenced by his prophetic utterances in the article written by him for the North American Review in June, 1878. In view of the crudity of the instrument at that time, it must be acknowl- edged that Edison’s foresight, as vindicated by later events was most remarkable. No less remarkable was his intensely practical grasp of mechanical possibilities of future types of the machine, for we find in one of his early English patents (No. 1644 of 1878) the disk form of phonograph which, some ten to fifteen years later, was supposed to be a new development in the art. This disk form was also covered by Edison’s application for a United States patent, filed in 1879. This application met with some merely minor technical objections in the Patent Office, and seems to have passed into the “abandoned” class for want of prosecution, probably because of being overlooked in the tremendous pressure arising from his development of his electric-lighting system.
IX
THE INCANDESCENT LAMP
ALTHOUGH Edison’s contributions to human comfort and progress are extensive in number and extraordinarily vast and comprehensive in scope and variety, the universal verdict of the world points to his incandescent lamp and system of distribution of electrical current as the central and crowning achievements of his life up to this time. This view would seem entirely justifiable when we consider the wonderful changes in the conditions of modern life that have been brought about by the wide-spread employment of these inventions, and the gigantic industries that have grown up and been nourished by their world-wide application. That he was in this instance a true pioneer and creator is evident as we consider the subject, for the United States Patent No. 223,898, issued to Edison on January 27, 1880, for an incandescent lamp, was of such fundamental character that it opened up an entirely new and tremendously important art–the art of incandescent electric lighting. This statement cannot be successfully controverted, for it has been abundantly verified after many years of costly litigation. If further proof were desired, it is only necessary to point to the fact that, after thirty years of most strenuous and practical application in the art by the keenest intellects of the world, every incandescent lamp that has ever since been made, including those of modern days, is still dependent upon the employment of the essentials disclosed in the above-named patent–namely, a filament of high resistance enclosed in a sealed glass globe exhausted of air, with conducting wires passing through the glass.
An incandescent lamp is such a simple-appearing article– merely a filament sealed into a glass globe–that its intrinsic relation to the art of electric lighting is far from being ap- parent at sight. To the lay mind it would seem that this must have been THE obvious device to make in order to obtain electric light by incandescence of carbon or other material. But the reader has already learned from the preceding narrative that prior to its invention by Edison such a device was NOT obvious, even to the most highly trained experts of the world at that period; indeed, it was so far from being obvious that, for some time after he had completed practical lamps and was actually lighting them up twenty-four hours a day, such a device and such a result were declared by these same experts to be an utter impossibility. For a short while the world outside of Menlo Park held Edison’s claims in derision. His lamp was pronounced a fake, a myth, possibly a momentary success magnified to the dignity of a permanent device by an overenthusiastic inventor.
Such criticism, however, did not disturb Edison. He KNEW that he had reached the goal. Long ago, by a close process of reasoning, he had clearly seen that the only road to it was through the path he had travelled, and which was now embodied in the philosophy of his incandescent lamp– namely, a filament, or carbon, of high resistance and small radiating surface, sealed into a glass globe exhausted of air to a high degree of vacuum. In originally committing himself to this line of investigation he was well aware that he was going in a direction diametrically opposite to that followed by previous investigators. Their efforts had been confined to low-resistance burners of large radiating surface for their lamps, but he realized the utter futility of such devices. The tremendous problems of heat and the prohibitive quantities of copper that would be required for conductors for such lamps would be absolutely out of the question in commercial practice.
He was convinced from the first that the true solution of the problem lay in a lamp which should have as its illuminating body a strip of material which would offer such a resistance to the flow of electric current that it could be raised to a high temperature–incandescence–and be of such small cross-section that it would radiate but little heat. At the same time such a lamp must require a relatively small amount of current, in order that comparatively small conductors could be used, and its burner must be capable of withstand- ing the necessarily high temperatures without disintegration.
It is interesting to note that these conceptions were in Edison’s mind at an early period of his investigations, when the best expert opinion was that the subdivision of the electric current was an ignis fatuus. Hence we quote the following notes he made, November 15, 1878, in one of the laboratory note-books:
“A given straight wire having 1 ohm resistance and certain length is brought to a given degree of temperature by given battery. If the same wire be coiled in such a manner that but one-quarter of its surface radiates, its temperature will be increased four times with the same battery, or, one- quarter of this battery will bring it to the temperature of straight wire. Or the same given battery will bring a wire whose total resistance is 4 ohms to the same temperature as straight wire.
“This was actually determined by trial.
“The amount of heat lost by a body is in proportion to the radiating surface of that body. If one square inch of platina be heated to 100 degrees it will fall to, say, zero in one second, whereas, if it was at 200 degrees it would require two seconds.
“Hence, in the case of incandescent conductors, if the radiating surface be twelve inches and the temperature on each inch be 100, or 1200 for all, if it is so coiled or arranged that there is but one-quarter, or three inches, of radiating surface, then the temperature on each inch will be 400. If reduced to three-quarters of an inch it will have on that three- quarters of an inch 1600 degrees Fahr., notwithstanding the original total amount was but 1200, because the radiation has been reduced to three-quarters, or 75 units; hence, the effect of the lessening of the radiation is to raise the temperature of each remaining inch not radiating to 125 degrees. If the radiating surface should be reduced to three-thirty-seconds of an inch, the temperature would reach 6400 degrees Fahr. To carry out this law to the best advantage in regard to platina, etc., then with a given length of wire to quadruple the heat we must lessen the radiating surface to one-quarter, and to do this in a spiral, three-quarters must be within the spiral and one-quarter outside for radiating; hence, a square wire or other means, such as a spiral within a spiral, must be used. These results account for the enormous temperature of the Electric Arc with one horse-power; as, for instance, if one horse-power will heat twelve inches of wire to 1000 degrees Fahr., and this is concentrated to have one-quarter of the radiating surface, it would reach a temperature of 4000 degrees or sufficient to melt it; but, supposing it infusible, the further concentration to one- eighth its surface, it would reach a temperature of 16,000 degrees, and to one-thirty-second its surface, which would be about the radiating surface of the Electric Arc, it would reach 64,000 degrees Fahr. Of course, when Light is radiated in great quantities not quite these temperatures would be reached.
“Another curious law is this: It will require a greater initial battery to bring an iron wire of the same size and resistance to a given temperature than it will a platina wire in proportion to their specific heats, and in the case of Carbon, a piece of Carbon three inches long and one-eighth diameter, with a resistance of 1 ohm, will require a greater battery power to bring it to a given temperature than a cylinder of thin platina foil of the same length, diameter, and resistance, because the specific heat of Carbon is many times greater; besides, if I am not mistaken, the radiation of a roughened body for heat is greater than a polished one like platina.”
Proceeding logically upon these lines of thought and following them out through many ramifications, we have seen how he at length made a filament of carbon of high resistance and small radiating surface, and through a concurrent investigation of the phenomena of high vacua and occluded gases was able to produce a true incandescent lamp. Not only was it a lamp as a mere article–a device to give light– but it was also an integral part of his great and complete system of lighting, to every part of which it bore a fixed and definite ratio, and in relation to which it was the keystone that held the structure firmly in place.
The work of Edison on incandescent lamps did not stop at this fundamental invention, but extended through more than eighteen years of a most intense portion of his busy life. During that period he was granted one hundred and forty-nine other patents on the lamp and its manufacture. Although very many of these inventions were of the utmost importance and value, we cannot attempt to offer a detailed exposition of them in this necessarily brief article, but must refer the reader, if interested, to the patents themselves, a full list being given at the end of this Appendix. The outline sketch will indicate the principal patents covering the basic features of the lamp.
The litigation on the Edison lamp patents was one of the most determined and stubbornly fought contests in the history of modern jurisprudence. Vast interests were at stake. All of the technical, expert, and professional skill and knowledge that money could procure or experience devise were availed of in the bitter fights that raged in the courts for many years. And although the Edison interests had spent from first to last nearly $2,000,000, and had only about three years left in the life of the fundamental patent, Edison was thoroughly sustained as to priority by the decisions in the various suits. We shall offer a few brief extracts from some of these decisions.
In a suit against the United States Electric Lighting Company, United States Circuit Court for the Southern District of New York, July 14, 1891, Judge Wallace said, in his opinion: “The futility of hoping to maintain a burner in vacuo with any permanency had discouraged prior inventors, and Mr. Edison is entitled to the credit of obviating the mechanical difficulties which disheartened them…. He was the first to make a carbon of materials, and by a process which was especially designed to impart high specific resistance to it; the first to make a carbon in the special form for the special purpose of imparting to it high total resistance; and the first to combine such a burner with the necessary adjuncts of lamp construction to prevent its disintegration and give it sufficiently long life. By doing these things he made a lamp which was practically operative and successful, the embryo of the best lamps now in commercial use, and but for which the subdivision of the electric light by incandescence would still be nothing but the ignis fatuus which it was proclaimed to be in 1879 by some of the reamed experts who are now witnesses to belittle his achievement and show that it did not rise to the dignity of an invention…. It is impossible to resist the conclusion that the invention of the slender thread of carbon as a substitute for the burners previously employed opened the path to the practical subdivision of the electric light.”
An appeal was taken in the above suit to the United States Circuit Court of Appeals, and on October 4, 1892, the decree of the lower court was affirmed. The judges (Lacombe and Shipman), in a long opinion reviewed the facts and the art, and said, inter alia: “Edison’s invention was practically made when he ascertained the theretofore unknown fact that carbon would stand high temperature, even when very at- tenuated, if operated in a high vacuum, without the phenomenon of disintegration. This fact he utilized by the means which he has described, a lamp having a filamentary carbon burner in a nearly perfect vacuum.”
In a suit against the Boston Incandescent Lamp Company et al., in the United States Circuit Court for the District of Massachusetts, decided in favor of Edison on June 11, 1894, Judge Colt, in his opinion, said, among other things: “Edison made an important invention; he produced the first practical incandescent electric lamp; the patent is a pioneer in the sense of the patent law; it may be said that his invention created the art of incandescent electric lighting.”
Opinions of other courts, similar in tenor to the foregoing, might be cited, but it would be merely in the nature of reiteration. The above are sufficient to illustrate the direct clearness of judicial decision on Edison’s position as the founder of the art of electric lighting by incandescence.
EDISON’S DYNAMO WORK
AT the present writing, when, after the phenomenally rapid electrical development of thirty years, we find on the market a great variety of modern forms of efficient current generators advertised under the names of different inventors (none, however, bearing the name of Edison), a young electrical engineer of the present generation might well inquire whether the great inventor had ever contributed anything to the art beyond a mere TYPE of machine formerly made and bearing his name, but not now marketed except second hand.
For adequate information he might search in vain the books usually regarded as authorities on the subject of dynamo-electric machinery, for with slight exceptions there has been a singular unanimity in the omission of writers to give Edison credit for his great and basic contributions to heavy-current technics, although they have been universally acknowledged by scientific and practical men to have laid the foundation for the efficiency of, and to be embodied in all modern generators of current.
It might naturally be expected that the essential facts of Edison’s work would appear on the face of his numerous patents on dynamo-electric machinery, but such is not necessarily the case, unless they are carefully studied in the light of the state of the art as it existed at the time. While some of these patents (especially the earlier ones) cover specific devices embodying fundamental principles that not only survive to the present day, but actually lie at the foundation of the art as it now exists, there is no revelation therein of Edison’s preceding studies of magnets, which extended over many years, nor of his later systematic investigations and deductions.
Dynamo-electric machines of a primitive kind had been invented and were in use to a very limited extent for arc lighting and electroplating for some years prior to the summer of 1819, when Edison, with an embryonic lighting SYSTEM in mind, cast about for a type of machine technically and commercially suitable for the successful carrying out of his plans. He found absolutely none. On the contrary, all of the few types then obtainable were uneconomical, indeed wasteful, in regard to efficiency. The art, if indeed there can be said to have been an art at that time, was in chaotic confusion, and only because of Edison’s many years’ study of the magnet was he enabled to conclude that insufficiency in quantity of iron in the magnets of such machines, together with poor surface contacts, rendered the cost of magnetization abnormally high. The heating of solid armatures, the only kind then known, and poor insulation in the commutators, also gave rise to serious losses. But perhaps the most serious drawback lay in the high-resistance armature, based upon the highest scientific dictum of the time that in order to obtain the maximum amount of work from a machine, the internal resistance of the armature must equal the resistance of the exterior circuit, although the application of this principle entailed the useless expenditure of at least 50 per cent. of the applied energy.
It seems almost incredible that only a little over thirty years ago the sum of scientific knowledge in regard to dynamo- electric machines was so meagre that the experts of the period should settle upon such a dictum as this, but such was the fact, as will presently appear. Mechanical generators of electricity were comparatively new at that time; their theory and practice were very imperfectly understood; indeed, it is quite within the bounds of truth to say that the correct principles were befogged by reason of the lack of practical knowledge of their actual use. Electricians and scientists of the period had been accustomed for many years past to look to the chemical battery as the source from which to obtain electrical energy; and in the practical application of such energy to telegraphy and kindred uses, much thought and ingenuity had been expended in studying combinations of connecting such cells so as to get the best results. In the text-books of the period it was stated as a settled principle that, in order to obtain the maximum work out of a set of batteries, the internal resistance must approximately equal the resistance of the exterior circuit. This principle and its application in practice were quite correct as regards chemical batteries, but not as regards dynamo machines. Both were generators of electrical current, but so different in construction and operation, that rules applicable to the practical use of the one did not apply with proper commercial efficiency to the other. At the period under consideration, which may be said to have been just before dawn of the day of electric light, the philosophy of the dynamo was seen only in mysterious, hazy outlines– just emerging from the darkness of departing night. Perhaps it is not surprising, then, that the dynamo was loosely regarded by electricians as the practical equivalent of a chemical battery; that many of the characteristics of performance of the chemical cell were also attributed to it, and that if the maximum work could be gotten out of a set of batteries when the internal and external resistances were equal (and this was commercially the best thing to do), so must it be also with a dynamo.
It was by no miracle that Edison was far and away ahead of his time when he undertook to improve the dynamo. He was possessed of absolute KNOWLEDGE far beyond that of his contemporaries. This he ad acquired by the hardest kind of work and incessant experiment with magnets of all kinds during several years preceding, particularly in connection with his study of automatic telegraphy. His knowledge of magnets was tremendous. He had studied and experimented with electromagnets in enormous variety, and knew their peculiarities in charge and discharge, lag, self- induction, static effects, condenser effects, and the various other phenomena connected therewith. He had also made collateral studies of iron, steel, and copper, insulation, winding, etc. Hence, by reason of this extensive work and knowledge, Edison was naturally in a position to realize the utter commercial impossibility of the then best dynamo machine in existence, which had an efficiency of only about 40 per cent., and was constructed on the “cut-and-try” principle.
He was also naturally in a position to assume the task he set out to accomplish, of undertaking to plan and-build an improved type of machine that should be commercial in hav- ing an efficiency of at least 90 per cent. Truly a prodigious undertaking in those dark days, when from the standpoint of Edison’s large experience the most practical and correct electrical treatise was contained in the Encyclopaedia Britannica, and in a German publication which Mr. Upton had brought with him after he had finished his studies with the illustrious Helmholtz. It was at this period that Mr. Upton commenced his association with Edison, bringing to the great work the very latest scientific views and the assistance of the higher mathematics, to which he had devoted his attention for several years previously.
As some account of Edison’s investigations in this connection has already been given in Chapter XII of the narrative, we shall not enlarge upon them here, but quote from An Historical Review, by Charles L. Clarke, Laboratory Assistant at Menlo Park, 1880-81; Chief Engineer of the Edison Electric Light Company, 1881-84:
“In June, 1879, was published the account of the Edison dynamo-electric machine that survived in the art. This machine went into extensive commercial use, and was notable for its very massive and powerful field-magnets and armature of extremely low resistance as compared with the combined external resistance of the supply-mains and lamps. By means of the large masses of iron in the field-magnets, and closely fitted joints between the several parts thereof, the magnetic resistance (reluctance) of the iron parts of the magnetic circuit was reduced to a minimum, and the required magnetization effected with the maximum economy. At the same time Mr. Edison announced the commercial necessity of having the armature of the dynamo of low resistance, as compared with the external resistance, in order that a large percentage of the electrical energy developed should be utilized in the lamps, and only a small percentage lost in the armature, albeit this procedure reduced the total generating capacity of the machine. He also proposed to make the resistance of the supply-mains small, as compared with the combined resistance of the lamps in multiple arc, in order to still further increase the percentage of energy utilized in the lamps. And likewise to this end the combined resistance of the generator armatures in multiple arc was kept relatively small by adjusting the number of generators operating in multiple at any time to the number of lamps then in use. The field-magnet circuits of the dynamos were connected in multiple with a separate energizing source; and the field-current; and strength of field, were regulated to maintain the required amount of electromotive force upon the supply-mains under all conditions of load from the maximum to the minimum number of lamps in use, and to keep the electromotive force of all machines alike.”
Among the earliest of Edison’s dynamo experiments were those relating to the core of the armature. He realized at once that the heat generated in a solid core was a prolific source of loss. He experimented with bundles of iron wires variously insulated, also with sheet-iron rolled cylindrically and covered with iron wire wound concentrically. These experiments and many others were tried in a great variety of ways, until, as the result of all this work, Edison arrived at the principle which has remained in the art to this day. He split up the iron core of the armature into thin laminations, separated by paper, thus practically suppressing Foucault currents therein and resulting heating effect. It was in his machine also that mica was used for the first time as an insulating medium in a commutator.[27]
[27] The commercial manufacture of built-up sheets of mica for electrical purposes was first established at the Edison Machine Works, Goerck Street, New York, in 1881.
Elementary as these principles will appear to the modern student or engineer, they were denounced as nothing short of absurdity at the time of their promulgation–especially so with regard to Edison’s proposal to upset the then settled dictum that the armature resistance should be equal to the external resistance. His proposition was derided in the technical press of the period, both at home and abroad. As public opinion can be best illustrated by actual quotation, we shall present a characteristic instance.
In the Scientific American of October 18, 1879, there appeared an illustrated article by Mr. Upton on Edison’s dynamo machine, in which Edison’s views and claims were set forth. A subsequent issue contained a somewhat acri- monious letter of criticism by a well-known maker of dynamo machines. At the risk of being lengthy, we must quote nearly all this letter: “I can scarcely conceive it as possible that the article on the above subject “(Edison’s Electric Generator)” in last week’s Scientific American could have been written from statements derived from Mr. Edison himself, inasmuch as so many of the advantages claimed for the machine described and statements of the results obtained are so manifestly absurd as to indicate on the part of both writer and prompter a positive want of knowledge of the electric circuit and the principles governing the construction and operation of electric machines.
“It is not my intention to criticise the design or construction of the machine (not because they are not open to criticism), as I am now and have been for many years engaged in the manufacture of electric machines, but rather to call attention to the impossibility of obtaining the described results without destroying the doctrine of the conservation and correlation of forces.
. . . . .
“It is stated that `the internal resistance of the armature’ of this machine `is only 1/2 ohm.’ On this fact and the disproportion between this resistance and that of the external circuit, the theory of the alleged efficiency of the machine is stated to be based, for we are informed that, `while this generator in general principle is the same as in the best well-known forms, still there is an all-important difference, which is that it will convert and deliver for useful work nearly double the number of foot-pounds that any other machine will under like conditions.’ ” The writer of this critical letter then proceeds to quote Mr. Upton’s statement of this efficiency: “`Now the energy converted is distributed over the whole resistance, hence if the resistance of the machine be represented by 1 and the exterior circuit by 9, then of the total energy converted nine-tenths will be useful, as it is outside of the machine, and one-tenth is lost in the resistance of the machine.'”
After this the critic goes on to say:
“How any one acquainted with the laws of the electric circuit can make such statements is what I cannot understand. The statement last quoted is mathematically absurd. It implies either that the machine is CAPABLE OF INCREASING ITS OWN ELECTROMOTIVE FORCE NINE TIMES WITHOUT AN INCREASED EXPENDITURE OF POWER, or that external resistance is NOT resistance to the current induced in the Edison machine.
“Does Mr. Edison, or any one for him, mean to say that r/n enables him to obtain nE, and that C IS NOT = E / (r/n + R)? If so
Mr. Edison has discovered something MORE than perpetual motion, and Mr. Keely had better retire from the field.
“Further on the writer (Mr. Upton) gives us another example of this mode of reasoning when, emboldened and satisfied with the absurd theory above exposed, he endeavors to prove the cause of the inefficiency of the Siemens and other machines. Couldn’t the writer of the article see that since C = E/(r + R) that by R/n or by making R = r, the machine would, according to his theory, have returned more useful current to the circuit than could be due to the power employed (and in the ratio indicated), so that there would actually be a creation of force!
. . . . . . .
“In conclusion allow me to say that if Mr Edison thinks he has accomplished so much by the REDUCTION OF THE INTERNAL RESISTANCE of his machine, that he has much more to do in this direction before his machine will equal IN THIS RESPECT others already in the market.”
Another participant in the controversy on Edison’s generator was a scientific gentleman, who in a long article published in the Scientific American, in November, 1879, gravely undertook to instruct Edison in the A B C of electrical principles, and then proceeded to demonstrate mathematically the IMPOSSIBILITY of doing WHAT EDISON HAD ACTUALLY DONE. This critic concludes with a gentle rebuke to the inventor for ill- timed jesting, and a suggestion to furnish AUTHENTIC information!
In the light of facts, as they were and are, this article is so full of humor that we shall indulge in a few quotations It commences in A B C fashion as follows: “Electric machines convert mechanical into electrical energy…. The ratio of yield to consumption is the expression of the efficiency of the machine…. How many foot-pounds of elec- tricity can be got out of 100 foot-pounds of mechanical energy? Certainly not more than 100: certainly less…. The facts and laws of physics, with the assistance of mathematical logic, never fail to furnish precious answers to such questions.”
The would-be critic then goes on to tabulate tests of certain other dynamo machines by a committee of the Franklin Institute in 1879, the results of which showed that these machines returned about 50 per cent. of the applied mechanical energy, ingenuously remarking: “Why is it that when we have produced the electricity, half of it must slip away? Some persons will be content if they are told simply that it is a way which electricity has of behaving. But there is a satisfactory rational explanation which I believe can be made plain to persons of ordinary intelligence. It ought to be known to all those who are making or using machines. I am grieved to observe that many persons who talk and write glibly about electricity do not understand it; some even ignore or deny the fact to be explained.”
Here follows HIS explanation, after which he goes on to say: “At this point plausibly comes in a suggestion that the internal part of the circuit be made very small and the external part very large. Why not (say) make the internal part 1 and the external 9, thus saving nine-tenths and losing only one-tenth? Unfortunately, the suggestion is not practical; a fallacy is concealed in it.”
He then goes on to prove his case mathematically, to his own satisfaction, following it sadly by condoling with and a warning to Edison: “But about Edison’s electric generator! . . . No one capable of making the improvements in the telegraph and telephone, for which we are indebted to Mr. Edison, could be other than an accomplished electrician. His reputation as a scientist, indeed, is smirched by the newspaper exaggerations, and no doubt he will be more careful in future. But there is a danger nearer home, indeed, among his own friends and in his very household.
“. . . The writer of page 242” (the original article) “is probably a friend of Mr. Edison, but possibly, alas! a wicked partner. Why does he say such things as these? `Mr. Edison claims that he realizes 90 per cent. of the power applied to this machine in external work.’ . . . Perhaps the writer is a humorist, and had in his mind Colonel Sellers, etc., which he could not keep out of a serious discussion; but such jests are not good.
“Mr. Edison has built a very interesting machine, and he has the opportunity of making a valuable contribution to the electrical arts by furnishing authentic accounts of its capabilities.”
The foregoing extracts are unavoidably lengthy, but, viewed in the light of facts, serve to illustrate most clearly that Edison’s conceptions and work were far and away ahead of the comprehension of his contemporaries in the art, and that his achievements in the line of efficient dynamo design and construction were indeed truly fundamental and revolutionary in character. Much more of similar nature to the above could be quoted from other articles published elsewhere, but the foregoing will serve as instances generally representing all. In the controversy which appeared in the columns of the Scientific American, Mr. Upton, Edison’s mathematician, took up the question on his side, and answered the critics by further elucidations of the principles on which Edison had founded such remarkable and radical improvements in the art. The type of Edison’s first dynamo- electric machine, the description of which gave rise to the above controversy, is shown in Fig. 1.
Any account of Edison’s work on the dynamo would be incomplete did it omit to relate his conception and construction of the great direct-connected steam-driven generator that was the prototype of the colossal units which are used throughout the world to-day.
In the demonstrating plant installed and operated by him at Menlo Park in 1880 ten dynamos of eight horse-power each were driven by a slow-speed engine through a complicated system of counter-shafting, and, to quote from Mr. Clarke’s Historical Review, “it was found that a considerable percentage of the power of the engine was necessarily wasted in friction by this method of driving, and to prevent this waste and thus increase the economy of his system, Mr. Edison conceived the idea of substituting a single large dynamo for the several small dynamos, and directly coupling it with the driving engine, and at the same time preserve the requisite high armature speed by using an engine of the high- speed type. He also expected to realize still further gains in economy from the use of a large dynamo in place of several small machines by a more than correspondingly lower armature resistance, less energy for magnetizing the field, and for other minor reasons. To the same end, he intended to supply steam to the engine under a much higher boiler pressure than was customary in stationary-engine driving at that time.”
The construction of the first one of these large machines was commenced late in the year 1880. Early in 1881 it was completed and tested, but some radical defects in armature construction were developed, and it was also demonstrated that a rate of engine speed too high for continuously safe and economical operation had been chosen. The machine was laid aside. An accurate illustration of this machine, as it stood in the engine-room at Menlo Park, is given in Van Nostrand’s Engineering Magazine, Vol. XXV, opposite page 439, and a brief description is given on page 450.
With the experience thus gained, Edison began, in the spring of 1881, at the Edison Machine Works, Goerck Street, New York City, the construction of the first successful machine of this type. This was the great machine known as “Jumbo No. 1,” which is referred to in the narrative as having been exhibited at the Paris International Electrical Exposition, where it was regarded as the wonder of the electrical world. An intimation of some of the tremendous difficulties encountered in the construction of this machine has already been given in preceding pages, hence we shall not now enlarge on the subject, except to note in passing that the terribly destructive effects of the spark of self-induction and the arcing following it were first manifested in this powerful machine, but were finally overcome by Edison after a strenuous application of his powers to the solution of the problem.
It may be of interest, however, to mention some of its dimensions and electrical characteristics, quoting again from Mr. Clarke: “The field-magnet had eight solid cylindrical cores, 8 inches in diameter and 57 inches long, upon each of which was wound an exciting-coil of 3.2 ohms resistance, consisting of 2184 turns of No. 10 B. W. G. insulated copper wire, disposed in six layers. The laminated iron core of the armature, formed of thin iron disks, was 33 3/4 inches long, and had an internal diameter of 12 1/2 inches, and an external diameter of 26 7/16 inches. It was mounted on a 6-inch shaft. The field-poles were 33 3/4 inches long, and 27 1/2 inches inside diameter The armature winding consisted of 146 copper bars on the face of the core, connected into a closed-coil winding by means of 73 copper disks at each end of the core. The cross-sectional area of each bar was 0.2 square inch their average length was 42.7 inches, and the copper end- disks were 0.065 inch thick. The commutator had 73 sec- tions. The armature resistance was 0.0092 ohm,[28] of which 0.0055 ohm was in the armature bars and 0.0037 ohm in the end-disks.” An illustration of the next latest type of this machine is presented in Fig. 2.
[28] Had Edison in Upton’s Scientific American article in 1879 proposed such an exceedingly low armature resistance for this immense generator (although its ratio was proportionate to the original machine), his critics might probably have been sufficiently indignant as to be unable to express themselves coherently.
The student may find it interesting to look up Edison’s United States Patents Nos. 242,898, 263,133, 263,146, and 246,647, bearing upon the construction of the “Jumbo”; also illustrated articles in the technical journals of the time, among which may be mentioned: Scientific American, Vol. XLV, page 367; Engineering, London, Vol. XXXII, pages 409 and 419, The Telegraphic Journal and Electrical Review, London, Vol. IX, pages 431-433, 436-446; La Nature, Paris, 9th year, Part II, pages 408-409; Zeitschrift fur Angewandte Elektricitaatslehre, Munich and Leipsic, Vol. IV, pages 4-14; and Dredge’s Electric Illumination, 1882, Vol. I, page 261.
The further development of these great machines later on, and their extensive practical use, are well known and need no further comment, except in passing it may be noted that subsequent machines had each a capacity of 1200 lamps of 16 candle-power, and that the armature resistance was still further reduced to 0.0039 ohm.
Edison’s clear insight into the future, as illustrated by his persistent advocacy of large direct-connected generating units, is abundantly vindicated by present-day practice. His Jumbo machines, of 175 horse-power, so enormous for their time, have served as prototypes, and have been succeeded by generators which have constantly grown in size and capacity until at this time (1910) it is not uncommon to employ such generating units of a capacity of 14,000 kilowatts, or about 18,666 horse-power.
We have not entered into specific descriptions of the many other forms of dynamo machines invented by Edison, such as the multipolar, the disk dynamo, and the armature with two windings, for sub-station distribution; indeed, it is not possible within our limited space to present even a brief digest of Edison’s great and comprehensive work on the dynamo-electric machine, as embodied in his extensive ex- periments and in over one hundred patents granted to him. We have, therefore, confined ourselves to the indication of a few salient and basic features, leaving it to the interested student to examine the patents and the technical literature of the long period of time over which Edison’s labors were extended.
Although he has not given any attention to the subject of generators for many years, an interesting instance of his incisive method of overcoming minor difficulties occurred while the present volumes were under preparation (1909). Carbon for commutator brushes has been superseded by graphite in some cases, the latter material being found much more advantageous, electrically. Trouble developed, however, for the reason that while carbon was hard and would wear away the mica insulation simultaneously with the copper, graphite, being softer, would wear away only the copper, leaving ridges of mica and thus causing sparking through unequal contact. At this point Edison was asked to diagnose the trouble and provide a remedy. He suggested the cutting out of the mica pieces almost to the bottom, leaving the commutator bars separated by air-spaces. This scheme was objected to on the ground that particles of graphite would fill these air-spaces and cause a short- circuit. His answer was that the air-spaces constituted the value of his plan, as the particles of graphite falling into them would be thrown out by the action of centrifugal force as the commutator revolved. And thus it occurred as a matter of fact, and the trouble was remedied. This idea was subsequently adopted by a great manufacturer of generators.
XI
THE EDISON FEEDER SYSTEM
TO quote from the preamble of the specifications of United States Patent No. 264,642, issued to Thomas A. Edison September 19, 1882: “This invention relates to a method of equalizing the tension or `pressure’ of the current through an entire system of electric lighting or other translation of electric force, preventing what is ordinarily known as a `drop’ in those portions of the system the more remote from the central station….”
The problem which was solved by the Edison feeder system was that relating to the equal distribution of current on a large scale over extended areas, in order that a constant and uniform electrical pressure could be maintained in every part of the distribution area without prohibitory expenditure for copper for mains and conductors.
This problem had a twofold aspect, although each side was inseparably bound up in the other. On the one hand it was obviously necessary in a lighting system that each lamp should be of standard candle-power, and capable of interchangeable use on any part of the system, giving the same degree of illumination at every point, whether near to or remote from the source of electrical energy. On the other hand, this must be accomplished by means of a system of conductors so devised and arranged that while they would insure the equal pressure thus demanded, their mass and consequent cost would not exceed the bounds of practical and commercially economical investment.
The great importance of this invention can be better understood and appreciated by a brief glance at the state of the art in 1878-79, when Edison was conducting the final series of investigations which culminated in his invention of the incandescent lamp and SYSTEM of lighting. At this time, and for some years previously, the scientific world had been working on the “subdivision of the electric light,” as it was then termed. Some leading authorities pronounced it absolutely impossible of achievement on any extended scale, while a very few others, of more optimistic mind, could see no gleam of light through the darkness, but confidently hoped for future developments by such workers as Edison.
The earlier investigators, including those up to the period above named, thought of the problem as involving the subdivision of a FIXED UNIT of current, which, being sufficient to cause illumination by one large lamp, might be divided into a number of small units whose aggregate light would equal the candle-power of this large lamp. It was found, however, in their experiments that the contrary effect was produced, for with every additional lamp introduced in the circuit the total candle-power decreased instead of increasing. If they were placed in series the light varied inversely as the SQUARE of the number of lamps in circuit; while if they were inserted in multiple arc, the light diminished as the CUBE of the number in circuit.[29] The idea of maintaining a constant potential and of PROPORTIONING THE CURRENT to the number of lamps in circuit did not occur to most of these early investigators as a feasible method of overcoming the supposed difficulty.
[29] M. Fontaine, in his book on Electric Lighting (1877), showed that with the current of a battery composed of sixteen elements, one lamp gave an illumination equal to 54 burners; whereas two similar lamps, if introduced in parallel or multiple arc, gave the light of only 6 1/2 burners in all; three lamps of only 2 burners in all; four lamps of only 3/4 of one burner, and five lamps of 1/4 of a burner.
It would also seem that although the general method of placing experimental lamps in multiple arc was known at this period, the idea of “drop” of electrical pressure was imperfectly understood, if, indeed, realized at all, as a most important item to be considered in attempting the solution of the problem. As a matter of fact, the investigators preceding Edison do not seem to have conceived the idea of a “system” at all; hence it is not surprising to find them far astray from the correct theory of subdivision of the electric current. It may easily be believed that the term “subdivision” was a misleading one to these early experimenters. For a very short time Edison also was thus misled, but as soon as he perceived that the problem was one involving the MULTIPLICATION OF CURRENT UNITS, his broad conception of a “system” was born.
Generally speaking, all conductors of electricity offer more or less resistance to the passage of current through them and in the technical terminology of electrical science the word “drop” (when used in reference to a system of distribution) is used to indicate a fall or loss of initial electrical pressure arising from the resistance offered by the copper conductors leading from the source of energy to the lamps. The result of this resistance is to convert or translate a portion of the electrical energy into another form–namely, heat, which in the conductors is USELESS and wasteful and to some extent inevitable in practice, but is to be avoided and remedied as far as possible.
It is true that in an electric-lighting system there is also a fall or loss of electrical pressure which occurs in overcoming the much greater resistance of the filament in an incandescent lamp. In this case there is also a translation of the energy, but here it accomplishes a USEFUL purpose, as the energy is converted into the form of light through the incandescence of the filament. Such a conversion is called “work” as distinguished from “drop,” although a fall of initial electrical pressure is involved in each case.
The percentage of “drop” varies according to the quantity of copper used in conductors, both as to cross-section and length. The smaller the cross-sectional area, the greater the percentage of drop. The practical effect of this drop would be a loss of illumination in the lamps as we go farther away from the source of energy. This may be illustrated by a simple diagram in which G is a generator, or source of energy, furnishing current at a potential or electrical pressure of 110 volts; 1 and 2 are main conductors, from which 110-volt lamps, L, are taken in derived circuits. It will be understood that the circuits represented in Fig. 1 are theoretically supposed to extend over a large area. The main conductors are sufficiently large in cross-section to offer but little resistance in those parts which are comparatively near the generator, but as the current traverses their extended length there is a gradual increase of resistance to overcome, and consequently the drop increases, as shown by the figures. The result of the drop in such a case would be that while the two lamps, or groups, nearest the generator would be burning at their proper degree of illumination, those beyond would give lower and lower candle-power, successively, until the last lamp, or group, would be giving only about two-thirds the light of the first two. In other words, a very slight drop in voltage means a disproportionately great loss in illumination. Hence, by using a primitive system of distribution, such as that shown by Fig. 1, the initial voltage would have to be so high, in order to obtain the proper candle-power at the end of the circuit, that the lamps nearest the generator would be dangerously overheated. It might be suggested as a solution of this problem that lamps of different voltages could be used. But, as we are considering systems of extended distribution employing vast numbers of lamps (as in New York City, where millions are in use), it will be seen that such a method would lead to inextricable confusion, and therefore be absolutely out of the question. Inasmuch as the percentage of drop decreases in proportion to the increased cross-section of the conductors, the only feasible plan would seem to be to increase their size to such dimensions as to eliminate the drop altogether, beginning with conductors of large cross-section and tapering off as necessary. This would, indeed, obviate the trouble, but, on the other hand, would give rise to a much more serious difficulty– namely, the enormous outlay for copper; an outlay so great as to be absolutely prohibitory in considering the electric lighting of large districts, as now practiced.
Another diagram will probably make this more clear. The reference figures are used as before, except that the horizontal lines extending from square marked G represent the main conductors. As each lamp requires and takes its own proportion of the total current generated, it is obvious that the size of the conductors to carry the current for a number of lamps must be as large as the sum of ALL the separate conductors which would be required to carry the necessary amount of current to each lamp separately. Hence, in a primitive multiple-arc system, it was found that the system must have conductors of a size equal to the aggregate of the individual conductors necessary for every lamp. Such conductors might either be separate, as shown above (Fig. 2), or be bunched together, or made into a solid tapering conductor, as shown in the following figure:
The enormous mass of copper needed in such a system can be better appreciated by a concrete example. Some years ago Mr. W. J. Jenks made a comparative calculation which showed that such a system of conductors (known as the “Tree” system), to supply 8640 lamps in a territory extending over so small an area as nine city blocks, would require 803,250 pounds of copper, which at the then price of 25 cents per pound would cost $200,812.50!
Such, in brief, was the state of the art, generally speaking, at the period above named (1878-79). As early in the art as the latter end of the year 1878, Edison had developed his ideas sufficiently to determine that the problem of electric illumination by small units could be solved by using incandescent lamps of high resistance and small radiating surface, and by distributing currents of constant potential thereto in multiple arc by means of a ramification of conductors, starting from a central source and branching therefrom in every direction. This was an equivalent of the method illustrated in Fig. 3, known as the “Tree” system, and was, in fact, the system used by Edison in the first and famous exhibition of his electric light at Menlo Park around the Christmas period of 1879. He realized, however, that the enormous investment for copper would militate against the commercial adoption of electric lighting on an extended scale. His next inventive step covered the division of a large city district into a number of small sub-stations supplying current through an interconnected network of conductors, thus reducing expenditure for copper to some extent, because each distribution unit was small and limited the drop.
His next development was the radical advancement of the state of the art to the feeder system, covered by the patent now under discussion. This invention swept away the tree and other systems, and at one bound brought into being the possibility of effectively distributing large currents over extended areas with a commercially reasonable investment for copper.
The fundamental principles of this invention were, first, to sever entirely any direct connection of the main conductors with the source of energy; and, second, to feed current at a constant potential to central points in such main conductors by means of other conductors, called “feeders,” which were to be connected directly with the source of energy at the central station. This idea will be made more clear by reference to the following simple diagram, in which the same letters are used as before, with additions:
In further elucidation of the diagram, it may be considered that the mains are laid in the street along a city block, more or less distant from the station, while the feeders are connected at one end with the source of energy at the station, their other extremities being connected to the mains at central points of distribution. Of course, this system was intended to be applied in every part of a district to be supplied with current, separate sets of feeders running out from the station to the various centres. The distribution mains were to be of sufficiently large size that between their most extreme points the loss would not be more than 3 volts. Such a slight difference would not make an appreciable variation in the candle-power of the lamps.
By the application of these principles, the inevitable but useless loss, or “drop,” required by economy might be incurred, but was LOCALIZED IN THE FEEDERS, where it would not affect the uniformity of illumination of the lamps in any of the circuits, whether near to or remote from the station, because any variations of loss in the feeders would not give rise to similar fluctuations in any lamp circuit. The feeders might be operated at any desired percentage of loss that would realize economy in copper, so long as they delivered current to the main conductors at the potential represented by the average voltage of the lamps.
Thus the feeders could be made comparatively small in cross-section. It will be at once appreciated that, inasmuch as the mains required to be laid ONLY along the blocks to be lighted, and were not required to be run all the way to the central station (which might be half a mile or more away), the saving of copper by Edison’s feeder system was enormous. Indeed, the comparative calculation of Mr. Jenks, above referred to, shows that to operate the same number of lights in the same extended area of territory, the feeder system would require only 128,739 pounds of copper, which, at the then price of 25 cents per pound, would cost only $39,185, or A SAVING of $168,627.50 for copper in this very small district of only nine blocks.
An additional illustration, appealing to the eye, is presented in the following sketch, in which the comparative masses of copper of the tree and feeder systems for carrying the same current are shown side by side:
XII
THE THREE-WIRE SYSTEM
THIS invention is covered by United States Patent No. 274,290, issued to Edison on March 20, 1883. The object of the invention was to provide for increased economy in the quantity of copper employed for the main conductors in electric light and power installations of considerable extent at the same time preserving separate and independent control of each lamp, motor, or other translating device, upon any one of the various distribution circuits.
Immediately prior to this invention the highest state of the art of electrical distribution was represented by Edison’s feeder system, which has already been described as a straight parallel or multiple-arc system wherein economy of copper was obtained by using separate sets of conductors–minus load–feeding current at standard potential or electrical pressure into the mains at centres of distribution.
It should be borne in mind that the incandescent lamp which was accepted at the time as a standard (and has so remained to the present day) was a lamp of 110 volts or thereabouts. In using the word “standard,” therefore, it is intended that the same shall apply to lamps of about that voltage, as well as to electrical circuits of the approximate potential to operate them.
Briefly stated, the principle involved in the three-wire system is to provide main circuits of double the standard potential, so as to operate standard lamps, or other translating devices, in multiple series of two to each series; and for the purpose of securing independent, individual control of each unit, to divide each main circuit into any desired number of derived circuits of standard potential (properly balanced) by means of a central compensating conductor which would be normally neutral, but designed to carry any minor excess of current that might flow by reason of any temporary unbalancing of either side of the main circuit.
Reference to the following diagrams will elucidate this principle more clearly than words alone can do. For the purpose of increased lucidity we will first show a plain multiple-series system.
In this diagram G<1S> and G<2S> represent two generators, each
producing current at a potential of 110 volts. By connect- ing them in series this potential is doubled, thus providing a main circuit (P and N) of 220 volts. The figures marked L represent eight lamps of 110 volts each, in multiple series of two, in four derived circuits. The arrows indicate the flow of current. By this method each pair of lamps takes, together, only the same quantity or volume of current required by a single lamp in a simple multiple-arc system; and, as the cross-section of a conductor depends upon the quantity of current carried, such an arrangement as the above would allow the use of conductors of only one-fourth the cross-section that would be otherwise required. From the standpoint of economy of investment such an arrangement would be highly desirable, but considered commercially it is impracticable because the principle of independent control of each unit would be lost, as the turning out of a lamp in any series would mean the extinguishment of its companion also. By referring to the diagram it will be seen that each series of two forms one continuous path between the main conductors, and if this path be broken at any one point current will immediately cease to flow in that particular series.
Edison, by his invention of the three-wire system, over- came this difficulty entirely, and at the same time conserved approximately, the saving of copper, as will be apparent from the following illustration of that system, in its simplest form.
The reference figures are similar to those in the preceding diagram, and all conditions are also alike except that a central compensating, or balancing, conductor, PN, is here introduced. This is technically termed the “neutral” wire, and in the discharge of its functions lies the solution of the problem of economical distribution. Theoretically, a three- wire installation is evenly balanced by wiring for an equal number of lamps on both sides. If all these lamps were always lighted, burned, and extinguished simultaneously the central conductor would, in fact, remain neutral, as there would be no current passing through it, except from lamp to lamp. In practice, however, no such perfect conditions can obtain, hence the necessity of the provision for balancing in order to maintain the principle of independent control of each unit.
It will be apparent that the arrangement shown in Fig. 2 comprises practically two circuits combined in one system, in which the central conductor, PN, in case of emergency, serves in two capacities–namely, as negative to generator G<1S> or as positive to generator G<2S>, although normally neutral.
There are two sides to the system, the positive side being represented by the conductors P and PN, and the negative side by the conductors PN and N. Each side, if considered separately, has a potential of about 110 volts, yet the potential of the two outside conductors, P and N, is 220 volts. The lamps are 110 volts.
In practical use the operation of the system is as follows: If all the lamps were lighted the current would flow along P and through each pair of lamps to N, and so back to the source of energy. In this case the balance is preserved and the central wire remains neutral, as no return current flows through it to the source of energy. But let us suppose that one lamp on the positive side is extinguished. None of the other lamps is affected thereby, but the system is immediately thrown out of balance, and on the positive side there is an excess of current to this extent which flows along or through the central conductor and returns to the generator, the central conductor thus becoming the negative of that side of the system for the time being. If the lamp extinguished had been one of those on the negative side of the system results of a similar nature would obtain, except that the central conductor would for the time being become the positive of that side, and the excess of current would flow through the negative, N, back to the source of energy. Thus it will be seen that a three-wire system, considered as a whole, is elastic in that it may operate as one when in balance and as two when unbalanced, but in either event giving independent control of each unit.
For simplicity of illustration a limited number of circuits, shown in Fig. 2, has been employed. In practice, however, where great numbers of lamps are in use (as, for instance, in New York City, where about 7,000,000 lamps are operated from various central stations), there is constantly occurring more or less change in the balance of many circuits extending over considerable distances, but of course there is a net result which is always on one side of the system or the other for the time being, and this is met by proper adjustment at the appropriate generator in the station.
In order to make the explanation complete, there is presented another diagram showing a three-wire system unbalanced:
The reference figures are used as before, but in this case the vertical lines represent branches taken from the main conductors into buildings or other spaces to be lighted, and the loops between these branch wires represent lamps in operation. It will be seen from this sketch that there are ten lamps on the positive side and twelve on the negative side. Hence, the net result is an excess of current equal to that required by two lamps flowing through the central or compensating conductor, which is now acting as positive to generator G<2S> The arrows show the assumed direction of flow of current throughout the system, and the small figures at the arrow-heads the volume of that current expressed in the number of lamps which it supplies.
The commercial value of this invention may be appreciated from the fact that by the application of its principles there is effected a saving of 62 1/2 per cent. of the amount of copper over that which would be required for conductors in any previously devised two-wire system carrying the same load. This arises from the fact that by the doubling of potential the two outside mains are reduced to one-quarter the cross-section otherwise necessary. A saving of 75 per cent. would thus be assured, but the addition of a third, or compensating, conductor of the same cross-section as one of the outside mains reduces the total saving to 62 1/2 per cent.
The three-wire system is in universal use throughout the world at the present day.
XIII
EDISON’S ELECTRIC RAILWAY
AS narrated in Chapter XVIII, there were two electric railroads installed by Edison at Menlo Park–one in 1880, originally a third of a mile long, but subsequently increased to about a mile in length, and the other in 1882, about three miles long. As the 1880 road was built very soon after Edison’s notable improvements in dynamo machines, and as the art of operating them to the best advantage was then being developed, this early road was somewhat crude as compared with the railroad of 1882; but both were practicable and serviceable for the purpose of hauling passengers and freight. The scope of the present article will be confined to a description of the technical details of these two installations.
The illustration opposite page 454 of the preceding narrative shows the first Edison locomotive and train of 1880 at Menlo Park.
For the locomotive a four-wheel iron truck was used, and upon it was mounted one of the long “Z” type 110-volt Edison dynamos, with a capacity of 75 amperes, which was to be used as a motor. This machine was laid on its side, its armature being horizontal and located toward the front of the locomotive.
We now quote from an article by Mr. E. W. Hammer, published in the Electrical World, New York, June 10, 1899, and afterward elaborated and reprinted in a volume entitled Edisonia, compiled and published under the auspices of a committee of the Association of Edison Illuminating Companies, in 1904: “The gearing originally employed consisted of a friction-pulley upon the armature shaft, another friction- pulley upon the driven axle, and a third friction-pulley which could be brought in contact with the other two by a suitable lever. Each wheel of the locomotive was made with metallic rim and a centre portion made of wood or papier- mache. A three-legged spider connected the metal rim of each front wheel to a brass hub, upon which rested a collecting brush. The other wheels were subsequently so equipped. It was the intention, therefore, that the current should enter the locomotive wheels at one side, and after passing through the metal spiders, collecting brushes and motor, would pass out through the corresponding brushes, spiders, and wheels to the other rail.”
As to the road: “The rails were light and were spiked to ordinary sleepers, with a gauge of about three and one-half feet. The sleepers were laid upon the natural grade, and there was comparatively no effort made to ballast the road. . . . No special precautions were taken to insulate the rails from the earth or from each other.”
The road started about fifty feet away from the generating station, which in this case was the machine shop. Two of the “Z” type dynamos were used for generating the current, which was conveyed to the two rails of the road by underground conductors.
On Thursday, May 13, 1880, at 4 o’clock in the afternoon, this historic locomotive made its first trip, packed with as many of the “boys” as could possibly find a place to hang on. “Everything worked to a charm, until, in starting up at one end of the road, the friction gearing was brought into action too suddenly and it was wrecked. This accident demonstrated that some other method of connecting the armature with the driven axle should be arranged.
“As thus originally operated, the motor had its field circuit in permanent connection as a shunt across the rails, and this field circuit was protected by a safety-catch made by turning up two bare ends of the wire in its circuit and winding a piece of fine copper wire across from one bare end to the other. The armature circuit had a switch in it which permitted the locomotive to be reversed by reversing the direction of current flow through the armature.
“After some consideration of the gearing question, it was decided to employ belts instead of the friction-pulleys.” Accordingly, Edison installed on the locomotive a system of belting, including an idler-pulley which was used by means of a lever to tighten the main driving-belt, and thus power was applied to the driven axle. This involved some slipping and consequent burning of belts; also, if the belt were prematurely tightened, the burning-out of the armature. This latter event happened a number of times, “and proved to be such a serious annoyance that resistance-boxes were brought out from the laboratory and placed upon the locomotive in series with the armature. This solved the difficulty. The locomotive would be started with these resistance-boxes in circuit, and after reaching full speed the operator could plug the various boxes out of circuit, and in that way increase the speed.” To stop, the armature circuit was opened by the main switch and the brake applied.
This arrangement was generally satisfactory, but the resistance-boxes scattered about the platform and foot-rests being in the way, Edison directed that some No. 8 B. & S. copper wire be wound on the lower leg of the motor field- magnet. “By doing this the resistance was put where it would take up the least room, and where it would serve as an additional field-coil when starting the motor, and it replaced all the resistance-boxes which had heretofore been in plain sight. The boxes under the seat were still retained in service. The coil of coarse wire was in series with the armature, just as the resistance-boxes had been, and could be plugged in or out of circuit at the will of the locomotive driver. The general arrangement thus secured was operated as long as this road was in commission.”
On this short stretch of road there were many sharp curves and steep grades, and in consequence of the high speed attained (as high as forty-two miles an hour) several derailments took place, but fortunately without serious results. Three cars were in service during the entire time of operating this 1880 railroad: one a flat-car for freight; one an open car with two benches placed back to back; and the third a box-car, familiarly known as the “Pullman.” This latter car had an interesting adjunct in an electric braking system (covered by Edison’s Patent No. 248,430). “Each car axle had a large iron disk mounted on and revolving with it between the poles of a powerful horseshoe electromagnet. The pole- pieces of the magnet were movable, and would be attracted to the revolving disk when the magnet was energized, grasping the same and acting to retard the revolution of the car axle.”
Interesting articles on Edison’s first electric railroad were published in the technical and other papers, among which may be mentioned the New York Herald, May 15 and July 23, 1880; the New York Graphic, July 27, 1880; and the Scientific American, June 6, 1880.
Edison’s second electric railroad of 1882 was more pretentious as regards length, construction, and equipment. It was about three miles long, of nearly standard gauge, and substantially constructed. Curves were modified, and grades eliminated where possible by the erection of numerous trestles. This road also had some features of conventional railroads, such as sidings, turn-tables, freight platform, and car-house. “Current was supplied to the road by underground feeder cables from the dynamo-room of the laboratory. The rails were insulated from the ties by giving them two coats of japan, baking them in the oven, and then placing them on pads of tar-impregnated muslin laid on the ties. The ends of the rails were not japanned, but were electroplated, to give good contact surfaces for fish-plates and copper bonds.”
The following notes of Mr. Frederick A. Scheffler, who designed the passenger locomotive for the 1882 road, throw an interesting light on its technical details:
“In May, 1881, I was engaged by Mr. M. F. Moore, who was the first General Manager of the Edison Company for Isolated Lighting, as a draftsman to undertake the work of designing and building Edison’s electric locomotive No. 2.
“Previous to that time I had been employed in the engineering department of Grant Locomotive Works, Paterson, New Jersey, and the Rhode Island Locomotive Works, Providence, Rhode Island….
“It was Mr. Edison’s idea, as I understood it at that time, to build a locomotive along the general lines of steam locomotives (at least, in outward appearance), and to combine in that respect the framework, truck, and other parts known to be satisfactory in steam locomotives at the same time.
“This naturally required the services of a draftsman accustomed to steam-locomotive practice…. Mr. Moore was a man of great railroad and locomotive experience, and his knowledge in that direction was of great assistance in the designing and building of this locomotive.
“At that time I had no knowledge of electricity…. One could count so-called electrical engineers on his fingers then, and have some fingers left over.
“Consequently, the ELECTRICAL equipment was designed by Mr. Edison and his assistants. The data and parts, such as motor, rheostat, switches, etc., were given to me, and my work was to design the supporting frame, axles, countershafts, driving mechanism, speed control, wheels and boxes, cab, running board, pilot (or `cow-catcher’), buffers, and even supports for the headlight. I believe I also designed a bell and supports. From this it will be seen that the locomotive had all the essential paraphernalia to make it LOOK like a steam locomotive.
“The principal part of the outfit was the electric motor. At that time motors were curiosities. There were no electric motors even for stationary purposes, except freaks built for experimental uses. This motor was made from the parts– such as fields, armature, commutator, shaft and bearings, etc., of an Edison “Z,” or 60-light dynamo. It was the only size of dynamo that the Edison Company had marketed at that time…. As a motor, it was wound to run at maximum speed to develop a torque equal to about fifteen horse-power with 220 volts. At the generating station at Menlo Park four Z dynamos of 110 volts were used, connected two in series, in multiple arc, giving a line voltage of 220.
“The motor was located in the front part of the locomotive, on its side, with the armature shaft across the frames, or parallel with the driving axles.
“On account of the high speed of the armature shaft it was not possible to connect with driving-axles direct, but this was an advantage in one way, as by introducing an intermediate counter-shaft (corresponding to the well-known type of double-reduction motor used on trolley-cars since 1885), a fairly good arrangement was obtained to regulate the speed of the locomotive, exclusive of resistance in the electric circuit.
“Endless leather belting was used to transmit the power from the motor to the counter-shaft, and from the latter to the driving-wheels, which were the front pair. A vertical idler-pulley was mounted in a frame over the belt from motor to counter-shaft, terminating in a vertical screw and hand-wheel for tightening the belt to increase speed, or the reverse to lower speed. This hand-wheel was located in the cab, where it was easily accessible….
“The rough outline sketched below shows the location of motor in relation to counter-shaft, belting, driving-wheels, idler, etc.:
“On account of both rails being used for circuits, . . . the driving-wheels had to be split circumferentially and completely insulated from the axles. This was accomplished by means of heavy wood blocks well shellacked or otherwise treated to make them water and weather proof, placed radially on the inside of the wheels, and then substantially bolted to the hubs and rims of the latter.
“The weight of the locomotive was distributed over the driving-wheels in the usual locomotive practice by means of springs and equalizers.
“The current was taken from the rims of the driving-wheels by a three-pronged collector of brass, against which flexible copper brushes were pressed–a simple manner of overcoming any inequalities of the road-bed.
“The late Mr. Charles T. Hughes was in charge of the track construction at Menlo Park…. His work was excellent throughout, and the results were highly satisfactory so far as they could possibly be with the arrangement originally planned by Mr. Edison and his assistants.
“Mr. Charles L. Clarke, one of the earliest electrical engineers employed by Mr. Edison, made a number of tests on this 1882 railroad. I believe that the engine driving the four Z generators at the power-house indicated as high as seventy horse-power at the time the locomotive was actually in service.”
The electrical features of the 1882 locomotive were very similar to those of the earlier one, already described. Shunt and series field-windings were added to the motor, and the series windings could be plugged in and out of circuit as desired. The series winding was supplemented by resistance- boxes, also capable of being plugged in or out of circuit. These various electrical features are diagrammatically shown in Fig. 2, which also illustrates the connection with the generating plant.
We quote again from Mr. Hammer, who says: “The freight- locomotive had single reduction gears, as is the modern practice, but the power was applied through a friction-clutch The passenger-locomotive was very speedy, and ninety passengers have been carried at a time by it; the freight- locomotive was not so fast, but could pull heavy trains at a good speed. Many thousand people were carried on this road during 1882.” The general appearance of Edison’s electric locomotive of 1882 is shown in the illustration opposite page 462 of the preceding narrative. In the picture Mr. Edison may be seen in the cab, and Mr. Insull on the front platform of the passenger-car.
XIV
TRAIN TELEGRAPHY
WHILE the one-time art of telegraphing to and from moving trains was essentially a wireless system, and allied in some of its principles to the art of modern wireless telegraphy through space, the two systems cannot, strictly speaking be regarded as identical, as the practice of the former was based entirely on the phenomenon of induction.
Briefly described in outline, the train telegraph system consisted of an induction circuit obtained by laying strips of metal along the top or roof of a railway-car, and the installation of a special telegraph line running parallel with the track and strung on poles of only medium height. The train, and also each signalling station, was equipped with regulation telegraph apparatus, such as battery, key, relay, and sounder, together with induction-coil and condenser. In addition, there was a special transmitting device in the shape of a musical reed, or “buzzer.” In practice, this buzzer was continuously operated at a speed of about five hundred vibrations per second by an auxiliary battery. Its vibrations were broken by means of a telegraph key into long and short periods, representing Morse characters, which were transmitted inductively from the train circuit to the pole line or vice versa, and received by the operator at the other end through a high-resistance telephone receiver inserted in the secondary circuit of the induction-coil.
The accompanying diagrammatic sketch of a simple form of the system, as installed on a car, will probably serve to make this more clear.
An insulated wire runs from the metallic layers on the roof of the car to switch S, which is shown open in the sketch. When a message is to be received on the car from a station more or less remote, the switch is thrown to the left to con- nect with a wire running to the telephone receiver, T. The other wire from this receiver is run down to one of the axles and there permanently connected, thus making a ground. The operator puts the receiver to his ear and listens for the message, which the telephone renders audible in the Morse characters.
If a message is to be transmitted from the car to a receiving station, near or distant, the switch, S, is thrown to the other side, thus connecting with a wire leading to one end of the secondary of induction-coil C. The other end of the secondary is connected with the grounding wire. The primary of the induction-coil is connected as shown, one end going to key K and the other to the buzzer circuit. The other side of the key is connected to the transmitting battery, while the opposite pole of this battery is connected in the buzzer circuit. The buzzer, R, is maintained in rapid vibration by its independent auxiliary battery, B<1S>.
When the key is pressed down the circuit is closed, and current from the transmitting battery, B, passes through primary of the coil, C, and induces a current of greatly increased potential in the secondary. The current as it passes into the primary, being broken up into short impulses by the tremendously rapid vibrations of the buzzer, induces similarly rapid waves of high potential in the secondary, and these in turn pass to the roof and thence through the intervening air by induction to the telegraph wire. By a continued lifting and depression of the key in the regular manner, these waves are broken up into long and short periods, and are thus transmitted to the station, via the wire, in Morse characters, dots and dashes.
The receiving stations along the line of the railway were similarly equipped as to apparatus, and, generally speaking the operations of sending and receiving messages were substantially the same as above described.
The equipment of an operator on a car was quite simple consisting merely of a small lap-board, on which were mounted the key, coil, and buzzer, leaving room for telegraph blanks. To this board were also attached flexible conductors having spring clips, by means of which connections could be made quickly with conveniently placed terminals of the ground, roof, and battery wires. The telephone receiver was held on the head with a spring, the flexible connecting wire being attached to the lap board, thus leaving the operator with both hands free.
The system, as shown in the sketch and elucidated by the text, represents the operation of train telegraphy in a simple form, but combining the main essentials of the art as it was successfully and commercially practiced for a number of years after Edison and Gilliland entered the field. They elaborated the system in various ways, making it more complete; but it has not been deemed necessary to enlarge further upon the technical minutiae of the art for the purpose of this work.
XV
KINETOGRAPH AND PROJECTING KINETOSCOPE
ALTHOUGH many of the arts in which Edison has been a pioneer have been enriched by his numerous inventions and patents, which were subsequent to those of a fundamental nature, the (so-called) motion-picture art is an exception, as the following, together with three other additional patents[30] comprise all that he has taken out on this subject: United States Patent No. 589,168, issued August 31, 1897, reissued in two parts–namely, No. 12,037, under date of September 30,1902, and No. 12,192, under date of January 12, 1904. Application filed August 24, 1891.
[30] Not 491,993, issued February 21, 1893; No. 493,426, issued March 14, 1893; No. 772,647, issued October 18, 1904.
There is nothing surprising in this, however, as the possibility of photographing and reproducing actual scenes of animate life are so thoroughly exemplified and rendered practicable by the apparatus and methods disclosed in the patents above cited, that these basic inventions in themselves practically constitute the art–its development proceeding mainly along the line of manufacturing details. That such a view of his work is correct, the highest criterion– commercial expediency–bears witness; for in spite of the fact that the courts have somewhat narrowed the broad claims of Edison’s patents by reason of the investigations of earlier experimenters, practically all the immense amount of commercial work that is done in the motion-picture field to-day is accomplished through the use of apparatus and methods licensed under the Edison patents.
The philosophy of this invention having already been described in Chapter XXI, it will be unnecessary to repeat it here. Suffice it to say by way of reminder that it is founded upon the physiological phenomenon known as the persistence of vision, through which a series of sequential photographic pictures of animate motion projected upon a screen in rapid succession will reproduce to the eye all the appearance of the original movements.
Edison’s work in this direction comprised the invention not only of a special form of camera for making original photographic exposures from a single point of view with very great rapidity, and of a machine adapted to effect the reproduction of such pictures in somewhat similar manner but also of the conception and invention of a continuous uniform, and evenly spaced tape-like film, so absolutely essential for both the above objects.
The mechanism of such a camera, as now used, consists of