background, and the sequence of events, divided into scenes as in an ordinary play. These are placed in the hands of a “producer,” corresponding to a stage- director, generally an actor or theatrical man of experience, with a highly developed dramatic instinct. The various actors are selected, parts are assigned, and the scene-painters are set to work on the production of the desired scenery. Before the photographing of a scene, a long series of rehearsals takes place, the incidents being gone over and over again until the actors are “letter perfect.” So persistent are the producers in the matter of rehearsals and the refining and elaboration of details, that frequently a picture that may be actually photographed and reproduced in fifteen minutes, may require two or three weeks for its production. After the rehearsal of a scene has advanced sufficiently to suit the critical requirements of the producer, the camera man is in requisition, and he is consulted as to lighting so as to produce the required photographic effect. Preferably, of course, sunlight is used whenever possible, hence the glass studios; but on dark days, and when night-work is necessary, artificial light of enormous candle-power is used, either mercury arcs or ordinary arc lights of great size and number.
Under all conditions the light is properly screened and diffused to suit the critical eye of the camera man. All being in readiness, the actual picture is taken, the actors going through their rehearsed parts, the producer standing out of the range of the camera, and with a megaphone to his lips yelling out his instructions, imprecations, and approval, and the camera man grinding at the crank of the camera and securing the pictures at the rate of twenty or more per second, making a faithful and permanent record of every movement and every change of facial expression. At the end of the scene the negative is developed in the ordinary way, and is then ready for use in the printing of the positives for sale. When a further scene in the play takes place in the same setting, and without regard to its position in the plot, it is taken up, rehearsed, and photographed in the same way, and afterward all the scenes are cemented together in the proper sequence, and form the complete negative. Frequently, therefore, in the production of a motion-picture play, the first and the last scene may be taken successively, the only thing necessary being, of course, that after all is done the various scenes should be arranged in their proper order. The frames, having served their purpose, now go back to the scene-painter for further use. All pictures are not taken in studios, because when light and weather permit and proper surroundings can be secured outside, scenes can best be obtained with natural scenery–city streets, woods, and fields. The great drawback to the taking of pictures out-of-doors, however, is the inevitable crowd, attracted by the novelty of the proceedings, which makes the camera man’s life a torment by getting into the field of his instrument. The crowds are patient, however, and in one Edison picture involving the blowing up of a bridge by the villain of the piece and the substitution of a pontoon bridge by a company of engineers just in time to allow the heroine to pass over in her automobile, more than a thousand people stood around for almost an entire day waiting for the tedious rehearsals to end and the actual performance to begin. Frequently large bodies of men are used in pictures, such as troops of soldiers, and it is an open secret that for weeks during the Boer War regularly equipped British and Boer armies confronted each other on the peaceful hills of Orange, New Jersey, ready to enact before the camera the stirring events told by the cable from the seat of hostilities. These conflicts were essentially harmless, except in one case during the battle of Spion Kopje, when “General Cronje,” in his efforts to fire a wooden cannon, inadvertently dropped his fuse into a large glass bottle containing gunpowder. The effect was certainly most dramatic, and created great enthusiasm among the many audiences which viewed the completed production; but the unfortunate general, who is still an employee, was taken to the hospital, and even now, twelve years afterward, he says with a grin that whenever he has a moment of leisure he takes the time to pick a few pieces of glass from his person!
Edison’s great contribution to the regular stage was the incandescent electric lamp, which enabled the production of scenic effects never before even dreamed of, but which we accept now with so much complacency. Yet with the motion picture, effects are secured that could not be reproduced to the slightest extent on the real stage. The villain, overcome by a remorseful conscience, sees on the wall of the room the very crime which he committed, with HIMSELF as the principal actor; one of the easy effects of double exposure. The substantial and ofttimes corpulent ghost or spirit of the real stage has been succeeded by an intangible wraith, as transparent and unsubstantial as may be demanded in the best book of fairy tales–more double exposure. A man emerges from the water with a splash, ascends feet foremost ten yards or more, makes a graceful curve and lands on a spring-board, runs down it to the bank, and his clothes fly gently up from the ground and enclose his person–all unthinkable in real life, but readily possible by running the motion-picture film backward! The fairy prince commands the princess to appear, consigns the bad brothers to instant annihilation, turns the witch into a cat, confers life on inanimate things; and many more startling and apparently incomprehensible effects are carried out with actual reality, by stop-work photography. In one case, when the command for the heroine to come forth is given, the camera is stopped, the young woman walks to the desired spot, and the camera is again started; the effect to the eye–not knowing of this little by-play–is as if she had instantly appeared from space. The other effects are perhaps obvious, and the field and opportunities are absolutely unlimited. Other curious effects are secured by taking the pictures at a different speed from that at which they are exhibited. If, for example, a scene occupying thirty seconds is reproduced in ten seconds, the movements will be three times as fast, and vice versa. Many scenes familiar to the reader, showing automobiles tearing along the road and rounding corners at an apparently reckless speed, are really pictures of slow and dignified movements reproduced at a high speed.
Brief reference has been made to motion pictures of educational subjects, and in this field there are very great opportunities for development. The study of geography, scenes and incidents in foreign countries, showing the lives and customs and surroundings of other peoples, is obviously more entertaining to the child when actively depicted on the screen than when merely described in words. The lives of great men, the enacting of important historical events, the reproduction of great works of literature, if visually presented to the child must necessarily impress his mind with greater force than if shown by mere words. We predict that the time is not far distant when, in many of our public schools, two or three hours a week will be devoted to this rational and effective form of education.
By applying microphotography to motion pictures an additional field is opened up, one phase of which may be the study of germ life and bacteria, so that our future medical students may become as familiar with the habits and customs of the Anthrax bacillus, for example, as of the domestic cat.
From whatever point of view the subject is approached, the fact remains that in the motion picture, perhaps more than with any other invention, Edison has created an art that must always make a special appeal to the mind and emotions of men, and although so far it has not advanced much beyond the field of amusement, it contains enormous possibilities for serious development in the future. Let us not think too lightly of the humble five-cent theatre with its gaping crowd following with breathless interest the vicissitudes of the beautiful heroine. Before us lies an undeveloped land of opportunity which is destined to play an important part in the growth and welfare of the human race.
CHAPTER XXII
THE DEVELOPMENT OF THE EDISON STORAGE BATTERY
IT is more than a hundred years since the elementary principle of the storage battery or “accumulator” was detected by a Frenchman named Gautherot; it is just fifty years since another Frenchman, named Plante, discovered that on taking two thin plates of sheet lead, immersing them in dilute sulphuric acid, and passing an electric current through the cell, the combination exhibited the ability to give back part of the original charging current, owing to the chemical changes and reactions set up. Plante coiled up his sheets into a very handy cell like a little roll of carpet or pastry; but the trouble was that the battery took a long time to “form.” One sheet becoming coated with lead peroxide and the other with finely divided or spongy metallic lead, they would receive current, and then, even after a long period of inaction, furnish or return an electromotive force of from 1.85 to 2.2 volts. This ability to store up electrical energy produced by dynamos in hours otherwise idle, whether driven by steam, wind, or water, was a distinct advance in the art; but the sensational step was taken about 1880, when Faure in France and Brush in America broke away from the slow and weary process of “form- ing” the plates, and hit on clever methods of furnishing them “ready made,” so to speak, by dabbing red lead onto lead-grid plates, just as butter is spread on a slice of home-made bread. This brought the storage battery at once into use as a practical, manufactured piece of apparatus; and the world was captivated with the idea. The great English scientist, Sir William Thomson, went wild with enthusiasm when a Faure “box of electricity” was brought over from Paris to him in 1881 containing a million foot-pounds of stored energy. His biographer, Dr. Sylvanus P. Thompson, describes him as lying ill in bed with a wounded leg, and watching results with an incandescent lamp fastened to his bed curtain by a safety-pin, and lit up by current from the little Faure cell. Said Sir William: “It is going to be a most valuable, practical affair–as valuable as water-cisterns to people whether they had or had not systems of water- pipes and water-supply.” Indeed, in one outburst of panegyric the shrewd physicist remarked that he saw in it “a realization of the most ardently and increasingly felt scientific aspiration of his life–an aspiration which he hardly dared to expect or to see realized.” A little later, however, Sir William, always cautious and canny, began to discover the inherent defects of the primitive battery, as to disintegration, inefficiency, costliness, etc., and though offered tempting inducements, declined to lend his name to its financial introduction. Nevertheless, he accepted the principle as valuable, and put the battery to actual use.
For many years after this episode, the modern lead- lead type of battery thus brought forward with so great a flourish of trumpets had a hard time of it. Edison’s attitude toward it, even as a useful supplement to his lighting system, was always one of scepticism, and he remarked contemptuously that the best storage battery he knew was a ton of coal. The financial fortunes of the battery, on both sides of the Atlantic, were as varied and as disastrous as its industrial; but it did at last emerge, and “made good.” By 1905, the production of lead-lead storage batteries in the United States alone had reached a value for the year of nearly $3,000,000, and it has increased greatly since that time. The storage battery is now regarded as an important and indispensable adjunct in nearly all modern electric-lighting and electric- railway systems of any magnitude; and in 1909, in spite of its weight, it had found adoption in over ten thousand automobiles of the truck, delivery wagon, pleasure carriage, and runabout types in America.
Edison watched closely all this earlier development for about fifteen years, not changing his mind as to what he regarded as the incurable defects of the lead- lead type, but coming gradually to the conclusion that if a storage battery of some other and better type could be brought forward, it would fulfil all the early hopes, however extravagant, of such men as Kelvin (Sir William Thomson), and would become as necessary and as universal as the incandescent lamp or the electric motor. The beginning of the present century found him at his point of new departure.
Generally speaking, non-technical and uninitiated persons have a tendency to regard an invention as being more or less the ultimate result of some happy inspiration. And, indeed, there is no doubt that such may be the fact in some instances; but in most cases the inventor has intentionally set out to accomplish a definite and desired result–mostly through the application of the known laws of the art in which he happens to be working. It is rarely, however, that a man will start out deliberately, as Edison did, to evolve a radically new type of such an intricate device as the storage battery, with only a meagre clew and a vague starting-point.
In view of the successful outcome of the problem which, in 1900, he undertook to solve, it will be interesting to review his mental attitude at that period. It has already been noted at the end of a previous chapter that on closing the magnetic iron-ore concentrating plant at Edison, New Jersey, he resolved to work on a new type of storage battery. It was about this time that, in the course of a conversation with Mr. R. H. Beach, then of the street-railway department of the General Electric Company, he said: “Beach, I don’t think Nature would be so unkind as to withhold the secret of a GOOD storage battery if a real earnest hunt for it is made. I’m going to hunt.”
Frequently Edison has been asked what he considers the secret of achievement. To this query he has invariably replied: “Hard work, based on hard thinking.” The laboratory records bear the fullest witness that he has consistently followed out this prescription to the utmost. The perfection of all his great inventions has been signalized by patient, persistent, and incessant effort which, recognizing noth- ing short of success, has resulted in the ultimate accomplishment of his ideas. Optimistic and hopeful to a high degree, Edison has the happy faculty of beginning the day as open-minded as a child–yesterday’s disappointments and failures discarded and discounted by the alluring possibilities of to-morrow.
Of all his inventions, it is doubtful whether any one of them has called forth more original thought, work, perseverance, ingenuity, and monumental patience than the one we are now dealing with. One of his associates who has been through the many years of the storage-battery drudgery with him said: “If Edison’s experiments, investigations, and work on this storage battery were all that he had ever done, I should say that he was not only a notable inventor, but also a great man. It is almost impossible to appreciate the enormous difficulties that have been overcome.”
From a beginning which was made practically in the dark, it was not until he had completed more than ten thousand experiments that he obtained any positive preliminary results whatever. Through all this vast amount of research there had been no previous signs of the electrical action he was looking for. These experiments had extended over many months of constant work by day and night, but there was no breakdown of Edison’s faith in ultimate success– no diminution of his sanguine and confident expectations. The failure of an experiment simply meant to him that he had found something else that would not work, thus bringing the possible goal a little nearer by a process of painstaking elimination.
Now, however, after these many months of arduous toil, in which he had examined and tested practically all the known elements in numerous chemical combinations, the electric action he sought for had been obtained, thus affording him the first inkling of the secret that he had industriously tried to wrest from Nature. It should be borne in mind that from the very outset Edison had disdained any intention of following in the only tracks then known by employing lead and sulphuric acid as the components of a successful storage battery. Impressed with what he considered the serious inherent defects of batteries made of these materials, and the tremendously complex nature of the chemical reactions taking place in all types of such cells, he determined boldly at the start that he would devise a battery without lead, and one in which an alkaline solution could be used– a form which would, he firmly believed, be inherently less subject to decay and dissolution than the standard type, which after many setbacks had finally won its way to an annual production of many thousands of cells, worth millions of dollars.
Two or three thousand of the first experiments followed the line of his well-known primary battery in the attempted employment of copper oxide as an element in a new type of storage cell; but its use offered no advantages, and the hunt was continued in other directions and pursued until Edison satisfied himself by a vast number of experiments that nickel and iron possessed the desirable qualifications he was in search of.
This immense amount of investigation which had consumed so many months of time, and which had culminated in the discovery of a series of reactions between nickel and iron that bore great promise, brought Edison merely within sight of a strange and hitherto unexplored country. Slowly but surely the results of the last few thousands of his preliminary experiments had pointed inevitably to a new and fruitful region ahead. He had discovered the hidden passage and held the clew which he had so industriously sought. And now, having outlined a definite path, Edison was all afire to push ahead vigorously in order that he might enter in and possess the land.
It is a trite saying that “history repeats itself,” and certainly no axiom carries more truth than this when applied to the history of each of Edison’s important inventions. The development of the storage battery has been no exception; indeed, far from otherwise, for in the ten years that have elapsed since the time he set himself and his mechanics, chemists, machinists, and experimenters at work to develop a practical commercial cell, the old story of incessant and persistent efforts so manifest in the working out of other inventions was fully repeated.
Very soon after he had decided upon the use of nickel and iron as the elemental metals for his storage battery, Edison established a chemical plant at Silver Lake, New Jersey, a few miles from the Orange laboratory, on land purchased some time previously. This place was the scene of the further experiments to develop the various chemical forms of nickel and iron, and to determine by tests what would be best adapted for use in cells manufactured on a com- mercial scale. With a little handful of selected experimenters gathered about him, Edison settled down to one of his characteristic struggles for supremacy. To some extent it was a revival of the old Menlo Park days (or, rather, nights). Some of these who had worked on the preliminary experiments, with the addition of a few new-comers, toiled together regardless of passing time and often under most discouraging circumstances, but with that remarkable esprit de corps that has ever marked Edison’s relations with his co-workers, and that has contributed so largely to the successful carrying out of his ideas.
The group that took part in these early years of Edison’s arduous labors included his old-time assistant, Fred Ott, together with his chemist, J. W. Aylsworth, as well as E. J. Ross, Jr., W. E. Holland, and Ralph Arbogast, and a little later W. G. Bee, all of whom have grown up with the battery and still devote their energies to its commercial development. One of these workers, relating the strenuous experiences of these few years, says: “It was hard work and long hours, but still there were some things that made life pleasant. One of them was the supper-hour we enjoyed when we worked nights. Mr. Edison would have supper sent in about midnight, and we all sat down together, including himself. Work was forgotten for the time, and all hands were ready for fun. I have very pleasant recollections of Mr. Edison at these times. He would always relax and help to make a good time, and on some occasions I have seen him fairly overflow with animal spirits, just like a boy let out from school. After the supper-hour was over, however, he again became the serious, energetic inventor, deeply immersed in the work at hand.
“He was very fond of telling and hearing stories, and always appreciated a joke. I remember one that he liked to get off on us once in a while. Our lighting plant was in duplicate, and about 12.30 or 1 o’clock in the morning, at the close of the supper-hour, a change would be made from one plant to the other, involving the gradual extinction of the electric lights and their slowly coming up to candle-power again, the whole change requiring probably about thirty seconds. Sometimes, as this was taking place, Edison would fold his hands, compose himself as if he were in sound sleep, and when the lights were full again would apparently wake up, with the remark, `Well, boys, we’ve had a fine rest; now let’s pitch into work again.’ “
Another interesting and amusing reminiscence of this period of activity has been gathered from another of the family of experimenters: “Sometimes, when Mr. Edison had been working long hours, he would want to have a short sleep. It was one of the funniest things I ever witnessed to see him crawl into an ordinary roll-top desk and curl up and take a nap. If there was a sight that was still more funny, it was to see him turn over on his other side, all the time remaining in the desk. He would use several volumes of Watts’s Dictionary of Chemistry for a pillow, and we fellows used to say that he absorbed the contents during his sleep, judging from the flow of new ideas he had on waking.”
Such incidents as these serve merely to illustrate the lighter moments that stand out in relief against the more sombre background of the strenuous years, for, of all the absorbingly busy periods of Edison’s inventive life, the first five years of the storage- battery era was one of the very busiest of them all. It was not that there remained any basic principle to be discovered or simplified, for that had already been done; but it was in the effort to carry these principles into practice that there arose the numerous difficulties that at times seemed insurmountable. But, according to another co-worker, “Edison seemed pleased when he used to run up against a serious difficulty. It would seem to stiffen his backbone and make him more prolific of new ideas. For a time I thought I was foolish to imagine such a thing, but I could never get away from the impression that he really appeared happy when he ran up against a serious snag. That was in my green days, and I soon learned that the failure of an experiment never discourages him unless it is by reason of the carelessness of the man making it. Then Edison gets disgusted. If it fails on its merits, he doesn’t worry or fret about it, but, on the contrary, regards it as a useful fact learned; remains cheerful and tries something else. I have known him to reverse an unsuccessful experiment and come out all right.”
To follow Edison’s trail in detail through the innumerable twists and turns of his experimentation and research on the storage battery, during the past ten years, would not be in keeping with the scope of this narrative, nor would it serve any useful purpose. Besides, such details would fill a big volume. The narrative, however, would not be complete without some mention of the general outline of his work, and reference may be made briefly to a few of the chief items. And lest the reader think that the word “innumerable” may have been carelessly or hastily used above, we would quote the reply of one of the laboratory assistants when asked how many experiments had been made on the Edison storage battery since the year 1900: “Goodness only knows! We used to number our experiments consecutively from 1 to 10,000, and when we got up to 10,000 we turned back to 1 and ran up to 10,000 again, and so on. We ran through several series–I don’t know how many, and have lost track of them now, but it was not far from fifty thousand.”
From the very first, Edison’s broad idea of his storage battery was to make perforated metallic containers having the active materials packed therein; nickel hydrate for the positive and iron oxide for the negative plate. This plan has been adhered to throughout, and has found its consummation in the present form of the completed commercial cell, but in the middle ground which stands between the early crude beginnings and the perfected type of to-day there lies a world of original thought, patient plodding, and achievement.
The first necessity was naturally to obtain the best and purest compounds for active materials. Edison found that comparatively little was known by manufacturing chemists about nickel and iron oxides of the high grade and purity he required. Hence it became necessary for him to establish his own chemical works and put them in charge of men specially trained by himself, with whom he worked. This was the plant at Silver Lake, above referred to. Here, for several years, there was ceaseless activity in the preparation of these chemical compounds by every imaginable process and subsequent testing. Edison’s chief chemist says: “We left no stone unturned to find a way of making those chemicals so that they would give the highest results. We carried on the experiments with the two chemicals together. Sometimes the nickel would be ahead in the tests, and then again it would fall behind. To stimulate us to greater improvement, Edison hung up a card which showed the results of tests in milliampere-hours given by the experimental elements as we tried them with the various grades of nickel and iron we had made. This stirred up a great deal of ambition among the boys to push the figures up. Some of our earliest tests showed around 300, but as we improved the material, they gradually crept up to over 500. Just about that time Edison made a trip to Canada, and when he came back we had made such good progress that the figures had crept up to about 1000. I well remember how greatly he was pleased.”
In speaking of the development of the negative element of the battery, Mr. Aylsworth said: “In like manner the iron element had to be developed and improved; and finally the iron, which had generally enjoyed superiority in capacity over its companion, the nickel element, had to go in training in order to retain its lead, which was imperative, in order to produce a uniform and constant voltage curve. In talking with me one day about the difficulties under which we were working and contrasting them with the phonograph experimentation, Edison said: `In phonographic work we can use our ears and our eyes, aided with powerful microscopes; but in the battery our difficulties cannot be seen or heard, but must be observed by our mind’s eye!’ And by reason of the employment of such vision in the past, Edison is now able to see quite clearly through the forest of difficulties after eliminating them one by one.”
The size and shape of the containing pockets in the battery plates or elements and the degree of their perforation were matters that received many years of close study and experiment; indeed, there is still to- day constant work expended on their perfection, although their present general form was decided upon several years ago. The mechanical construction of the battery, as a whole, in its present form, compels instant admiration on account of its beauty and completeness. Mr. Edison has spared neither thought, ingenuity, labor, nor money in the effort to make it the most complete and efficient storage cell obtainable, and the results show that his skill, judgment, and foresight have lost nothing of the power that laid the foundation of, and built up, other great arts at each earlier stage of his career.
Among the complex and numerous problems that presented themselves in the evolution of the battery was the one concerning the internal conductivity of the positive unit. The nickel hydrate was a poor electrical conductor, and although a metallic nickel pocket might be filled with it, there would not be the desired electrical action unless a conducting substance were mixed with it, and so incorporated and packed that there would be good electrical contact throughout. This proved to be a most knotty and intricate puzzle–tricky and evasive–always leading on and promising something, and at the last slipping away leaving the work undone. Edison’s remarkable patience and persistence in dealing with this trying problem and in finally solving it successfully won for him more than ordinary admiration from his associates. One of them, in speaking of the seemingly interminable experiments to overcome this trouble, said: “I guess that question of conductivity of the positive pocket brought lots of gray hairs to his head. I never dreamed a man could have such patience and perseverance. Any other man than Edison would have given the whole thing up a thousand times, but not he! Things looked awfully blue to the whole bunch of us many a time, but he was always hopeful. I remember one time things looked so dark to me that I had just about made up my mind to throw up my job, but some good turn came just then and I didn’t. Now I’m glad I held on, for we’ve got a great future.”
The difficulty of obtaining good electrical contact in the positive element was indeed Edison’s chief trouble for many years. After a great amount of work and experimentation he decided upon a certain form of graphite, which seemed to be suitable for the purpose, and then proceeded to the commercial manufacture of the battery at a special factory in Glen Ridge, New Jersey, installed for the purpose. There was no lack of buyers, but, on the contrary, the factory was unable to turn out batteries enough. The newspapers had previously published articles showing the unusual capacity and performance of the battery, and public interest had thus been greatly awakened.
Notwithstanding the establishment of a regular routine of manufacture and sale, Edison did not cease to experiment for improvement. Although the graphite apparently did the work desired of it, he was not altogether satisfied with its performance and made extended trials of other substances, but at that time found nothing that on the whole served the purpose better. Continuous tests of the commercial cells were carried on at the laboratory, as well as more practical and heavy tests in automobiles, which were constantly kept running around the adjoining country over all kinds of roads. All these tests were very closely watched by Edison, who demanded rigorously that the various trials of the battery should be carried on with all strenuousness so as to get the utmost results and develop any possible weakness. So insistent was he on this, that if any automobile should run several days without bursting a tire or breaking some part of the machine, he would accuse the chauffeur of picking out easy roads.
After these tests had been going on for some time, and some thousands of cells had been sold and were giving satisfactory results to the purchasers, the test sheets and experience gathered from various sources pointed to the fact that occasionally a cell here and there would show up as being short in capacity. Inasmuch as the factory processes were very exact and carefully guarded, and every cell was made as uniform as human skill and care could provide, there thus arose a serious problem. Edison concentrated his powers on the investigation of this trouble, and found that the chief cause lay in the graphite. Some other minor matters also attracted his attention. What to do, was the important question that confronted him. To shut down the factory meant great loss and apparent failure. He realized this fully, but he also knew that to go on would simply be to increase the number of defective batteries in circulation, which would ultimately result in a permanent closure and real failure. Hence he took the course which one would expect of Edison’s common sense and directness of action. He was not satisfied that the battery was a complete success, so he shut down and went to experimenting once more.
“And then,” says one of the laboratory men, “we started on another series of record-breaking experiments that lasted over five years. I might almost say heart-breaking, too, for of all the elusive, disappointing things one ever hunted for that was the worst. But secrets have to be long-winded and roost high if they want to get away when the `Old Man’ goes hunting for them. He doesn’t get mad when he misses them, but just keeps on smiling and firing, and usually brings them into camp. That’s what he did on the battery, for after a whole lot of work he perfected the nickel-flake idea and process, besides making the great improvement of using tubes instead of flat pockets for the positive. He also added a minor improvement here and there, and now we have a finer battery than we ever expected.”
In the interim, while the experimentation of these last five years was in progress, many customers who had purchased batteries of the original type came knocking at the door with orders in their hands for additional outfits wherewith to equip more wagons and trucks. Edison expressed his regrets, but said he was not satisfied with the old cells and was engaged in improving them. To which the customers replied that THEY were entirely satisfied and ready and willing to pay for more batteries of the same kind; but Edison could not be moved from his determination, although considerable pressure was at times brought to bear to sway his decision.
Experiment was continued beyond the point of peradventure, and after some new machinery had been built, the manufacture of the new type of cell was begun in the early summer of 1909, and at the present writing is being extended as fast as the necessary additional machinery can be made. The product is shipped out as soon as it is completed.
The nickel flake, which is Edison’s ingenious solution of the conductivity problem, is of itself a most interesting product, intensely practical in its application and fascinating in its manufacture. The flake of nickel is obtained by electroplating upon a metallic cylinder alternate layers of copper and nickel, one hundred of each, after which the combined sheet is stripped from the cylinder. So thin are the layers that this sheet is only about the thickness of a visiting-card, and yet it is composed of two hundred layers of metal. The sheet is cut into tiny squares, each about one-sixteenth of an inch, and these squares are put into a bath where the copper is dissolved out. This releases the layers of nickel, so that each of these small squares becomes one hundred tiny sheets, or flakes, of pure metallic nickel, so thin that when they are dried they will float in the air, like thistle-down.
In their application to the manufacture of batteries, the flakes are used through the medium of a special machine, so arranged that small charges of nickel hydrate and nickel flake are alternately fed into the pockets intended for positives, and tamped down with a pressure equal to about four tons per square inch. This insures complete and perfect contact and consequent electrical conductivity throughout the entire unit.
The development of the nickel flake contains in itself a history of patient investigation, labor, and achievement, but we have not space for it, nor for tracing the great work that has been done in developing and perfecting the numerous other parts and adjuncts of this remarkable battery. Suffice it to say that when Edison went boldly out into new territory, after something entirely unknown, he was quite prepared for hard work and exploration. He encountered both in unstinted measure, but kept on
going forward until, after long travel, he had found all that he expected and accomplished something more beside. Nature DID respond to his whole- hearted appeal, and, by the time the hunt was ended, revealed a good storage battery of entirely new type. Edison not only recognized and took advantage of the principles he had discovered, but in adapting them for commercial use developed most ingenious processes and mechanical appliances for carrying his discoveries into practical effect. Indeed, it may be said that the invention of an enormous variety of new machines and mechanical appliances rendered necessary by each change during the various stages of development of the battery, from first to last, stands as a lasting tribute to the range and versatility of his powers.
It is not within the scope of this narrative to enter into any description of the relative merits of the Edison storage battery, that being the province of a commercial catalogue. It does, however, seem entirely allowable to say that while at the present writing the tests that have been made extend over a few years only, their results and the intrinsic value of this characteristic Edison invention are of such a substantial nature as to point to the inevitable growth of another great industry arising from its manufacture, and to its wide-spread application to many uses.
The principal use that Edison has had in mind for his battery is transportation of freight and passengers by truck, automobile, and street-car. The greatly increased capacity in proportion to weight of the Edison cell makes it particularly adaptable for this class of work on account of the much greater radius of travel that is possible by its use. The latter point of advantage is the one that appeals most to the automobilist, as he is thus enabled to travel, it is asserted, more than three times farther than ever before on a single charge of the battery.
Edison believes that there are important advantages possible in the employment of his storage battery for street-car propulsion. Under the present system of operation, a plant furnishing the electric power for street railways must be large enough to supply current for the maximum load during “rush hours,” although much of the machinery may be lying idle and unproductive in the hours of minimum load. By the use of storage-battery cars, this immense and uneconomical maximum investment in plant can be cut down to proportions of true commercial economy, as the charging of the batteries can be conducted at a uniform rate with a reasonable expenditure for generating machinery. Not only this, but each car becomes an independently moving unit, not subject to delay by reason of a general breakdown of the power plant or of the line. In addition to these advantages, the streets would be freed from their burden of trolley wires or conduits. To put his ideas into practice, Edison built a short railway line at the Orange works in the winter of 1909-10, and, in co-operation with Mr. R. H. Beach, constructed a special type of street-car, and equipped it with motor, storage battery, and other necessary operating devices. This car was subsequently put upon the street-car lines in New York City, and demonstrated its efficiency so completely that it was purchased by one of the street-car companies, which has since ordered additional cars for its lines. The demonstration of this initial car has been watched with interest by many railroad officials, and its performance has been of so successful a nature that at the present writing (the summer of 1910) it has been necessary to organize and equip a preliminary factory in which to construct many other cars of a similar type that have been ordered by other street-railway companies. This enterprise will be conducted by a corporation which has been specially organized for the purpose. Thus, there has been initiated the development of a new and important industry whose possible ultimate proportions are beyond the range of present calculation. Extensive as this industry may become, however, Edison is firmly convinced that the greatest field for his storage battery lies in its adaptation to commercial trucking and hauling, and to pleasure vehicles, in comparison with which the street-car business even with its great possibilities–will not amount to more than 1 per cent.
Edison has pithily summed up his work and his views in an article on “The To-Morrows of Electricity and Invention” in Popular Electricity for June, 1910, in which he says: “For years past I have been trying to perfect a storage battery, and have now rendered it entirely suitable to automobile and other work. There is absolutely no reason why horses should be allowed within city limits; for between the gasoline and the electric car, no room is left for them. They are not needed. The cow and the pig have gone, and the horse is still more undesirable. A higher public ideal of health and cleanliness is working tow- ard such banishment very swiftly; and then we shall have decent streets, instead of stables made out of strips of cobblestones bordered by sidewalks. The worst use of money is to make a fine thoroughfare, and then turn it over to horses. Besides that, the change will put the humane societies out of business. Many people now charge their own batteries because of lack of facilities; but I believe central stations will find in this work very soon the largest part of their load. The New York Edison Company, or the Chicago Edison Company, should have as much current going out for storage batteries as for power motors; and it will be so some near day.”
CHAPTER XXIII
MISCELLANEOUS INVENTIONS
IT has been the endeavor in this narrative to group Edison’s inventions and patents so that his work in the different fields can be studied independently and separately. The history of his career has therefore fallen naturally into a series of chapters, each aiming to describe some particular development or art; and, in a way, the plan has been helpful to the writers while probably useful to the readers. It happens, however, that the process has left a vast mass of discovery and invention wholly untouched, and relegates to a concluding brief chapter some of the most interesting episodes of a fruitful life. Any one who will turn to the list of Edison patents at the end of the book will find a large number of things of which not even casual mention has been made, but which at the time occupied no small amount of the inventor’s time and attention, and many of which are now part and parcel of modern civilization. Edison has, indeed, touched nothing that he did not in some way improve. As Thoreau said: “The laws of the Universe are not indifferent, but are forever on the side of the most sensitive,” and there never was any one more sensitive to the defects of every art and appliance, nor any one more active in applying the law of evolution. It is perhaps this many-sidedness of Edison that has impressed the multitude, and that in the “popular vote” taken a couple of years ago by the New York Herald placed his name at the head of the list of ten greatest living Americans. It is curious and pertinent to note that a similar plebiscite taken by a technical journal among its expert readers had exactly the same result. Evidently the public does not agree with the opinion expressed by the eccentric artist Blake in his “Marriage of Heaven and Hell,” when he said: “Improvement makes strange roads; but the crooked roads without improvements are roads of Genius.”
The product of Edison’s brain may be divided into three classes. The first embraces such arts and industries, or such apparatus, as have already been treated. The second includes devices like the tasimeter, phonomotor, odoroscope, etc., and others now to be noted. The third embraces a number of projected inventions, partially completed investigations, inventions in use but not patented, and a great many caveats filed in the Patent Office at various times during the last forty years for the purpose of protecting his ideas pending their contemplated realization in practice. These caveats served their purpose thoroughly in many instances, but there have remained a great variety of projects upon which no definite action was ever taken. One ought to add the contents of an unfinished piece of extraordinary fiction based wholly on new inventions and devices utterly unknown to mankind. Some day the novel may be finished, but Edison has no inclination to go back to it, and says he cannot under- stand how any man is able to make a speech or write a book, for he simply can’t do it.
After what has been said in previous chapters, it will not seem so strange that Edison should have hundreds of dormant inventions on his hands. There are human limitations even for such a tireless worker as he is. While the preparation of data for this chapter was going on, one of the writers in discussing with him the vast array of unexploited things said: “Don’t you feel a sense of regret in being obliged to leave so many things uncompleted?” To which he replied: “What’s the use? One lifetime is too short, and I am busy every day improving essential parts of my established industries.” It must suffice to speak briefly of a few leading inventions that have been worked out, and to dismiss with scant mention all the rest, taking just a few items, as typical and suggestive, especially when Edison can himself be quoted as to them. Incidentally it may be noted that things, not words, are referred to; for Edison, in addition to inventing the apparatus, has often had to coin the word to describe it. A large number of the words and phrases in modern electrical parlance owe their origin to him. Even the “call-word” of the telephone, “Hello!” sent tingling over the wire a few million times daily was taken from Menlo Park by men installing telephones in different parts of the world, men who had just learned it at the laboratory, and thus made it a universal sesame for telephonic conversation.
It is hard to determine where to begin with Edison’s miscellaneous inventions, but perhaps telegraphy has the “right of line,” and Edison’s work in that field puts him abreast of the latest wireless developments that fill the world with wonder. “I perfected a system of train telegraphy between stations and trains in motion whereby messages could be sent from the moving train to the central office; and this was the forerunner of wireless telegraphy. This system was used for a number of years on the Lehigh Valley Railroad on their construction trains. The electric wave passed from a piece of metal on top of the car across the air to the telegraph wires; and then proceeded to the despatcher’s office. In my first experiments with this system I tried it on the Staten Island Railroad, and employed an operator named King to do the experimenting. He reported results every day, and received instructions by mail; but for some reason he could send messages all right when the train went in one direction, but could not make it go in the contrary direction. I made suggestions of every kind to get around this phenomenon. Finally I telegraphed King to find out if he had any suggestions himself; and I received a reply that the only way he could propose to get around the difficulty was to put the island on a pivot so it could be turned around! I found the trouble finally, and the practical introduction on the Lehigh Valley road was the result. The system was sold to a very wealthy man, and he would never sell any rights or answer letters. He became a spiritualist subsequently, which probably explains it.” It is interesting to note that Edison became greatly interested in the later developments by Marconi, and is an admiring friend and adviser of that well-known inventor.
The earlier experiments with wireless telegraphy at Menlo Park were made at a time when Edison was greatly occupied with his electric-light interests, and it was not until the beginning of 1886 that he was able to spare the time to make a public demonstration of the system as applied to moving trains. Ezra T. Gilliland, of Boston, had become associated with him in his experiments, and they took out several joint patents subsequently. The first practical use of the system took place on a thirteen-mile stretch of the Staten Island Railroad with the results mentioned by Edison above.
A little later, Edison and Gilliland joined forces with Lucius J. Phelps, another investigator, who had been experimenting along the same lines and had taken out several patents. The various interests were combined in a corporation under whose auspices the system was installed on the Lehigh Valley Railroad, where it was used for several years. The official demonstration trip on this road took place on October 6, 1887, on a six-car train running to Easton, Pennsylvania, a distance of fifty-four miles. A great many telegrams were sent and received while the train was at full speed, including a despatch to the “cable king,” John Pender. London, England, and a reply from him.[17]
[17] Broadly described in outline, the system consisted of an induction circuit obtained by laying strips of tin along the top or roof of a railway car, and the installation of a special telegraph line running parallel with the track and strung on poles of only medium height. The train and also each signalling station were equipped with regulation telegraphic apparatus, such as battery, key, relay, and sounder, together with induction-coil and condenser. In addition, there was a transmitting device in the shape of a musical reed, or buzzer. In practice, this buzzer was continuously operated at high speed by a battery. Its vibrations were broken by means of a key into long and short periods, representing Morse characters, which were transmitted inductively from the train circuit to the pole line, or vice versa, and received by the operator at the other end through a high-resistance telephone receiver inserted in the secondary circuit of the induction-coil.
Although the space between the cars and the pole line was probably not more than about fifty feet, it is interesting to note that in Edison’s early experiments at Menlo Park he succeeded in transmitting messages through the air at a distance of 580 feet. Speaking of this and of his other experiments with induction telegraphy by means of kites, communicating from one to the other and thus from the kites to instruments on the earth, Edison said recently: “We only transmitted about two and one-half miles through the kites. What has always puzzled me since is that I did not think of using the results of my experiments on `etheric force’ that I made in 1875. I have never been able to understand how I came to overlook them. If I had made use of my own work I should have had long-distance wireless telegraphy.”
In one of the appendices to this book is given a brief technical account of Edison’s investigations of the phenomena which lie at the root of modern wireless or “space” telegraphy, and the attention of the reader is directed particularly to the description and quotations there from the famous note-books of Edison’s experiments in regard to what he called “etheric force.” It will be seen that as early as 1875 Edison detected and studied certain phenomena–i.e., the production of electrical effects in non-closed circuits, which for a time made him think he was on the trail of a new force, as there was no plausible explanation for them by the then known laws of electricity and magnetism. Later came the magnificent work of Hertz identifying the phenomena as “electromagnetic waves” in the ether, and developing a new world of theory and science based upon them and their production by disruptive discharges.
Edison’s assertions were treated with scepticism by the scientific world, which was not then ready for the discovery and not sufficiently furnished with corroborative data. It is singular, to say the least, to note how Edison’s experiments paralleled and proved in advance those that came later; and even his apparatus such as the “dark box” for making the tiny sparks visible (as the waves impinged on the receiver) bears close analogy with similar apparatus employed by Hertz. Indeed, as Edison sent the dark-box apparatus to the Paris Exposition in 1881, and let Batchelor repeat there the puzzling experiments, it seems by no means unlikely that, either directly or on the report of some friend, Hertz may thus have received from Edison a most valuable suggestion, the inventor aiding the physicist in opening up a wonderful new realm. In this connection, indeed, it is very interesting to quote two great authorities. In May, 1889, at a meeting of the Institution of Electrical Engineers in London, Dr. (now Sir) Oliver Lodge remarked in a discussion on a paper of his own on lightning conductors, embracing the Hertzian waves in its treatment: “Many of the effects I have shown–sparks in unsuspected places and other things–have been observed before. Henry observed things of the kind and Edison noticed some curious phenomena, and said it was not electricity but `etheric force’ that caused these sparks; and the matter was rather pooh-poohed. It was a small part of THIS VERY THING; only the time was not ripe; theoretical knowledge was not ready for it.” Again in his “Signalling without Wires,” in giving the history of the coherer principle, Lodge remarks: “Sparks identical in all respects with those discovered by Hertz had been seen in recent times both by Edison and by Sylvanus Thompson, being styled `etheric force’ by the former; but their theoretic significance had not been perceived, and they were somewhat sceptically regarded.” During the same discussion in London, in 1889, Sir William Thomson (Lord Kelvin), after citing some experiments by Faraday with his insulated cage at the Royal Institution, said: “His (Faraday’s) attention was not directed to look for Hertz sparks, or probably he might have found them in the interior. Edison seems to have noticed something of the kind in what he called `etheric force.’ His name `etheric’ may thirteen years ago have seemed to many people absurd. But now we are all beginning to call these inductive phenomena `etheric.’ “With which testimony from the great Kelvin as to his priority in determining the vital fact, and with the evidence that as early as 1875 he built apparatus that demonstrated the fact, Edison is probably quite content.
It should perhaps be noted at this point that a curious effect observed at the laboratory was shown in connection with Edison lamps at the Philadelphia Exhibition of 1884. It became known in scientific parlance as the “Edison effect,” showing a curious current condition or discharge in the vacuum of the bulb. It has since been employed by Fleming in England and De Forest in this country, and others, as the basis for wireless-telegraph apparatus. It is in reality a minute rectifier of alternating current, and analogous to those which have since been made on a large scale.
When Roentgen came forward with his discovery of the new “X”-ray in 1895, Edison was ready for it, and took up experimentation with it on a large scale; some of his work being recorded in an article in the Century Magazine of May, 1896, where a great deal of data may be found. Edison says with regard to this work: “When the X-ray came up, I made the first fluoroscope, using tungstate of calcium. I also found that this tungstate could be put into a vacuum chamber of glass and fused to the inner walls of the chamber; and if the X-ray electrodes were let into the glass chamber and a proper vacuum was attained, you could get a fluorescent lamp of several candle-power. I started in to make a number of these lamps, but I soon found that the X-ray had affected poisonously my assistant, Mr. Dally, so that his hair came out and his flesh commenced to ulcerate. I then concluded it would not do, and that it would not be a very popular kind of light; so I dropped it.
“At the time I selected tungstate of calcium because it was so fluorescent, I set four men to making all kinds of chemical combinations, and thus collected upward of 8000 different crystals of various chemical combinations, discovering several hundred different sub- stances which would fluoresce to the X-ray. So far little had come of X-ray work, but it added another letter to the scientific alphabet. I don’t know any thing about radium, and I have lots of company.” The Electrical Engineer of June 3, 1896, contains a photograph of Mr. Edison taken by the light of one of his fluorescent lamps. The same journal in its issue of April 1, 1896, shows an Edison fluoroscope in use by an observer, in the now familiar and universal form somewhat like a stereoscope. This apparatus as invented by Edison consists of a flaring box, curved at one end to fit closely over the forehead and eyes, while the other end of the box is closed by a paste- board cover. On the inside of this is spread a layer of tungstate of calcium. By placing the object to be observed, such as the hand, between the vacuum-tube and the fluorescent screen, the “shadow” is formed on the screen and can be observed at leisure. The apparatus has proved invaluable in surgery and has become an accepted part of the equipment of modern surgery. In 1896, at the Electrical Exhibition in the Grand Central Palace, New York City, given under the auspices of the National Electric Light Association, thousands and thousands of persons with the use of this apparatus in Edison’s personal exhibit were enabled to see their own bones; and the resultant public sensation was great. Mr. Mallory tells a characteristic story of Edison’s own share in the memorable exhibit: “The exhibit was announced for opening on Monday. On the preceding Friday all the apparatus, which included a large induction-coil, was shipped from Orange to New York, and on Saturday afternoon Edison, accompanied by Fred Ott, one of his assistants, and myself, went over to install it so as to have it ready for Monday morning. Had everything been normal, a few hours would have sufficed for completion of the work, but on coming to test the big coil, it was found to be absolutely out of commission, having been so seriously injured as to necessitate its entire rewinding. It being summer-time, all the machine shops were closed until Monday morning, and there were several miles of wire to be wound on the coil. Edison would not consider a postponement of the exhibition, so there was nothing to do but go to work and wind it by hand. We managed to find a lathe, but there was no power; so each of us, including Edison, took turns revolving the lathe by pulling on the belt, while the other two attended to the winding of the wire. We worked continuously all through that Saturday night and all day Sunday until evening, when we finished the job. I don’t remember ever being conscious of more muscles in my life. I guess Edison was tired also, but he took it very philosophically.” This was apparently the first public demonstration of the X-ray to the American public.
Edison’s ore-separation work has been already fully described, but the story would hardly be complete without a reference to similar work in gold extraction, dating back to the Menlo Park days: “I got up a method,” says Edison, “of separating placer gold by a dry process, in which I could work economically ore as lean as five cents of gold to the cubic yard. I had several car-loads of different placer sands sent to me and proved I could do it. Some parties hearing I had succeeded in doing such a thing went to work and got hold of what was known as the Ortiz mine grant, twelve miles from Santa Fe, New Mexico. This mine, according to the reports of several mining engineers made in the last forty years, was considered one of the richest placer deposits in the United States, and various schemes had been put forward to bring water from the mountains forty miles away to work those immense beds. The reports stated that the Mexicans had been panning gold for a hundred years out of these deposits.
“These parties now made arrangements with the stockholders or owners of the grant, and with me, to work the deposits by my process. As I had had some previous experience with the statements of mining men, I concluded I would just send down a small plant and prospect the field before putting up a large one. This I did, and I sent two of my assistants, whom I could trust, down to this place to erect the plant; and started to sink shafts fifty feet deep all over the area. We soon learned that the rich gravel, instead of being spread over an area of three by seven miles, and rich from the grass roots down, was spread over a space of about twenty-five acres, and that even this did not average more than ten cents to the cubic yard. The whole placer would not give more than one and one- quarter cents per cubic yard. As my business arrangements had not been very perfectly made, I lost the usual amount.”
Going to another extreme, we find Edison grappling with one of the biggest problems known to the authorities of New York–the disposal of its heavy snows. It is needless to say that witnessing the ordinary slow and costly procedure would put Edison on his mettle. “One time when they had a snow blockade in New York I started to build a machine with Batchelor–a big truck with a steam-engine and compressor on it. We would run along the street, gather all the snow up in front of us, pass it into the compressor, and deliver little blocks of ice behind us in the gutter, taking one- tenth the room of the snow, and not inconveniencing anybody. We could thus take care of a snow-storm by diminishing the bulk of material to be handled. The preliminary experiment we made was dropped because we went into other things. The machine would go as fast as a horse could walk.”
Edison has always taken a keen interest in aerial flight, and has also experimented with aeroplanes, his preference inclining to the helicopter type, as noted in the newspapers and periodicals from time to time. The following statement from him refers to a type of aeroplane of great novelty and ingenuity: “James Gordon Bennett came to me and asked that I try some primary experiments to see if aerial navigation was feasible with `heavier-than-air’ machines. I got up a motor and put it on the scales and tried a large number of different things and contrivances connected to the motor, to see how it would lighten itself on the scales. I got some data and made up my mind that what was needed was a very powerful engine for its weight, in small compass. So I conceived of an engine employing guncotton. I took a lot of ticker paper tape, turned it into guncotton and got up an engine with an arrangement whereby I could feed this gun- cotton strip into the cylinder and explode it inside electrically. The feed took place between two copper rolls. The copper kept the temperature down, so that it could only explode up to the point where it was in contact with the feed rolls. It worked pretty well; but once the feed roll didn’t save it, and the flame went through and exploded the whole roll and kicked up such a bad explosion I abandoned it. But the idea might be made to work.”
Turning from the air to the earth, it is interesting to note that the introduction of the underground Edison system in New York made an appeal to inventive ingenuity and that one of the difficulties was met as follows: “When we first put the Pearl Street station in operation, in New York, we had cast-iron junction- boxes at the intersections of all the streets. One night, or about two o’clock in the morning, a policeman came in and said that something had exploded at the corner of William and Nassau streets. I happened to be in the station, and went out to see what it was. I found that the cover of the manhole, weighing about 200 pounds, had entirely disappeared, but everything inside was intact. It had even stripped some of the threads of the bolts, and we could never find that cover. I concluded it was either leakage of gas into the manhole, or else the acid used in pickling the casting had given off hydrogen, and air had leaked in, making an explosive mixture. As this was a pretty serious problem, and as we had a good many of the manholes, it worried me very much for fear that it would be repeated and the company might have to pay a lot of damages, especially in districts like that around William and Nassau, where there are a good many people about. If an explosion took place in the daytime it might lift a few of them up. However, I got around the difficulty by putting a little bottle of chloroform in each box, corked up, with a slight hole in the cork. The chloroform being volatile and very heavy, settled in the box and displaced all the air. I have never heard of an explosion in a manhole where this chloroform had been used. Carbon tetrachloride, now made electrically at Niagara Falls, is very cheap and would be ideal for the purpose.”
Edison has never paid much attention to warfare, and has in general disdained to develop inventions for the destruction of life and property. Some years ago, however, he became the joint inventor of the Edison- Sims torpedo, with Mr. W. Scott Sims, who sought his co-operation. This is a dirigible submarine torpedo operated by electricity. In the torpedo proper, which is suspended from a long float so as to be submerged a few feet under water, are placed the small electric motor for propulsion and steering, and the explosive charge. The torpedo is controlled from the shore or ship through an electric cable which it pays out as it goes along, and all operations of varying the speed, reversing, and steering are performed at the will of the distant operator by means of currents sent through the cable. During the Spanish-American War of 1898 Edison suggested to the Navy Department the adoption of a compound of calcium carbide and calcium phosphite, which when placed in a shell and fired from a gun would explode as soon as it struck water and ignite, producing a blaze that would continue several minutes and make the ships of the enemy visible for four or five miles at sea. Moreover, the blaze could not be extinguished.
Edison has always been deeply interested in “conservation,” and much of his work has been directed toward the economy of fuel in obtaining electrical energy directly from the consumption of coal. Indeed, it will be noted that the example of his handwriting shown in these volumes deals with the importance of obtaining available energy direct from the combustible without the enormous loss in the intervening stages that makes our best modern methods of steam generation and utilization so barbarously extravagant and wasteful. Several years ago, experimenting in this field, Edison devised and operated some ingenious pyromagnetic motors and generators, based, as the name implies, on the direct application of heat to the machines. The motor is founded upon the principle discovered by the famous Dr. William Gilbert–court physician to Queen Elizabeth, and the Father of modern electricity–that the magnetic properties of iron diminish with heat. At a light-red heat, iron becomes non-magnetic, so that a strong magnet exerts no influence over it. Edison employed this peculiar property by constructing a small machine in which a pivoted bar is alternately heated and cooled. It is thus attracted toward an adjacent electromagnet when cold and is uninfluenced when hot, and as the result motion is produced.
The pyromagnetic generator is based on the same phenomenon; its aim being of course to generate electrical energy directly from the heat of the combustible. The armature, or moving part of the machine, consists in reality of eight separate armatures all constructed of corrugated sheet iron covered with asbestos and wound with wire. These armatures are held in place by two circular iron plates, through the centre of which runs a shaft, carrying at its lower extremity a semicircular shield of fire-clay, which covers the ends of four of the armatures. The heat, of whatever origin, is applied from below, and the shaft being revolved, four of the armatures lose their magnetism constantly, while the other four gain it, so to speak. As the moving part revolves, therefore, currents of electricity are set up in the wires of the armatures and are collected by a commutator, as in an ordinary dynamo, placed on the upper end of the central shaft.
A great variety of electrical instruments are included in Edison’s inventions, many of these in fundamental or earlier forms being devised for his systems of light and power, as noted already. There are numerous others, and it might be said with truth that Edison is hardly ever without some new device of this kind in hand, as he is by no means satisfied with the present status of electrical measurements. He holds in general that the meters of to-day, whether for heavy or for feeble currents, are too expensive, and that cheaper instruments are a necessity of the times. These remarks apply more particularly to what may be termed, in general, circuit meters. In other classes Edison has devised an excellent form of magnetic bridge, being an ingenious application of the principles of the familiar Wheatstone bridge, used so extensively for measuring the electrical resistance of wires; the testing of iron for magnetic qualities being determined by it in the same way. Another special instrument is a “dead beat” galvanometer which differs from the ordinary form of galvanometer in having no coils or magnetic needle. It depends for its action upon the heating effect of the current, which causes a fine platinum-iridium wire enclosed in a glass tube to expand; thus allowing a coiled spring to act on a pivoted shaft carrying a tiny mirror. The mirror as it moves throws a beam of light upon a scale and the indications are read by the spot of light. Most novel of all the apparatus of this measuring kind is the odoroscope, which is like the tasimeter described in an earlier chapter, except that a strip of gelatine takes the place of hard rubber, as the sensitive member. Besides being affected by heat, this device is exceedingly sensitive to moisture. A few drops of water or perfume thrown on the floor of a room are sufficient to give a very decided indication on the galvanometer in circuit with the instrument. Barometers, hygrometers, and similar instruments of great delicacy can be constructed on the principle of the odoroscope; and it may also be used in determining the character or pressure of gases and vapors in which it has been placed.
In the list of Edison’s patents at the end of this work may be noted many other of his miscellaneous inventions, covering items such as preserving fruit in vacuo, making plate-glass, drawing wire, and metallurgical processes for treatment of nickel, gold, and copper ores; but to mention these inventions separately would trespass too much on our limited space here. Hence, we shall leave the interested reader to examine that list for himself.
From first to last Edison has filed in the United States Patent Office–in addition to more than 1400 applications for patents–some 120 caveats embracing not less than 1500 inventions. A “caveat” is essentially a notice filed by an inventor, entitling him to receive warning from the Office of any application for a patent for an invention that would “interfere” with his own, during the year, while he is supposed to be perfecting his device. The old caveat system has now been abolished, but it served to elicit from Edison a most astounding record of ideas and possible inventions upon which he was working, and many of which he of course reduced to practice. As an example of Edison’s fertility and the endless variety of subjects engaging his thoughts, the following list of matters covered by ONE caveat is given. It is needless to say that all the caveats are not quite so full of “plums,” but this is certainly a wonder.
Forty-one distinct inventions relating to the phonograph, covering various forms of recorders, arrangement of parts, making of records, shaving tool, adjustments, etc.
Eight forms of electric lamps using infusible earthy oxides and brought to high incandescence in vacuo by high potential current of several thousand volts; same character as impingement of X-rays on object in bulb.
A loud-speaking telephone with quartz cylinder and beam of ultra-violet light.
Four forms of arc light with special carbons.
A thermostatic motor.
A device for sealing together the inside part and bulb of an incandescent lamp mechanically.
Regulators for dynamos and motors.
Three devices for utilizing vibrations beyond the ultra violet.
A great variety of methods for coating incandescent lamp filaments with silicon, titanium, chromium, osmium, boron, etc.
Several methods of making porous filaments.
Several methods of making squirted filaments of a variety of materials, of which about thirty are specified.
Seventeen different methods and devices for separating magnetic ores.
A continuously operative primary battery.
A musical instrument operating one of Helmholtz’s artificial larynxes.
A siren worked by explosion of small quantities of oxygen and hydrogen mixed.
Three other sirens made to give vocal sounds or articulate speech.
A device for projecting sound-waves to a distance without spreading and in a straight line, on the principle of smoke rings.
A device for continuously indicating on a galvanometer the depths of the ocean.
A method of preventing in a great measure friction of water against the hull of a ship and incidentally preventing fouling by barnacles.
A telephone receiver whereby the vibrations of the diaphragm are considerably amplified.
Two methods of “space” telegraphy at sea.
An improved and extended string telephone.
Devices and method of talking through water for considerable distances.
An audiphone for deaf people.
Sound-bridge for measuring resistance of tubes and other materials for conveying sound.
A method of testing a magnet to ascertain the existence of flaws in the iron or steel composing the same.
Method of distilling liquids by incandescent conductor immersed in the liquid.
Method of obtaining electricity direct from coal.
An engine operated by steam produced by the hydration and dehydration of metallic salts.
Device and method for telegraphing photographically.
Carbon crucible kept brilliantly incandescent by current in vacuo, for obtaining reaction with refractory metals.
Device for examining combinations of odors and their changes by rotation at different speeds.
From one of the preceding items it will be noted that even in the eighties Edison perceived much advantage to be gained in the line of economy by the use of lamp filaments employing refractory metals in their construction. From another caveat, filed in 1889, we extract the following, which shows that he realized the value of tungsten also for this purpose. “Filaments of carbon placed in a combustion tube with a little chloride ammonium. Chloride tungsten or titanium passed through hot tube, depositing a film of metal on the carbon; or filaments of zirconia oxide, or alumina or magnesia, thoria or other infusible oxides mixed or separate, and obtained by moistening and squirting through a die, are thus coated with above metals and used for incandescent lamps. Osmium from a volatile compound of same thus deposited makes a filament as good as carbon when in vacuo.”
In 1888, long before there arose the actual necessity of duplicating phonograph records so as to produce replicas in great numbers, Edison described in one of his caveats a method and process much similar to the one which was put into practice by him in later years. In the same caveat he describes an invention whereby the power to indent on a phonograph cylinder, instead of coming directly from the voice, is caused by power derived from the rotation or movement of the phonogram surface itself. He did not, however, follow up this invention and put it into practice. Some twenty years later it was independently invented and patented by another inventor. A further instance of this kind is a method of telegraphy at sea by means of a diaphragm in a closed port-hole flush with the side of the vessel, and actuated by a steam-whistle which is controlled by a lever, similarly to a Morse key. A receiving diaphragm is placed in another and near-by chamber, which is provided with very sensitive stethoscopic ear-pieces, by which the Morse characters sent from another vessel may be received. This was also invented later by another inventor, and is in use to-day, but will naturally be rivalled by wireless telegraphy. Still another instance is seen in one of Edison’s caveats, where he describes a method of distilling liquids by means of internally applied heat through electric conductors. Although Edison did not follow up the idea and take out a patent, this system of distillation was later hit upon by others and is in use at the present time.
In the foregoing pages of this chapter the authors have endeavored to present very briefly a sketchy notion of the astounding range of Edison’s practical ideas, but they feel a sense of impotence in being unable to deal adequately with the subject in the space that can be devoted to it. To those who, like the authors, have had the privilege of examining the voluminous records which show the flights of his imagination, there comes a feeling of utter inadequacy to convey to others the full extent of the story they reveal.
The few specific instances above related, although not representing a tithe of Edison’s work, will probably be sufficient to enable the reader to appreciate to some extent his great wealth of ideas and fertility of imagination, and also to realize that this imagination is not only intensely practical, but that it works prophetically along lines of natural progress.
CHAPTER XXIV
EDISON’S METHOD IN INVENTING
WHILE the world’s progress depends largely upon their ingenuity, inventors are not usually persons who have adopted invention as a distinct profession, but, generally speaking, are otherwise engaged in various walks of life. By reason of more or less inherent native genius they either make improvements along lines of present occupation, or else evolve new methods and means of accomplishing results in fields for which they may have personal predilections.
Now and then, however, there arises a man so greatly endowed with natural powers and originality that the creative faculty within him is too strong to endure the humdrum routine of affairs, and manifests itself in a life devoted entirely to the evolution of methods and devices calculated to further the world’s welfare. In other words, he becomes an inventor by profession. Such a man is Edison. Notwithstanding the fact that nearly forty years ago (not a great while after he had emerged from the ranks of peripatetic telegraph operators) he was the owner of a large and profitable business as a manufacturer of the telegraphic apparatus invented by him, the call of his nature was too strong to allow of profits being laid away in the bank to accumulate. As he himself has said, he has “too sanguine a temperament to allow money to stay in solitary confinement.” Hence, all superfluous cash was devoted to experimentation. In the course of years he grew more and more impatient of the shackles that bound him to business routine, and, realizing the powers within him, he drew away gradually from purely manufacturing occupations, determining deliberately to devote his life to inventive work, and to depend upon its results as a means of subsistence.
All persons who make inventions will necessarily be more or less original in character, but to the man who chooses to become an inventor by profession must be conceded a mind more than ordinarily replete with virility and originality. That these qualities in Edison are superabundant is well known to all who have worked with him, and, indeed, are apparent to every one from his multiplied achievements within the period of one generation.
If one were allowed only two words with which to describe Edison, it is doubtful whether a close examination of the entire dictionary would disclose any others more suitable than “experimenter–inventor.” These would express the overruling characteristics of his eventful career. It is as an “inventor” that he sets himself down in the membership list of the American Institute of Electrical Engineers. To attempt the strict placing of these words in relation to each other (except alphabetically) would be equal to an endeavor to solve the old problem as to which came first, the egg or the chicken; for although all his inventions have been evolved through experiment, many of his notable experiments have called forth the exercise of highly inventive faculties in their very inception. Investigation and experiment have been a consuming passion, an impelling force from within, as it were, from his petticoat days when he collected goose-eggs and tried to hatch them out by sitting over them himself. One might be inclined to dismiss this trivial incident smilingly, as a mere childish, thoughtless prank, had not subsequent development as a child, boy, and man revealed a born investigator with original reasoning powers that, disdaining crooks and bends, always aimed at the centre, and, like the flight of the bee, were accurate and direct.
It is not surprising, therefore, that a man of this kind should exhibit a ceaseless, absorbing desire for knowledge, and an apparently uncontrollable tendency to experiment on every possible occasion, even though his last cent were spent in thus satisfying the insatiate cravings of an inquiring mind.
During Edison’s immature years, when he was flitting about from place to place as a telegraph operator, his experimentation was of a desultory, hand-to-mouth character, although it was always notable for originality, as expressed in a number of minor useful devices produced during this period. Small wonder, then, that at the end of these wanderings, when he had found a place to “rest the sole of his foot,” he established a laboratory in which to carry on his researches in a more methodical and practical manner. In this was the beginning of the work which has since made such a profound impression on contemporary life.
There is nothing of the helter-skelter, slap-dash style in Edison’s experiments. Although all the laboratory experimenters agree in the opinion that he “tries everything,” it is not merely the mixing of a little of this, some of that, and a few drops of the other, in the HOPE that SOMETHING will come of it. Nor is the spirit of the laboratory work represented in the following dialogue overheard between two alleged carpenters picked up at random to help on a hurry job.
“How near does she fit, Mike?”
“About an inch.”
“Nail her!”
A most casual examination of any of the laboratory records will reveal evidence of the minutest exactitude insisted on in the conduct of experiments, irrespective of the length of time they occupied. Edison’s instructions, always clear cut and direct, followed by his keen oversight, admit of nothing less than implicit observance in all details, no matter where they may lead, and impel to the utmost minuteness and accuracy.
To some extent there has been a popular notion that many of Edison’s successes have been due to mere dumb fool luck–to blind, fortuitous “happenings.” Nothing could be further from the truth, for, on the contrary, it is owing almost entirely to the comprehensive scope of his knowledge, the breadth of his conception, the daring originality of his methods, and minuteness and extent of experiment, com- bined with unwavering pertinacity, that new arts have been created and additions made to others already in existence. Indeed, without this tireless minutiae, and methodical, searching spirit, it would have been practically impossible to have produced many of the most important of these inventions.
Needless to say, mastery of its literature is regarded by him as a most important preliminary in taking up any line of investigation. What others may have done, bearing directly or collaterally on the subject, in print, is carefully considered and sifted to the point of exhaustion. Not that he takes it for granted that the conclusions are correct, for he frequently obtains vastly different results by repeating in his own way experiments made by others as detailed in books.
“Edison can travel along a well-used road and still find virgin soil,” remarked recently one of his most practical experimenters, who had been working along a certain line without attaining the desired result. “He wanted to get a particular compound having definite qualities, and I had tried in all sorts of ways to produce it but with only partial success. He was confident that it could be done, and said he would try it himself. In doing so he followed the same path in which I had travelled, but, by making an undreamed-of change in one of the operations, succeeded in producing a compound that virtually came up to his specifications. It is not the only time I have known this sort of thing to happen.”
In speaking of Edison’s method of experimenting, another of his laboratory staff says: “He is never hindered by theory, but resorts to actual experiment for proof. For instance, when he conceived the idea of pouring a complete concrete house it was universally held that it would be impossible because the pieces of stone in the mixture would not rise to the level of the pouring-point, but would gravitate to a lower plane in the soft cement. This, however, did not hinder him from making a series of experiments which resulted in an invention that proved conclusively the contrary.”
Having conceived some new idea and read everything obtainable relating to the subject in general, Edison’s fertility of resource and originality come into play. Taking one of the laboratory note-books, he will write in it a memorandum of the experiments to be tried, illustrated, if necessary, by sketches. This book is then passed on to that member of the experimental staff whose special training and experience are best adapted to the work. Here strenuousness is expected; and an immediate commencement of investigation and prompt report are required. Sometimes the subject may be such as to call for a long line of frequent tests which necessitate patient and accurate attention to minute details. Results must be reported often–daily, or possibly with still greater frequency. Edison does not forget what is going on; but in his daily tours through the laboratory keeps in touch with all the work that is under the hands of his various assistants, showing by an instant grasp of the present conditions of any experiment that he has a full consciousness of its meaning and its reference to his original conception.
The year 1869 saw the beginning of Edison’s career as an acknowledged inventor of commercial devices. From the outset, an innate recognition of system dictated the desirability and wisdom of preserving records of his experiments and inventions. The primitive records, covering the earliest years, were mainly jotted down on loose sheets of paper covered with sketches, notes, and data, pasted into large scrap- books, or preserved in packages; but with the passing of years and enlargement of his interests, it became the practice to make all original laboratory notes in large, uniform books. This course was pursued until the Menlo Park period, when he instituted a new regime that has been continued down to the present day. A standard form of note-book, about eight and a half by six inches, containing about two hundred pages, was adopted. A number of these books were (and are now) always to be found scattered around in the different sections of the laboratory, and in them have been noted by Edison all his ideas, sketches, and memoranda. Details of the various experiments concerning them have been set down by his assistants from time to time.
These later laboratory note-books, of which there are now over one thousand in the series, are eloquent in the history they reveal of the strenuous labors of Edison and his assistants and the vast fields of research he has covered during the last thirty years. They are overwhelmingly rich in biographic material, but analysis would be a prohibitive task for one person, and perhaps interesting only to technical readers. Their pages cover practically every department of science. The countless thousands of separate experiments recorded exhibit the operations of a master mind seeking to surprise Nature into a betrayal of her secrets by asking her the same question in a hundred different ways. For instance, when Edison was investigating a certain problem of importance many years ago, the note-books show that on this point alone about fifteen thousand experiments and tests were made by one of his assistants.
A most casual glance over these note-books will illustrate the following remark, which was made to one of the writers not long ago by a member of the laboratory staff who has been experimenting there for twenty years: “Edison can think of more ways of doing a thing than any man I ever saw or heard of. He tries everything and never lets up, even though failure is apparently staring him in the face. He only stops when he simply can’t go any further on that particular line. When he decides on any mode of procedure he gives his notes to the experimenter and lets him alone, only stepping in from time to time to look at the operations and receive reports of progress.”
The history of the development of the telephone transmitter, phonograph, incandescent lamp, dynamo, electrical distributing systems from central stations, electric railway, ore-milling, cement, motion pictures, and a host of minor inventions may be found embedded in the laboratory note-books. A passing
glance at a few pages of these written records will serve to illustrate, though only to a limited extent, the thoroughness of Edison’s method. It is to be observed that these references can be but of the most meagre kind, and must be regarded as merely throwing a side-light on the subject itself. For instance, the complex problem of a practical telephone transmitter gave rise to a series of most exhaustive experiments. Combinations in almost infinite variety, including gums, chemical compounds, oils, minerals, and metals were suggested by Edison; and his assistants were given long lists of materials to try with reference to predetermined standards of articulation, degrees of loudness, and perfection of hissing sounds. The note-books contain hundreds of pages showing that a great many thousands of experiments were tried and passed upon. Such remarks as “N. G.”; “Pretty good”; “Whistling good, but no articulation”; “Rattly”; “Articulation, whispering, and whistling good”; “Best to-night so far”; and others are noted opposite the various combinations as they were tried. Thus, one may follow the investigation through a maze of experiments which led up to the successful invention of the carbon button transmitter, the vital device to give the telephone its needed articulation and perfection.
The two hundred and odd note-books, covering the strenuous period during which Edison was carrying on his electric-light experiments, tell on their forty thousand pages or more a fascinating story of the evolution of a new art in its entirety. From the crude beginnings, through all the varied phases of this evolution, the operations of a master mind are apparent from the contents of these pages, in which are recorded the innumerable experiments, calculations, and tests that ultimately brought light out of darkness.
The early work on a metallic conductor for lamps gave rise to some very thorough research on melting and alloying metals, the preparation of metallic oxides, the coating of fine wires by immersing them in a great variety of chemical solutions. Following his usual custom, Edison would indicate the lines of experiment to be followed, which were carried out and recorded in the note-books. He himself, in January, 1879, made personally a most minute and searching investigation into the properties and behavior of plating-iridium, boron, rutile, zircon, chromium, molybdenum, and nickel, under varying degrees of current strength, on which there may be found in the notes about forty pages of detailed experiments and deductions in his own handwriting, concluding with the remark (about nickel): “This