This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
Language:
Form:
Genre:
Published:
  • 1910
Edition:
Collection:
Tags:
Buy it on Amazon Listen via Audible FREE Audible 30 days

associates in the electric lighting business, and offered me all I was going to get and $100,000 besides. Of course I would not do it. I found out that the reason for this offer was that he had had trouble with Mr. Morgan, and wanted to get even with him.” Wall Street is, in fact, a frequent object of rather sarcastic reference, applying even to its regular and probably correct methods of banking. “When I was running my ore-mine,” he says, “and got up to the point of making shipments to John Fritz, I didn’t have capital enough to carry the ore, so I went to J. P. Morgan & Co. and said I wanted them to give me a letter to the City Bank. I wanted to raise some money. I got a letter to Mr. Stillman; and went over and told him I wanted to open an account and get some loans and discounts. He turned me down, and would not do it. `Well,’ I said, `isn’t it banking to help a man in this way?’ He said: `What you want is a partner.’ I felt very much crestfallen. I went over to a bank in Newark–the Merchants’–and told them what I wanted. They said: `Certainly, you can have the money.’ I made my deposit, and they pulled me through all right. My idea of Wall Street banking has been very poor since that time. Merchant banking seems to be different.”

As a general thing, Edison has had no trouble in raising money when he needed it, the reason being that people have faith in him as soon as they come to know him. A little incident bears on this point. “In operating the Schenectady works Mr. Insull and I had a terrible burden. We had enormous orders and little money, and had great difficulty to meet our pay- rolls and buy supplies. At one time we had so many orders on hand we wanted $200,000 worth of copper, and didn’t have a cent to buy it. We went down to the Ansonia Brass and Copper Company, and told Mr. Cowles just how we stood. He said: `I will see what I can do. Will you let my bookkeeper look at your books?’ We said: `Come right up and look them over.’ He sent his man up and found we had the orders and were all right, although we didn’t have the money. He said: `I will let you have the copper.’ And for years he trusted us for all the copper we wanted, even if we didn’t have the money to pay for it.”

It is not generally known that Edison, in addition to being a newsboy and a contributor to the technical press, has also been a backer and an “angel” for various publications. This is perhaps the right place at which to refer to the matter, as it belongs in the list of his financial or commercial enterprises. Edison sums up this chapter of his life very pithily. “I was interested, as a telegrapher, in journalism, and started the Telegraph Journal, and got out about a dozen numbers when it was taken over by W. J. Johnston, who afterward founded the Electrical World on it as an offshoot from the Operator. I also started Science, and ran it for a year and a half. It cost me too much money to maintain, and I sold it to Gardiner Hubbard, the father-in-law of Alexander Graham Bell. He carried it along for years.” Both these papers are still in prosperous existence, particularly the Electrical World, as the recognized exponent of electrical development in America, where now the public spends as much annually for electricity as it does for daily bread.

From all that has been said above it will be understood that Edison’s real and remarkable capacity for business does not lie in ability to “take care of himself,” nor in the direction of routine office practice, nor even in ordinary administrative affairs. In short, he would and does regard it as a foolish waste of his time to give attention to the mere occupancy of a desk.

His commercial strength manifests itself rather in the outlining of matters relating to organization and broad policy with a sagacity arising from a shrewd perception and appreciation of general business requirements and conditions, to which should be added his intensely comprehensive grasp of manufacturing possibilities and details, and an unceasing vigilance in devising means of improving the quality of products and increasing the economy of their manufacture.

Like other successful commanders, Edison also possesses the happy faculty of choosing suitable lieutenants to carry out his policies and to manage the industries he has created, such, for instance, as those with which this chapter has to deal–namely, the phonograph, motion picture, primary battery, and storage battery enterprises.

The Portland cement business has already been dealt with separately, and although the above remarks are appropriate to it also, Edison being its head and informing spirit, the following pages are intended to be devoted to those industries that are grouped around the laboratory at Orange, and that may be taken as typical of Edison’s methods on the manufacturing side.

Within a few months after establishing himself at the present laboratory, in 1887, Edison entered upon one of those intensely active periods of work that have been so characteristic of his methods in commercializing his other inventions. In this case his labors were directed toward improving the phonograph so as to put it into thoroughly practicable form, capable of ordinary use by the public at large. The net result of this work was the general type of machine of which the well-known phonograph of today is a refinement evolved through many years of sustained experiment and improvement.

After a considerable period of strenuous activity in the eighties, the phonograph and its wax records were developed to a sufficient degree of perfection to warrant him in making arrangements for their manufacture and commercial introduction. At this time the surroundings of the Orange laboratory were distinctly rural in character. Immediately adjacent to the main building and the four smaller structures, constituting the laboratory plant, were grass meadows that stretched away for some considerable distance in all directions, and at its back door, so to speak, ducks paddled around and quacked in a pond undisturbed. Being now ready for manufacturing, but requiring more facilities, Edison increased his real-estate holdings by purchasing a large tract of land lying contiguous to what he already owned. At one end of the newly acquired land two unpretentious brick structures were erected, equipped with first- class machinery, and put into commission as shops for manufacturing phonographs and their record blanks; while the capacious hall forming the third story of the laboratory, over the library, was fitted up and used as a music-room where records were made.

Thus the modern Edison phonograph made its modest debut in 1888, in what was then called the “Improved” form to distinguish it from the original style of machine he invented in 1877, in which the record was made on a sheet of tin-foil held in place upon a metallic cylinder. The “Improved” form is the general type so well known for many years and sold at the present day–viz., the spring or electric motor-driven machine with the cylindrical wax record–in fact, the regulation Edison phonograph.

It did not take a long time to find a market for the products of the newly established factory, for a world- wide public interest in the machine had been created by the appearance of newspaper articles from time to time, announcing the approaching completion by Edison of his improved phonograph. The original (tin-foil) machine had been sufficient to illustrate the fact that the human voice and other sounds could be recorded and reproduced, but such a type of machine had sharp limitations in general use; hence the coming into being of a type that any ordinary person could handle was sufficient of itself to insure a market. Thus the demand for the new machines and wax records grew apace as the corporations organized to handle the business extended their lines. An examination of the newspaper files of the years 1888, 1889, and 1890 will reveal the great excitement caused by the bringing out of the new phonograph, and how frequently and successfully it was employed in public entertainments, either for the whole or part of an evening. In this and other ways it became popularized to a still further extent. This led to the demand for a nickel-in-the-slot machine, which, when established, became immensely popular over the whole country. In its earlier forms the “Improved” phonograph was not capable of such general non-expert handling as is the machine of the present day, and consequently there was a constant endeavor on Edison’s part to simplify the construction of the machine and its manner of opera- tion. Experimentation was incessantly going on with this in view, and in the processes of evolution changes were made here and there that resulted in a still greater measure of perfection.

In various ways there was a continual slow and steady growth of the industry thus created, necessitating the erection of many additional buildings as the years passed by. During part of the last decade there was a lull, caused mostly from the failure of corporate interests to carry out their contract relations with Edison, and he was thereby compelled to resort to legal proceedings, at the end of which he bought in the outstanding contracts and assumed command of the business personally.

Being thus freed from many irksome restrictions that had hung heavily upon him, Edison now proceeded to push the phonograph business under a
broader policy than that which obtained under his previous contractual relations. With the ever-increasing simplification and efficiency of the machine and a broadening of its application, the results of this policy were manifested in a still more rapid growth of the business that necessitated further additions to the manufacturing plant. And thus matters went on until the early part of the present decade, when the factory facilities were becoming so rapidly outgrown as to render radical changes necessary. It was in these circumstances that Edison’s sagacity and breadth of business capacity came to the front. With characteristic boldness and foresight he planned the erection of the series of magnificent concrete buildings that now stand adjacent to and around the laboratory, and in which the manufacturing plant is at present housed.

There was no narrowness in his views in designing these buildings, but, on the contrary, great faith in the future, for his plans included not only the phonograph industry, but provided also for the coming development of motion pictures and of the primary and storage battery enterprises.

In the aggregate there are twelve structures (including the administration building), of which six are of imposing dimensions, running from 200 feet long by 50 feet wide to 440 feet in length by 115 feet in width, all these larger buildings, except one, being five stories in height. They are constructed entirely of reinforced concrete with Edison cement, including walls, floors, and stairways, thus eliminating fire hazard to the utmost extent, and insuring a high degree of protection, cleanliness, and sanitation. As fully three-fourths of the area of their exterior framework consists of windows, an abundance of daylight is secured. These many advantages, combined with lofty ceilings on every floor, provide ideal conditions for the thousands of working people engaged in this immense plant.

In addition to these twelve concrete structures there are a few smaller brick and wooden buildings on the grounds, in which some special operations are conducted. These, however, are few in number, and at some future time will be concentrated in one or more additional concrete buildings. It will afford a clearer idea of the extent of the industries clustered immediately around the laboratory when it is stated that the combined floor space which is occupied by them in all these buildings is equivalent in the aggregate to over fourteen acres.

It would be instructive, but scarcely within the scope of the narrative, to conduct the reader through this extensive plant and see its many interesting operations in detail. It must suffice, however, to note its complete and ample equipment with modern machinery of every kind applicable to the work; its numerous (and some of them wonderfully ingenious) methods, processes, machines, and tools
specially designed or invented for the manufacture of special parts and supplemental appliances for the phonograph or other Edison products; and also to note the interesting variety of trades represented in the different departments, in which are included chemists, electricians, electrical mechanicians, machinists, mechanics, pattern-makers, carpenters, cabinet-makers, varnishers, japanners, tool-makers, lapidaries, wax experts, photographic developers and printers, opticians, electroplaters, furnacemen, and others, together with factory experimenters and a host of general employees, who by careful training have become specialists and experts in numerous branches of these industries.

Edison’s plans for this manufacturing plant were sufficiently well outlined to provide ample capacity for the natural growth of the business; and although that capacity (so far as phonographs is concerned) has actually reached an output of over 6000 complete phonographs PER WEEK, and upward of 130,000 molded records PER DAY–with a pay-roll embracing over 3500 employees, including office force–and amounting to about $45,000 per week–the limits of production have not yet been reached.

The constant outpouring of products in such large quantities bespeaks the unremitting activities of an extensive and busy selling organization to provide for their marketing and distribution. This important department (the National Phonograph Company), in all its branches, from president to office-boy, includes about two hundred employees on its office pay-roll, and makes its headquarters in the administration building, which is one of the large concrete structures above referred to. The policy of the company is to dispose of its wares through regular trade channels rather than to deal direct with the public, trusting to local activity as stimulated by a liberal policy of national advertising. Thus, there has been gradually built up a very extensive business until at the present time an enormous output of phonographs and records is distributed to retail customers in the United States and Canada through the medium of about one hundred and fifty jobbers and over thirteen thousand dealers. The Edison phonograph industry thus organized is helped by frequent conventions of this large commercial force.

Besides this, the National Phonograph Company maintains a special staff for carrying on the business with foreign countries. While the aggregate transactions of this department are not as extensive as those for the United States and Canada, they are of considerable volume, as the foreign office distributes in bulk a very large number of phonographs and rec- ords to selling companies and agencies in Europe, Asia, Australia, Japan, and, indeed, to all the countries of the civilized world.[19] Like England’s drumbeat, the voice of the Edison phonograph is heard around the world in undying strains throughout the twenty- four hours.

[19] It may be of interest to the reader to note some parts of the globe to which shipments of phonographs and records are made:

Samoan Islands
Falkland Islands
Siam
Corea
Crete Island
Paraguay
Chile
Canary Islands
Egypt
British East Africa
Cape Colony
Portuguese East Africa
Liberia
Java
Straits Settlements
Madagascar
Fanning Islands
New Zealand
French Indo-China
Morocco
Ecuador
Brazil
Madeira
South Africa
Azores
Manchuria
Ceylon
Sierra
Leone

In addition to the main manufacturing plant at Orange, another important adjunct must not be forgotten, and that is, the Recording Department in New York City, where the master records are made under the superintendence of experts who have studied the intricacies of the art with Edison himself. This department occupies an upper story in a lofty building, and in its various rooms may be seen and heard many prominent musicians, vocalists, speakers, and vaudeville artists studiously and busily engaged in making the original records, which are afterward sent to Orange, and which, if approved by the expert committee, are passed on to the proper department for reproduction in large quantities.

When we consider the subject of motion pictures we find a similarity in general business methods, for while the projecting machines and copies of picture films are made in quantity at the Orange works (just as phonographs and duplicate records are so made), the original picture, or film, like the master record, is made elsewhere. There is this difference, however: that, from the particular nature of the work, practically ALL master records are made at one convenient place, while the essential interest in SOME motion pictures lies in the fact that they are taken in various parts of the world, often under exceptional circumstances. The “silent drama,” however, calls also for many representations which employ conventional acting, staging, and the varied appliances of stage- craft. Hence, Edison saw early the necessity of providing a place especially devised and arranged for the production of dramatic performances in pantomime.

It is a far cry from the crude structure of early days–the “Black Maria” of 1891, swung around on its pivot in the Orange laboratory yard–to the well- appointed Edison theatres, or pantomime studios, in New York City. The largest of these is located in the suburban Borough of the Bronx, and consists of a three-story-and-basement building of reinforced concrete, in which are the offices, dressing-rooms, wardrobe and property-rooms, library and developing department. Contiguous to this building, and connected with it, is the theatre proper, a large and lofty structure whose sides and roof are of glass, and whose floor space is sufficiently ample for six different sets of scenery at one time, with plenty of room left for a profusion of accessories, such as tables, chairs, pianos, bunch-lights, search-lights, cameras, and a host of varied paraphernalia pertaining to stage effects.

The second Edison theatre, or studio, is located not far from the shopping district in New York City. In all essential features, except size and capacity, it is a duplicate of the one in the Bronx, of which it is a supplement.

To a visitor coming on the floor of such a theatre for the first time there is a sense of confusion in beholding the heterogeneous “sets” of scenery and the motley assemblage of characters represented in the various plays in the process of “taking,” or rehearsal. While each set constitutes virtually a separate stage, they are all on the same floor, without wings or proscenium-arches, and separated only by a few feet. Thus, for instance, a Japanese house interior may be seen cheek by jowl with an ordinary prison cell, flanked by a mining-camp, which in turn stands next to a drawing-room set, and in each a set of appropriate characters in pantomimic motion. The action is incessant, for in any dramatic representation intended for the motion-picture film every second counts.

The production of several completed plays per week necessitates the employment of a considerable staff of people of miscellaneous trades and abilities. At each of these two studios there is employed a number of stage-directors, scene-painters, carpenters, property-men, photographers, costumers, electricians, clerks, and general assistants, besides a capable stock company of actors and actresses, whose generous num- bers are frequently augmented by the addition of a special star, or by a number of extra performers, such as Rough Riders or other specialists. It may be, occasionally, that the exigencies of the occasion require the work of a performing horse, dog, or other animal. No matter what the object required may be, whether animate or inanimate, if it is necessary for the play it is found and pressed into service.

These two studios, while separated from the main plant, are under the same general management, and their original negative films are forwarded as made to the Orange works, where the large copying department is located in one of the concrete buildings. Here, after the film has been passed upon by a committee, a considerable number of positive copies are made by ingenious processes, and after each one is separately tested, or “run off,” in one or other of the three motion-picture theatres in the building, they are shipped out to film exchanges in every part of the country. How extensive this business has become may be appreciated when it is stated that at the Orange plant there are produced at this time over eight million feet of motion-picture film per year. And Edison’s company is only one of many producers.

Another of the industries at the Orange works is the manufacture of projecting kinetoscopes, by means of which the motion pictures are shown. While this of itself is also a business of considerable magnitude in its aggregate yearly transactions, it calls for no special comment in regard to commercial production, except to note that a corps of experimenters is con- stantly employed refining and perfecting details of the machine. Its basic features of operation as conceived by Edison remain unchanged.

On coming to consider the Edison battery enterprises, we must perforce extend the territorial view to include a special chemical-manufacturing plant, which is in reality a branch of the laboratory and the Orange works, although actually situated about three miles away.

Both the primary and the storage battery employ certain chemical products as essential parts of their elements, and indeed owe their very existence to the peculiar preparation and quality of such products, as exemplified by Edison’s years of experimentation and research. Hence the establishment of his own chemical works at Silver Lake, where, under his personal supervision, the manufacture of these products is carried on in charge of specially trained experts. At the present writing the plant covers about seven acres of ground; but there is ample room for expansion, as Edison, with wise forethought, secured over forty acres of land, so as to be prepared for developments.

Not only is the Silver Lake works used for the manufacture of the chemical substances employed in the batteries, but it is the plant at which the Edison primary battery is wholly assembled and made up for distribution to customers. This in itself is a business of no small magnitude, having grown steadily on its merits year by year until it has now arrived at a point where its sales run into the hundreds of thousands of cells per annum, furnished largely to the steam railroads of the country for their signal service.

As to the storage battery, the plant at Silver Lake is responsible only for the production of the chemical compounds, nickel-hydrate and iron oxide, which enter into its construction. All the mechanical parts, the nickel plating, the manufacture of nickel flake, the assembling and testing, are carried on at the Orange works in two of the large concrete buildings above referred to. A visit to this part of the plant reveals an amazing fertility of resourcefulness and ingenuity in the devising of the special machines and appliances employed in constructing the mechanical parts of these cells, for it is practically impossible to fashion them by means of machinery and tools to be found in the open market, notwithstanding the immense variety that may be there obtained.

Since Edison completed his final series of investigations on his storage battery and brought it to its present state of perfection, the commercial values have increased by leaps and bounds. The battery, as it was originally put out some years ago, made for itself an enviable reputation; but with its improved form there has come a vast increase of business. Although the largest of the concrete buildings where its manufacture is carried on is over four hundred feet long and four stories in height, it has already become necessary to plan extensions and enlargements of the plant in order to provide for the production of batteries to fill the present demands. It was not until the summer of 1909 that Edison was willing to pronounce the final verdict of satisfaction with regard to this improved form of storage battery; but subsequent commercial results have justified his judgment, and it is not too much to predict that in all probability the business will assume gigantic proportions within a very few years. At the present time (1910) the Edison storage-battery enterprise is in its early stages of growth, and its status may be compared with that of the electric-light system about the year 1881.

There is one more industry, though of comparatively small extent, that is included in the activities of the Orange works, namely, the manufacture and sale of the Bates numbering machine. This is a well- known article of commerce, used in mercantile establishments for the stamping of consecutive, duplicate, and manifold numbers on checks and other documents. It is not an invention of Edison, but the organization owning it, together with the patent rights, were acquired by him some years ago, and he has since continued and enlarged the business both in scope and volume, besides, of course, improving and perfecting the apparatus itself. These machines are known everywhere throughout the country, and while the annual sales are of comparatively moderate amount in comparison with the totals of the other Edison industries at Orange, they represent in the aggregate a comfortable and encouraging business.

In this brief outline review of the flourishing and extensive commercial enterprises centred around the Orange laboratory, the facts, it is believed, contain a complete refutation of the idea that an inventor cannot be a business man. They also bear abundant evidence of the compatibility of these two widely divergent gifts existing, even to a high degree, in the same person. A striking example of the correctness of this proposition is afforded in the present case, when it is borne in mind that these various industries above described (whose annual sales run into many millions of dollars) owe not only their very creation (except the Bates machine) and existence to Edison’s inventive originality and commercial initiative, but also their continued growth and prosperity to his incessant activities in dealing with their multifarious business problems. In publishing a portrait of Edison this year, one of the popular magazines placed under it this caption: “Were the Age called upon to pay Thomas A. Edison all it owes to him, the Age would have to make an assignment.” The present chapter will have thrown some light on the idiosyncrasies of Edison as financier and as manufacturer, and will have shown that while the claim thus suggested may be quite good, it will certainly never be pressed or collected.

CHAPTER XXVII

THE VALUE OF EDISON’S INVENTIONS TO
THE WORLD

IF the world were to take an account of stock, so to speak, and proceed in orderly fashion to marshal its tangible assets in relation to dollars and cents, the natural resources of our globe, from centre to circumference, would head the list. Next would come inventors, whose value to the world as an asset could be readily estimated from an increase of its wealth resulting from the actual transformations of these resources into items of convenience and comfort through the exercise of their inventive ingenuity.

Inventors of practical devices may be broadly divided into two classes–first, those who may be said to have made two blades of grass grow where only one grew before; and, second, great inventors, who have made grass grow plentifully on hitherto unproductive ground. The vast majority of practical inventors belong to and remain in the first of these divisions, but there have been, and probably always will be, a less number who, by reason of their greater achievements, are entitled to be included in both classes. Of these latter, Thomas Alva Edison is one, but in the pages of history he stands conspicuously pre-eminent–a commanding towering figure, even among giants.

The activities of Edison have been of such great range, and his conquests in the domains of practical arts so extensive and varied, that it is somewhat difficult to estimate with any satisfactory degree of accuracy the money value of his inventions to the world of to-day, even after making due allowance for the work of other great inventors and the propulsive effect of large amounts of capital thrown into the enterprises which took root, wholly or in part, through the productions of his genius and energies. This difficulty will be apparent, for instance, when we consider his telegraph and telephone inventions. These were absorbed in enterprises already existing, and were the means of assisting their rapid growth and expansion, particularly the telephone industry. Again, in considering the fact that Edison was one of the first in the field to design and perfect a practical and operative electric railway, the main features of which are used in all electric roads of to-day, we are confronted with the problem as to what proportion of their colossal investment and earnings should be ascribed to him.

Difficulties are multiplied when we pause for a moment to think of Edison’s influence on collateral branches of business. In the public mind he is credited with the invention of the incandescent electric light, the phonograph, and other widely known devices; but how few realize his actual influence on other trades that are not generally thought of in connection with these things. For instance, let us note what a prominent engine builder, the late Gardiner C. Sims, has said: “Watt, Corliss, and Porter brought forward steam-engines to a high state of proficiency, yet it remained for Mr. Edison to force better proportions, workmanship, designs, use of metals, regulation, the solving of the complex problems of high speed and endurance, and the successful development of the shaft governor. Mr. Edison is pre- eminent in the realm of engineering.”

The phenomenal growth of the copper industry was due to a rapid and ever-increasing demand, owing to the exploitation of the telephone, electric light, electric motor, and electric railway industries. Without these there might never have been the romance of “Coppers” and the rise and fall of countless fortunes. And although one cannot estimate in definite figures the extent of Edison’s influence in the enormous increase of copper production, it is to be remembered that his basic inventions constitute a most important factor in the demand for the metal. Besides, one must also give him the credit, as already noted, for having recognized the necessity for a pure quality of copper for electric conductors, and for his persistence in having compelled the manufacturers of that period to introduce new and additional methods of refinement so as to bring about that result, which is now a sine qua non.

Still considering his influence on other staples and collateral trades, let us enumerate briefly and in a general manner some of the more important and additional ones that have been not merely stimulated, but in many cases the business and sales have been directly increased and new arts established through the inventions of this one man–namely, iron, steel, brass, zinc, nickel, platinum ($5 per ounce in 1878, now $26 an ounce), rubber, oils, wax, bitumen, various chemical compounds, belting, boilers, injectors, structural steel, iron tubing, glass, silk, cotton, porcelain, fine woods, slate, marble, electrical measuring instruments, miscellaneous machinery, coal, wire, paper, building materials, sapphires, and many others.

The question before us is, To what extent has Edison added to the wealth of the world by his inventions and his energy and perseverance? It will be noted from the foregoing that no categorical answer can be offered to such a question, but sufficient material can be gathered from a statistical review of the commercial arts directly influenced to afford an approximate idea of the increase in national wealth that has been affected by or has come into being through the practical application of his ideas.

First of all, as to inventions capable of fairly definite estimate, let us mention the incandescent electric light and systems of distribution of electric light, heat, and power, which may justly be considered as the crowning inventions of Edison’s life. Until October 21, 1879, there was nothing in existence resembling our modern incandescent lamp. On that date, as we have seen in a previous chapter, Edison’s labors culminated in his invention of a practical incandescent electric lamp embodying absolutely all the essentials of the lamp of to-day, thus opening to the world the doors of a new art and industry. To-day there are in the United States more than 41,000,000 of these lamps, connected to existing central-station circuits in active operation.

Such circuits necessarily imply the existence of central stations with their equipment. Until the beginning of 1882 there were only a few arc-lighting stations in existence for the limited distribution of current. At the present time there are over 6000 central stations in this country for the distribution of electric current for light, heat, and power, with capital obligations amounting to not less than $1,000,000,000. Besides the above-named 41,000,000 incandescent lamps connected to their mains, there are about 500,000 arc lamps and 150,000 motors, using 750,000 horse-power, besides countless fan motors and electric heating and cooking appliances.

When it is stated that the gross earnings of these central stations approximate the sum of $225,000,000 yearly, the significant import of these statistics of an art that came so largely from Edison’s laboratory about thirty years ago will undoubtedly be apparent.

But the above are not by any means all the facts relating to incandescent electric lighting in the United States, for in addition to central stations there are upward of 100,000 isolated or private plants in mills, factories, steamships, hotels, theatres, etc., owned by the persons or concerns who operate them. These plants represent an approximate investment of $500,000,000, and the connection of not less than 25,000,000 incandescent lamps or their equivalent.

Then there are the factories where these incandescent lamps are made, about forty in number, repre- sensing a total investment that may be approximated at $25,000,000. It is true that many of these factories are operated by other than the interests which came into control of the Edison patents (General Electric Company), but the 150,000,000 incandescent electric lamps now annually made are broadly covered in principle by Edison’s fundamental ideas and patents.

It will be noted that these figures are all in round numbers, but they are believed to be well within the mark, being primarily founded upon the special reports of the Census Bureau issued in 1902 and 1907, with the natural increase from that time computed by experts who are in position to obtain the facts. It would be manifestly impossible to give exact figures of such a gigantic and swiftly moving industry, whose totals increase from week to week.

The reader will naturally be disposed to ask whether it is intended to claim that Edison has brought about all this magnificent growth of the electric-lighting art. The answer to this is decidedly in the negative, for the fact is that he laid some of the foundation and erected a building thereon, and in the natural progressive order of things other inventors of more or less fame have laid substructures or added a wing here and a story there until the resultant great structure has attained such proportions as to evoke the admiration of the beholder; but the old foundation and the fundamental building still remain to support other parts. In other words, Edison created the incandescent electric lamp, and invented certain broad and fundamental systems of distribution of current, with all the essential devices of detail necessary for successful operation. These formed a foundation. He also spent great sums of money and devoted several years of patient labor in the early practical exploitation of the dynamo and central station and isolated plants, often under, adverse and depressing circumstances, with a dogged determination that outlived an opposition steadily threatening defeat. These efforts resulted in the firm commercial establishment of modern electric lighting. It is true that many important inventions of others have a distinguished place in the art as it is exploited today, but the fact remains that the broad essentials, such as the incandescent lamp, systems of distribution, and some important details, are not only universally used, but are as necessary to-day for successful commercial practice as they were when Edison invented them many years ago.

The electric railway next claims our consideration, but we are immediately confronted by a difficulty which seems insurmountable when we attempt to formulate any definite estimate of the value and influence of Edison’s pioneer work and inventions. There is one incontrovertible fact–namely, that he was the first man to devise, construct, and operate from a central station a practicable, life-size electric railroad, which was capable of transporting and did transport passengers and freight at variable speeds over varying grades, and under complete control of the operator. These are the essential elements in all electric railroading of the present day; but while Edison’s original broad ideas are embodied in present practice, the perfection of the modern electric railway is greatly due to the labors and inventions of a large number of other well-known inventors. There was no reason why Edison could not have continued the commercial development of the electric railway after he had helped to show its practicability in 1880, 1881, and 1882, just as he had completed his lighting system, had it not been that his financial allies of the period lacked faith in the possibilities of electric railroads, and therefore declined to furnish the money necessary for the purpose of carrying on the work.

With these facts in mind, we shall ask the reader to assign to Edison a due proportion of credit for his pioneer and basic work in relation to the prodigious development of electric railroading that has since taken place. The statistics of 1908 for American street and elevated railways show that within twenty- five years the electric-railway industry has grown to embrace 38,812 miles of track on streets and for elevated railways, operated under the ownership of 1238 separate companies, whose total capitalization amounted to the enormous sum of $4,123,834,598. In the equipments owned by such companies there are included 68,636 electric cars and 17,568 trailers and others, making a total of 86,204 of such vehicles. These cars and equipments earned over $425,000,000 in 1907, in giving the public transportation, at a cost, including transfers, of a little over three cents per passenger, for whom a fifteen-mile ride would be possible. It is the cheapest transportation in the world.

Some mention should also be made of the great electrical works of the country, in which the dynamos, motors, and other varied paraphernalia are made for electric lighting, electric railway, and other purposes. The largest of these works is undoubtedly that of the General Electric Company at Schenectady, New York, a continuation and enormous enlargement of the shops which Edison established there in 1886. This plant at the present time embraces over 275 acres, of which sixty acres are covered by fifty large and over one hundred small buildings; besides which the company also owns other large plants elsewhere, representing a total investment approximating the sum of $34,850,000 up to 1908. The productions of the General Electric Company alone average annual sales of nearly $75,000,000, but they do not comprise the total of the country’s manufactures in these lines.

Turning our attention now to the telephone, we again meet a condition that calls for thoughtful consideration before we can properly appreciate how much the growth of this industry owes to Edison’s inventive genius. In another place there has already been told the story of the telephone, from which we have seen that to Alexander Graham Bell is due the broad idea of transmission of speech by means of an electrical circuit; also that he invented appropriate instruments and devices through which he accomplished this result, although not to that extent which gave promise of any great commercial practicability for the telephone as it then existed. While the art was in this inefficient condition, Edison went to work on the subject, and in due time, as we have already learned, invented and brought out the carbon transmitter, which is universally acknowledged to have been the needed device that gave to the telephone the element of commercial practicability, and has since led to its phenomenally rapid adoption and world-wide use. It matters not that others were working in the same direction, Edison was legally adjudicated to have been the first to succeed in point of time, and his inventions were put into actual use, and may be found in principle in every one of the 7,000,000 telephones which are estimated to be employed in the country at the present day. Basing the statements upon facts shown by the Census reports of 1902 and 1907, and adding thereto the growth of the industry since that time, we find on a conservative estimate that at this writing the investment has been not less than $800,000,000 in now existing telephone systems, while no fewer than 10,500,000,000 talks went over the lines during the year 1908. These figures relate only to telephone systems, and do not include any details regarding the great manufacturing establishments engaged in the construction of telephone apparatus, of which there is a production amounting to at least $15,000,000 per annum.

Leaving the telephone, let us now turn our attention to the telegraph, and endeavor to show as best we can some idea of the measure to which it has been affected by Edison’s inventions. Although, as we have seen in a previous part of this book, his earliest fame arose from his great practical work in telegraphic inventions and improvements, there is no way in which any definite computation can be made of the value of his contributions in the art except, perhaps, in the case of his quadruplex, through which alone it is estimated that there has been saved from $15,000,000 to $20,000,000 in the cost of line construction in this country. If this were the only thing that he had ever accomplished, it would entitle him to consideration as an inventor of note. The quadruplex, however, has other material advantages, but how far they and the natural growth of the business have contributed to the investment and earnings of the telegraph companies, is beyond practicable computation.

It would, perhaps, be interesting to speculate upon what might have been the growth of the telegraph and the resultant benefit to the community had Edison’s automatic telegraph inventions been allowed to take their legitimate place in the art, but we shall not allow ourselves to indulge in flights of fancy, as the value of this chapter rests not upon conjecture, but only upon actual fact. Nor shall we attempt to offer any statistics regarding Edison’s numerous inventions relating to telegraphs and kindred devices, such as stock tickers, relays, magnets, rheotomes, repeaters, printing telegraphs, messenger calls, etc., on which he was so busily occupied as an inventor and manufacturer during the ten years that began with January, 1869. The principles of many of these devices are still used in the arts, but have become so incorporated in other devices as to be inseparable, and cannot now be dealt with separately. To show what they mean, however, it might be noted that New York City alone has 3000 stock “tickers,” consuming 50,000 miles of record tape every year.

Turning now to other important arts and industries which have been created by Edison’s inventions, and in which he is at this time taking an active personal interest, let us visit Orange, New Jersey. When his present laboratory was nearing completion in 1887, he wrote to Mr. J. Hood Wright, a partner in the firm of Drexel, Morgan & Co.: “My ambition is to build up a great industrial works in the Orange Valley, starting in a small way and gradually working up.”

In this plant, which represents an investment approximating the sum of $4,000,000, are grouped a number of industrial enterprises of which Edison is either the sole or controlling owner and the guiding spirit. These enterprises are the National Phonograph Company, the Edison Business Phonograph
Company, the Edison Phonograph Works, the Edison Manufacturing Company, the Edison Storage Battery Company, and the Bates Manufacturing Company. The importance of these industries will be apparent when it is stated that at this plant the maximum pay-roll shows the employment of over 4200 persons, with annual earnings in salaries and wages of more than $2,750,000.

In considering the phonograph in its commercial aspect, and endeavoring to arrive at some idea of the world’s estimate of the value of this invention, we feel the ground more firm under our feet, for Edison has in later years controlled its manufacture and sale. It will be remembered that the phonograph lay dormant, commercially speaking, for about ten years after it came into being, and then later invention reduced it to a device capable of more popular utility. A few years of rather unsatisfactory commercial experience brought about a reorganization, through which Edison resumed possession of the business. It has since been continued under his general direction and ownership, and he has made a great many additional inventions tending to improve the machine in all its parts.

The uses made of the phonograph up to this time have been of four kinds, generally speaking–first, and principally, for amusement; second, for instruction in languages; third, for business, in the dictation of correspondence; and fourth, for sentimental reasons in preserving the voices of friends. No separate figures are available to show the extent of its employment in the second and fourth classes, as they are probably included in machines coming under the first subdivision. Under this head we find that there have been upward of 1,310,000 phonographs sold during the last twenty years, with and for which there have been made and sold no fewer than 97,845,000 records of a musical or other character. Phonographic records are now being manufactured at
Orange at the rate of 75,000 a day, the annual sale of phonographs and records being approximately $7,000,000, including business phonographs. This does not include blank records, of which large numbers have also been supplied to the public.

The adoption of the business phonograph has not been characterized by the unanimity that obtained in the case of the one used merely for amusement, as its use involves some changes in methods that business men are slow to adopt until they realize the resulting convenience and economy. Although it is
only a few years since the business phonograph has begun to make some headway, it is not difficult to appreciate that Edison’s prediction in 1878 as to the value of such an appliance is being realized, when we find that up to this time the sales run up to 12,695 in number. At the present time the annual sales of the business phonographs and supplies, cylinders, etc., are not less than $350,000.

We must not forget that the basic patent of Edison on the phonograph has long since expired, thus throwing open to the world the wonderful art of reproducing human speech and other sounds. The world was not slow to take advantage of the fact, hence there are in the field numerous other concerns in the same business. It is conservatively estimated by those who know the trade and are in position to form an opinion, that the figures above given represent only about one-half of the entire business of the country in phonographs, records, cylinders, and supplies.

Taking next his inventions that pertain to a more recently established but rapidly expanding branch of business that provides for the amusement of the public, popularly known as “motion pictures,” we also find a general recognition of value created. Referring the reader to a previous chapter for a discussion of Edison’s standing as a pioneer inventor in this art, let us glance at the commercial proportions of this young but lusty business, whose ramifications extend to all but the most remote and primitive hamlets of our country.

The manufacture of the projecting machines and accessories, together with the reproduction of films, is carried on at the Orange Valley plant, and from the inception of the motion-picture business to the present time there have been made upward of 16,000 projecting machines and many million feet of films carrying small photographs of moving objects. Although the motion-picture business, as a commercial enterprise, is still in its youth, it is of sufficient moment to call for the annual production of thousands of machines and many million feet of films in Edison’s shops, having a sale value of not less than $750,000. To produce the originals from which these Edison films are made, there have been established two “studios,” the largest of which is in the Bronx, New York City.

In this, as well as in the phonograph business, there are many other manufacturers in the field. Indeed, the annual product of the Edison Manufacturing Company in this line is only a fractional part of the total that is absorbed by the 8000 or more motion- picture theatres and exhibitions that are in operation in the United States at the present time, and which represent an investment of some $45,000,000. Licensees under Edison patents in this
country alone produce upward of 60,000,000 feet of films annually, containing more than a billion and a half separate photographs. To what extent the motion-picture business may grow in the not remote future it is impossible to conjecture, for it has taken a place in the front rank of rapidly increasing enterprises.

The manufacture and sale of the Edison-Lalande primary battery, conducted by the Edison Manufacturing Company at the Orange Valley plant, is a business of no mean importance. Beginning about twenty years ago with a battery that, without polarizing, would furnish large currents specially adapted for gas-engine ignition and other important purposes, the business has steadily grown in magnitude until the present output amounts to about 125,000 cells annually; the total number of cells put into the hands of the public up to date being approximately 1,500,000. It will be readily conceded that to most men this alone would be an enterprise of a lifetime, and sufficient in itself to satisfy a moderate ambition. But, although it has yielded a considerable profit to Edison and gives employment to many people, it is only one of the many smaller enterprises that owe an existence to his inventive ability and commercial activity.

So it also is in regard to the mimeograph, whose forerunner, the electric pen, was born of Edison’s brain in 1877. He had been long impressed by the desirability of the rapid production of copies of written documents, and, as we have seen by a previous chapter, he invented the electric pen for this purpose, only to improve upon it later with a more desirable device which he called the mimeograph, that is in use, in various forms, at this time. Although the electric pen had a large sale and use in its time, the statistics relating to it are not available. The mimeo- graph, however, is, and has been for many years, a standard office appliance, and is entitled to consideration, as the total number put into use up to this time is approximately 180,000, valued at $3,500,000, while the annual output is in the neighborhood of 9000 machines, sold for about $150,000, besides the vast quantity of special paper and supplies which its use entails in the production of the many millions of facsimile letters and documents. The extent of production and sale of supplies for the mimeograph may be appreciated when it is stated that they bring annually an equivalent of three times the amount realized from sales of machines. The manufacture and sale of the mimeograph does not come within the enterprises conducted under Edison’s personal direction, as he sold out the whole thing some years ago to Mr. A. B. Dick, of Chicago.

In making a somewhat radical change of subject, from duplicating machines to cement, we find ourselves in a field in which Edison has made a most decided impression. The reader has already learned that his entry into this field was, in a manner, accidental, although logically in line with pronounced convictions of many years’ standing, and following up the fund of knowledge gained in the magnetic ore-milling business. From being a new-comer in the cement business, his corporation in five years has grown to be the fifth largest producer in the United States, with a still increasing capacity. From the inception of this business there has been a steady and rapid development, resulting in the production of a grand total of over 7,300,000 barrels of cement up to the present date, having a value of about $6,000,000, exclusive of package. At the time of this writing, the rate of production is over 8000 barrels of cement per day, or, say, 2,500,000 barrels per year, having an approximate selling value of a little less than $2,000,000, with prospects of increasing in the near future to a daily output of 10,000 barrels. This enterprise is carried on by a corporation called the Edison Portland Cement Company, in which he is very largely interested, and of which he is the active head and guiding spirit.

Had not Edison suspended the manufacture and sale of his storage battery a few years ago because he was not satisfied with it, there might have been given here some noteworthy figures of an extensive business, for the company’s books show an astonishing number of orders that were received during the time of the shut-down. He was implored for batteries, but in spite of the fact that good results had been obtained from the 18,000 or 20,000 cells sold some years ago, he adhered firmly to his determination to perfect them to a still higher standard before resuming and continuing their manufacture as a regular commodity. As we have noted in a previous chapter, however, deliveries of the perfected type were begun in the summer of 1909, and since that time the business has continued to grow in the measure indicated by the earlier experience.

Thus far we have concerned ourselves chiefly with those figures which exhibit the extent of investment and production, but there is another and humanly important side that presents itself for consideration namely, the employment of a vast industrial army of men and women, who earn a living through their connection with some of the arts and industries to which our narrative has direct reference. To this the reader’s attention will now be drawn.

The following figures are based upon the Special Reports of the Census Bureau, 1902 and 1907, with additions computed upon the increase that has subsequently taken place. In the totals following is included the compensation paid to salaried officials and clerks. Details relating to telegraph systems are omitted.

Taking the electric light into consideration first, we find that in the central stations of the United States there are not less than an average of 50,000 persons employed, requiring an aggregate yearly pay- roll of over $40,000,000. This does not include the 100,000 or more isolated electric-light plants scattered throughout the land. Many of these are quite large, and at least one-third of them require one additional helper, thus adding, say, 33,000 employees to the number already mentioned. If we assume as low a wage as $10 per week for each of these helpers, we must add to the foregoing an additional sum of over $17,000,000 paid annually for wages, almost entirely in the isolated incandescent electric lighting field.

Central stations and isolated plants consume over 100,000,000 incandescent electric lamps annually, and in the production of these there are engaged about forty factories, on whose pay-rolls appear an average of 14,000 employees, earning an aggregate yearly sum of $8,000,000.

Following the incandescent lamp we must not forget an industry exclusively arising from it and absolutely dependent upon it–namely, that of making fixtures for such lamps, the manufacture of which gives employment to upward of 6000 persons, who annually receive at least $3,750,000 in compensation.

The detail devices of the incandescent electric lighting system also contribute a large quota to the country’s wealth in the millions of dollars paid out in salaries and wages to many thousands of persons who are engaged in their manufacture.

The electric railways of our country show even larger figures than the lighting stations and plants, as they employ on the average over 250,000 persons, whose annual compensation amounts to not less than $155,000,000.

In the manufacture of about $50,000,000 worth of dynamos and motors annually, for central-station equipment, isolated plants, electric railways, and other purposes, the manufacturers of the country employ an average of not less than 30,000 people, whose yearly pay-roll amounts to no less a sum than $20,000,000,

The growth of the telephone systems of the United States also furnishes us with statistics of an analogous nature, for we find that the average number of employees engaged in this industry is at least 140,000, whose annual earnings aggregate a minimum of $75,000,000; besides which the manufacturers of telephone apparatus employ over 12,000 persons, to whom is paid annually about $5,500,000.

No attempt is made to include figures of collateral industries, such, for instance, as copper, which is very closely allied with the electrical arts, and the great bulk of which is refined electrically.

The 8000 or so motion-picture theatres of the country employ no fewer than 40,000 people, whose aggregate annual income amounts to not less than $37,000,000.

Coming now to the Orange Valley plant, we take a drop from these figures to the comparatively modest ones which give us an average of 3600 employees and calling for an annual pay-roll of about $2,250,000. It must be remembered, however, that the sums mentioned above represent industries operated by great aggregations of capital, while the Orange Valley plant, as well as the Edison Portland Cement Company, with an average daily number of 530 employees and over $400,000 annual pay-roll, represent in a large measure industries that are more in the nature of closely held enterprises and practically under the direction of one mind.

The table herewith given summarizes the figures that have just been presented, and affords an idea of the totals affected by the genius of this one man. It is well known that many other men and many other inventions have been needed for the perfection of these arts; but it is equally true that, as already noted, some of these industries are directly the creation of Edison, while in every one of the rest his impress has been deep and significant. Before he began inventing, only two of them were known at all as arts–telegraphy and the manufacture of cement. Moreover, these figures deal only with the United States, and take no account of the development of many of the Edison inventions in Europe or of their adoption throughout the world at large. Let it suffice

STATISTICAL RESUME (APPROXIMATE) OF SOME OF THE INDUSTRIES IN THE UNITED STATES DIRECTLY FOUNDED UPON OR AFFECTED BY INVENTIONS OF THOMAS A. EDISON

Annual
Gross Rev- Number Annual Class of Industry Investment enue or of Em- Pay-Rolls sales
Central station lighting
and power $1,000,000,000 $125,000,000 50,000 $40,000,000 Isolated incandescent
lighting 500,000,000 — 33,000 17,000 000 Incandescent lamps 25,000,000 20,000,000 14,000 8,000 000 Electric fixtures 8,000,000 5,000,000 6,000 3,750,000 Dynamos and motors 60,000,000 50,000,000 30,000 20,000,000 Electric railways 4,000,000,000 430,000,000 250,000 155,000,000 Telephone systems 800,000,000 175,000,000 140,000 75,000,000 Telephone apparatus 30,000,000 15,000,000 12,000 5,500,000 Phonograph and motion
pictures 10,000,000 15,000,000 5,000 6,000,000 Motion picture theatres 40,000,000 80,000,000 40,000 37,000,000 Edison Portland cement 4,000,000 2,000,000 530 400,000 Telegraphy 250,000,000 60,000,000 100,000 30,000,000 —————————————————————————– Totals 6,727,000,000 1,077,000,000 680,530 397,650,000

that in America alone the work of Edison has been one of the most potent factors in bringing into existence new industries now capitalized at nearly $ 7,000,000,000, earning annually over $1,000,000,000, and giving employment to an army of more than six hundred thousand people.

A single diamond, prismatically flashing from its many facets the beauties of reflected light, comes well within the limits of comprehension of the human mind and appeals to appreciation by the finer sensibilities; but in viewing an exhibition of thousands of these beautiful gems, the eye and brain are simply bewildered with the richness of a display which tends to confuse the intellect until the function of analysis comes into play and leads to more adequate apprehension.

So, in presenting the mass of statistics contained in this chapter, we fear that the result may have been the bewilderment of the reader to some extent. Nevertheless, in writing a biography of Edison, the main object is to present the facts as they are, and leave it to the intelligent reader to classify, apply, and analyze them in such manner as appeals most forcibly to his intellectual processes. If in the foregoing pages there has appeared to be a tendency to attribute to Edison the entire credit for the growth to which many of the above-named great enterprises have in these latter days attained, we must especially disclaim any intention of giving rise to such a deduction. No one who has carefully followed the course of this narrative can deny, however, that Edison is the father of some of the arts and industries that have been mentioned, and that as to some of the others it was the magic of his touch that helped make them practicable. Not only to his work and ingenuity is due the present magnitude of these arts and industries, but it is attributable also to the splendid work and numerous contributions of other great inventors, such as Brush, Bell, Elihu Thomson, Weston, Sprague, and many others, as well as to the financiers and investors who in the past thirty years have furnished the vast sums of money that were necessary to exploit and push forward these enterprises.

The reader may have noticed in a perusal of this chapter the lack of autobiographical quotations, such as have appeared in other parts of this narrative. Edison’s modesty has allowed us but one remark on the subject. This was made by him to one of the writers a short time ago, when, after an interesting indulgence in reminiscences of old times and early inventions, he leaned back in his chair, and with a broad smile on his face, said, reflectively: “Say, I HAVE been mixed up in a whole lot of things, haven’t I?”

CHAPTER XXVIII

THE BLACK FLAG

THROUGHOUT the forty-odd years of his creative life, Edison has realized by costly experience the truth of the cynical proverb that “A patent is merely a title to a lawsuit.” It is not intended, however, by this statement to lead to any inference on the part of the reader that HE stands peculiarly alone in any such experience, for it has been and still is the common lot of every successful inventor, sooner or later.

To attribute dishonesty or cupidity as the root of the defence in all patent litigation would be aiming very wide of the mark, for in no class of suits that come before the courts are there any that present a greater variety of complex, finely shaded questions, or that require more delicacy of interpretation, than those that involve the construction of patents, particularly those relating to electrical devices. Indeed, a careful study of legal procedure of this character could not be carried far without discovery of the fact that in numerous instances the differences of opinion between litigants were marked by the utmost bona fides.

On the other hand, such study would reveal many cases of undoubted fraudulent intent, as well as many bold attempts to deprive the inventor of the fruits of his endeavors by those who have sought to evade, through subtle technicalities of the law, the penalty justly due them for trickery, evasion, or open contempt of the rights of others.

In the history of science and of the arts to which the world has owed its continued progress from year to year there is disclosed one remarkable fact, and that is, that whenever any important discovery or invention has been made and announced by one man, it has almost always been disclosed later that other men –possibly widely separated and knowing nothing of the other’s work–have been following up the same general lines of investigation, independently, with the same object in mind. Their respective methods might be dissimilar while tending to the same end, but it does not necessarily follow that any one of these other experimenters might ever have achieved the result aimed at, although, after the proclamation of success by one, it is easy to believe that each of the other independent investigators might readily persuade himself that he would ultimately have reached the goal in just that same way.

This peculiar coincidence of simultaneous but separate work not only comes to light on the bringing out of great and important discoveries or inventions, but becomes more apparent if a new art is disclosed, for then the imagination of previous experimenters is stimulated through wide dissemination of the tidings, sometimes resulting in more or less effort to enter the newly opened field with devices or methods that resemble closely the original and fundamental ones in principle and application. In this and other ways there arises constantly in the United States Patent Office a large number of contested cases, called “Interferences,” where applications for patents covering the invention of a similar device have been independently filed by two or even more persons. In such cases only one patent can be issued, and that to the inventor who on the taking of testimony shows priority in date of invention.[20]

[20] A most remarkable instance of contemporaneous invention and without a parallel in the annals of the United States Patent Office, occurred when, on the same day, February 15, 1876, two separate descriptions were filed in that office, one a complete application and the other a caveat, but each covering an invention for “transmitting vocal sounds telegraphically.” The application was made by Alexander Graham Bell, of Salem, Massachusetts, and the caveat by Elisha Gray, of Chicago, Illinois. On examination of the two papers it was found that both of them covered practically the same ground, hence, as only one patent could be granted, it became necessary to ascertain the precise hour at which the documents were respectively filed, and put the parties in interference. This was done, with the result that the patent was ultimately awarded to Bell.

In the opening up and development of any new art based upon a fundamental discovery or invention, there ensues naturally an era of supplemental or collateral inventive activity–the legitimate outcome of the basic original ideas. Part of this development may be due to the inventive skill and knowledge of the original inventor and his associates, who, by reason of prior investigation, would be in better position to follow up the art in its earliest details than others, who might be regarded as mere outsiders. Thus a new enterprise may be presented before the world by its promoters in the belief that they are strongly fortified by patent rights which will protect them in a degree commensurate with the risks they have assumed.

Supplemental inventions, however, in any art, new or old, are not limited to those which emanate from the original workers, for the ingenuity of man, influenced by the spirit of the times, seizes upon any novel line of action and seeks to improve or enlarge upon it, or, at any rate, to produce more or less variation of its phases. Consequently, there is a constant endeavor on the part of a countless host of men possessing some degree of technical skill and inventive ability, to win fame and money by entering into the already opened fields of endeavor with devices and methods of their own, for which subsidiary patents may be obtainable. Some of such patents may prove to be valuable, while it is quite certain that in the natural order of things others will be commercially worthless, but none may be entirely disregarded in the history and development of the art.

It will be quite obvious, therefore, that the advent of any useful invention or discovery, great or small, is followed by a clashing of many interests which become complex in their interpretation by reason of the many conflicting claims that cluster around the main principle. Nor is the confusion less confounded through efforts made on the part of dishonest persons, who, like vultures, follow closely on the trail of successful inventors and (sometimes through information derived by underhand methods) obtain patents on alleged inventions, closely approximating the real ones, solely for the purpose of harassing the original patentee until they are bought up, or else, with the intent of competing boldly in the new business, trust in the delays of legal proceedings to obtain a sure foothold in their questionable enterprise.

Then again there are still others who, having no patent rights, but waving aside all compunction and in downright fraud, simply enter the commercial field against the whole world, using ruthlessly whatever inventive skill and knowledge the original patentee may have disclosed, and trusting to the power of money, rapid movement, and mendacious advertising to build up a business which shall presently assume such formidable proportions as to force a compromise, or stave off an injunction until the patent has expired. In nine cases out of ten such a course can be followed with relative impunity; and guided by skilful experts who may suggest really trivial changes here and there over the patented structure, and with the aid of keen and able counsel, hardly a patent exists that could not be invaded by such infringers. Such is the condition of our laws and practice that the patentee in seeking to enforce his rights labors under a terrible handicap.

And, finally, in this recital of perplexing conditions confronting the inventor, there must not be forgotten the commercial “shark,” whose predatory instincts are ever keenly alert for tender victims. In the wake of every newly developed art of world-wide importance there is sure to follow a number of unscrupulous adventurers, who hasten to take advantage of general public ignorance of the true inwardness of affairs. Basing their operations on this lack of knowledge, and upon the tendency of human nature to give credence to widely advertised and high-sounding descriptions and specious promises of vast profits, these men find little difficulty in conjuring money out of the pockets of the unsophisticated and gullible, who rush to become stockholders in concerns that have “airy nothings” for a foundation, and that collapse quickly when the bubble is pricked.[21]

[21] A notable instance of the fleecing of unsuspecting and credulous persons occurred in the early eighties, during the furor occasioned by the introduction of Mr. Edison’s electric-light system. A corporation claiming to have a self-generating dynamo (practically perpetual motion) advertised its preposterous claims extensively, and actually succeeded in selling a large amount of stock, which, of course, proved to be absolutely worthless.

To one who is unacquainted with the trying circumstances attending the introduction and marketing of patented devices, it might seem unnecessary that an inventor and his business associates should be obliged to take into account the unlawful or ostensible competition of pirates or schemers, who, in the absence of legal decision, may run a free course for a long time. Nevertheless, as public patronage is the element vitally requisite for commercial success, and as the public is not usually in full possession of all the facts and therefore cannot discriminate between the genuine and the false, the legitimate inventor must avail himself of every possible means of proclaiming and asserting his rights if he desires to derive any benefit from the results of his skill and labor. Not only must he be prepared to fight in the Patent Office and pursue a regular course of patent litigation against those who may honestly deem themselves to be protected by other inventions or patents of similar character, and also proceed against more palpable infringers who are openly, defiantly, and illegitimately engaged in competitive business operations, but he must, as well, endeavor to protect himself against the assaults of impudent fraud by educating the public mind to a point of intelligent apprehension of the true status of his invention and the conflicting claims involved.

When the nature of a patent right is considered it is difficult to see why this should be so. The inventor creates a new thing–an invention of utility–and the people, represented by the Federal Government, say to him in effect: “Disclose your invention to us in a patent so that we may know how to practice it, and we will agree to give you a monopoly for seventeen years, after which we shall be free to use it. If the right thus granted is invaded, apply to a Federal Court and the infringer will be enjoined and required to settle in damages.” Fair and false promise! Is it generally realized that no matter how flagrant the infringement nor how barefaced and impudent the infringer, no Federal Court will grant an injunction UNTIL THE PATENT SHALL HAVE BEEN FIRST LITIGATED TO FINAL HEARING AND SUSTAINED? A procedure, it may be stated, requiring years of time and thousands of dollars, during which other infringers have generally entered the field, and all have grown fat.

Thus Edison and his business associates have been forced into a veritable maelstrom of litigation during the major part of the last forty years, in the effort to procure for themselves a small measure of protec- tion for their interests under the numerous inventions of note that he has made at various times in that period. The earlier years of his inventive activity, while productive of many important contributions to electrical industries, such as stock tickers and printers, duplex, quadruplex, and automatic telegraphs, were not marked by the turmoil of interminable legal conflicts that arose after the beginning of the telephone and electric-light epochs. In fact, his inventions; up to and including his telephone improvements (which entered into already existing arts), had been mostly purchased by the Western Union and other companies, and while there was more or less contesting of his claims (especially in respect of the telephone), the extent of such litigation was not so conspicuously great as that which centred subsequently around his patents covering incandescent electric lighting and power systems.

Through these inventions there came into being an entirely new art, complete in its practicability evolved by Edison after protracted experiments founded upon most patient, thorough, and original methods of investigation extending over several years. Long before attaining the goal, he had realized with characteristic insight the underlying principles of the great and comprehensive problem he had started out to solve, and plodded steadily along the path that he had marked out, ignoring the almost universal scientific disbelief in his ultimate success. “Dreamer,” “fool,” “boaster” were among the appellations bestowed upon him by unbelieving critics. Ridicule was heaped upon him in the public prints, and mathematics were called into service by learned men to settle the point forever that he was attempting the utterly impossible.

But, presto! no sooner had he accomplished the task and shown concrete results to the world than he found himself in the anomalous position of being at once surrounded by the conditions which inevitably confront every inventor. The path through the trackless forest had been blazed, and now every one could find the way. At the end of the road was a rich prize belonging rightfully to the man who had opened a way to it, but the struggles of others to reach it by more or less honest methods now began and continued for many years. If, as a former commissioner once said, “Edison was the man who kept the path to the Patent Office hot with his footsteps,” there were other great inventors abreast or immediately on his heels, some, to be sure, with legitimate, original methods and vital improvements representing independent work; while there were also those who did not trouble to invent, but simply helped themselves to whatever ideas were available, and coming from any source.

Possibly events might have happened differently had Edison been able to prevent the announcement of his electric-light inventions until he was entirely prepared to bring out the system as a whole, ready for commercial exploitation, but the news of his production of a practical and successful incandescent lamp became known and spread like wild-fire to all corners of the globe. It took more than a year after the evolution of the lamp for Edison to get into position to do actual business, and during that time his laboratory was the natural Mecca of every inquiring person. Small wonder, then, that when he was prepared to market his invention he should find others entering that market, at home and abroad, at the same time, and with substantially similar merchandise.

Edison narrates two incidents that may be taken as characteristic of a good deal that had to be contended with, coming in the shape of nefarious attack. “In the early days of my electric light,” he says, “curiosity and interest brought a great many people to Menlo Park to see it. Some of them did not come with the best of intentions. I remember the visit of one expert, a well-known electrician, a graduate of Johns Hopkins University, and who then represented a Baltimore gas company. We had the lamps exhibited in a large room, and so arranged on a table as to illustrate the regular layout of circuits for houses and streets. Sixty of the men employed at the laboratory were used as watchers, each to keep an eye on a certain section of the exhibit, and see there was no monkeying with it. This man had a length of insulated No. 10 wire passing through his sleeves and around his back, so that his hands would conceal the ends and no one would know he had it. His idea, of course, was to put this wire across the ends of the supplying circuits, and short-circuit the whole thing–put it all out of business without being detected. Then he could report how easily the electric light went out, and a false impression would be conveyed to the public. He did not know that we had already worked out the safety-fuse, and that every group of lights was thus protected independently. He put this jumper slyly in contact with the wires– and just four lamps went out on the section he tampered with. The watchers saw him do it, however, and got hold of him and just led him out of the place with language that made the recording angels jump for their typewriters.”

The other incident is as follows: “Soon after I had got out the incandescent light I had an interference in the Patent Office with a man from Wisconsin. He filed an application for a patent and entered into a conspiracy to `swear back’ of the date of my invention, so as to deprive me of it. Detectives were put on the case, and we found he was a `faker,’ and we took means to break the thing up. Eugene Lewis, of Eaton & Lewis, had this in hand for me. Several years later this same man attempted to defraud a leading firm of manufacturing chemists in New York, and was sent to State prison. A short time after that a syndicate took up a man named Goebel and tried to do the same thing, but again our detective-work was too much for them. This was along the same line as the attempt of Drawbaugh to deprive Bell of his telephone. Whenever an invention of large prospective value comes out, these cases always occur. The lamp patent was sustained in the New York Federal Court. I thought that was final and would end the matter, but another Federal judge out in St. Louis did not sustain it. The result is I have never enjoyed any benefits from my lamp patents, although I fought for many years.” The Goebel case will be referred to later in this chapter.

The original owner of the patents and inventions covering his electric-lighting system, the Edison Electric Light Company (in which Edison was largely interested as a stockholder), thus found at the outset that its commercial position was imperilled by the activity of competitors who had sprung up like mushrooms. It became necessary to take proper preliminary legal steps to protect the interests which had been acquired at the cost of so much money and such incessant toil and experiment. During the first few years in which the business of the introduction of the light was carried on with such strenuous and concentrated effort, the attention of Edison and his original associates was constantly focused upon the commercial exploitation and the further development of the system at home and abroad. The difficult and perplexing situation at that time is thus described by Major S. B. Eaton:

“The reason for the delay in beginning and pushing suits for infringements of the lamp patent has never been generally understood. In my official position as president of the Edison Electric Light Company I became the target, along with Mr. Edison, for censure from the stockholders and others on account of this delay, and I well remember how deep the feeling was. In view of the facts that a final injunction on the lamp patent was not obtained until the life of the patent was near its end, and, next, that no damages in money were ever paid by the guilty infringers, it has been generally believed that Mr. Edison sacrificed the interest of his stockholders selfishly when he delayed the prosecution of patent suits and gave all his time and energies to manufacturing. This belief was the stronger because the manufacturing enterprises belonged personally to Mr. Edison and not to his company. But the facts render it easy to dispel this false belief. The Edison inventions were not only a lamp; they comprised also an entire system of central stations. Such a thing was new to the world, and the apparatus, as well as the manufacture thereof, was equally new. Boilers, engines, dynamos, motors, distribution mains, meters, house- wiring, safety-devices, lamps, and lamp-fixtures–all were vital parts of the whole system. Most of them were utterly novel and unknown to the arts, and all of them required quick, and, I may say, revolutionary thought and invention. The firm of Babcock & Wilcox gave aid on the boilers, Armington & Sims undertook the engines, but everything else was abnormal. No factories in the land would take up the manufacture. I remember, for instance, our interviews with Messrs. Mitchell, Vance & Co., the leading manufacturers of house gas-lighting fixtures, such as brackets and chandeliers. They had no faith in electric lighting, and rejected all our overtures to induce them to take up the new business of making electric- light fixtures. As regards other parts of the Edison system, notably the Edison dynamo, no such machines had ever existed; there was no factory in the world equipped to make them, and, most discouraging of all, the very scientific principles of their construction were still vague and experimental.

“What was to be done? Mr. Edison has never been greater than when he met and solved this crisis. `If there are no factories,’ he said, `to make my inventions, I will build the factories myself. Since capital is timid, I will raise and supply it. The issue is factories or death.’ Mr. Edison invited the co- operation of his leading stockholders. They lacked confidence or did not care to increase their investments. He was forced to go on alone. The chain of Edison shops was then created. By far the most perplexing of these new manufacturing problems was the lamp. Not only was it a new industry, one without shadow of prototype, but the mechanical devices for making the lamps, and to some extent the very machines to make those devices, were to be invented. All of this was done by the courage, capital, and invincible energy and genius of the great inventor. But Mr. Edison could not create these great and diverse industries and at the same time give requisite attention to litigation. He could not start and develop the new and hard business of electric lighting and yet spare one hour to pursue infringers. One thing or the other must wait. All agreed that it must be the litigation. And right there a lasting blow was given to the prestige of the Edison patents. The delay was translated as meaning lack of confidence; and the alert infringer grew strong in courage and capital. Moreover, and what was the heaviest blow of all, he had time, thus unmolested, to get a good start.

“In looking back on those days and scrutinizing them through the years, I am impressed by the greatness, the solitary greatness I may say, of Mr. Edison. We all felt then that we were of importance, and that our contribution of effort and zeal were vital. I can see now, however, that the best of us was nothing but the fly on the wheel. Suppose anything had happened to Edison? All would have been chaos and ruin.. To him, therefore, be the glory, if not the profit.”

The foregoing remarks of Major Eaton show authoritatively how the much-discussed delay in litigating the Edison patents was so greatly misunderstood at the time, and also how imperatively necessary it was for Edison and his associates to devote their entire time and energies to the commercial development of the art. As the lighting business increased, however, and a great number of additional men were initiated into its mysteries, Edison and his experts were able to spare some time to legal matters, and an era of active patent litigation against infringers was opened about the year 1885 by the Edison company, and thereafter continued for many years.

While the history of this vast array of legal proceedings possesses a fascinating interest for those involved, as well as for professional men, legal and scientific, it could not be expected that it would excite any such feeling on the part of a casual reader. Hence, it is not proposed to encumber this narrative with any detailed record of the numerous suits that were brought and conducted through their complicated ramifications by eminent counsel. Suffice it to say that within about sixteen years after the commencement of active patent litigation, there had been spent by the owners of the Edison lighting patents upward of two million dollars in prosecuting more than two hundred lawsuits brought against persons who were infringing many of the patents of Edison on the incandescent electric lamp and component parts of his system. Over fifty separate patents were involved in these suits, including the basic one on the lamp (ordinarily called the “Filament” patent), other detail lamp patents, as well as those on sockets, switches, dynamos, motors, and distributing systems.

The principal, or “test,” suit on the “Filament” patent was that brought against “The United States Electric Lighting Company,” which became a cause celebre in the annals of American jurisprudence. Edison’s claims were strenuously and stubbornly contested throughout a series of intense legal conflicts that raged in the courts for a great many years. Both sides of the controversy were represented by legal talent of the highest order, under whose examination and cross-examination volumes of testimony were taken, until the printed record (including exhibits) amounted to more than six thousand pages. Scientific and technical literature and records in all parts of the civilized world were subjected to the most minute scrutiny of opposing experts in the endeavor to prove Edison to be merely an adapter of methods and devices already projected or suggested by others. The world was ransacked for anything that might be claimed as an anticipation of what he had done. Every conceivable phase of ingenuity that could be devised by technical experts was exercised in the attempt to show that Edison had accomplished nothing new. Everything that legal acumen could suggest– every subtle technicality of the law–all the complicated variations of phraseology that the novel nomenclature of a young art would allow–all were pressed into service and availed of by the contestors of the Edison invention in their desperate effort to defeat his claims. It was all in vain, however, for the decision of the court was in favor of Edison, and his lamp patent was sustained not only by the tribunal of the first resort, but also by the Appellate Court some time afterward.

The first trial was had before Judge Wallace in the United States Circuit Court for the Southern District of New York, and the appeal was heard by Judges Lacombe and Shipman, of the United States Circuit Court of Appeals. Before both tribunals the cause had been fully represented by counsel chosen from among the most eminent representatives of the bar at that time, those representing the Edison interests being the late Clarence A. Seward and Grosvenor P. Lowrey, together with Sherburne Blake Eaton, Albert H. Walker, and Richard N. Dyer. The presentation of the case to the courts had in both instances been marked by masterly and able arguments, elucidated by experiments and demonstrations to educate the judges on technical points. Some appreciation of the magnitude of this case may be gained from the fact that the argument on its first trial employed a great many days, and the minutes covered hundreds of pages of closely typewritten matter, while the argument on appeal required eight days, and was set forth in eight hundred and fifty pages of typewriting. Eliminating all purely forensic eloquence and exparte statements, the addresses of counsel in this celebrated suit are worthy of deep study by an earnest student, for, taken together, they comprise the most concise, authentic, and complete history of the prior state of the art and the development of the incandescent lamp that had been made up to that time.[22]

[22] The argument on appeal was conducted with the dignity and decorum that characterize such a proceeding in that court. There is usually little that savors of humor in the ordinary conduct of a case of this kind, but in the present instance a pertinent story was related by Mr. Lowrey, and it is now reproduced. In the course of his address to the court, Mr. Lowrey said:

“I have to mention the name of one expert whose testimony will, I believe, be found as accurate, as sincere, as straightforward as if it were the preaching of the gospel. I do it with great pleasure,