This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
  • 1909
Buy it on Amazon FREE Audible 30 days

strains without further selection, has, until a few years ago, been almost entirely lost sight of. Only a very few agriculturists have applied it: among these are Patrick Shirreff (“Die Verbesserung der Getreide-Arten”, translated by R. Hesse, Halle, 1880.) in Scotland and Willet M. Hays (“Wheat, varieties, breeding, cultivation”, Univ. Minnesota, Agricultural Experimental Station, Bull. no. 62, 1899.) in Minnesota. Patrick Shirreff observed the fact, that in large fields of cereals, single plants may from time to time be found with larger ears, which justify the expectation of a far greater yield. In the course of about twenty-five years he isolated in this way two varieties of wheat and two of oats. He simply multiplied them as fast as possible, without any selection, and put them on the market.

Hays was struck by the fact that the yield of wheat in Minnesota was far beneath that in the neighbouring States. The local varieties were Fife and Blue Stem. They gave him, on inspection, some better specimens, “phenomenal yielders” as he called them. These were simply isolated and propagated, and, after comparison with the parent-variety and with some other selected strains of less value, were judged to be of sufficient importance to be tested by cultivation all over the State of Minnesota. They have since almost supplanted the original types, at least in most parts of the State, with the result that the total yield of wheat in Minnesota is said to have been increased by about a million dollars yearly.

Definite progress in the method of single-ear sowing has, however, been made only recently. It had been foreshadowed by Patrick Shirreff, who after the production of the four varieties already mentioned, tried to carry out his work on a larger scale, by including numerous minor deviations from the main type. He found by doing so that the chances of obtaining a better form were sufficiently increased to justify the trial. But it was Nilsson who discovered the almost inexhaustible polymorphy of cereals and other agricultural crops and made it the starting-point for a new and entirely trustworthy method of the highest utility. By this means he has produced during the last fifteen years a number of new and valuable races, which have already supplanted the old types on numerous farms in Sweden and which are now being introduced on a large scale into Germany and other European countries.

It is now twenty years since the station at Svalof was founded. During the first period of its work, embracing about five years, selection was practised on the principle which was then generally used in Germany. In order to improve a race a sample of the best ears was carefully selected from the best fields of the variety. These ears were considered as representatives of the type under cultivation, and it was assumed that by sowing their grains on a small plot a family could be obtained, which could afterwards be improved by a continuous selection. Differences between the collected ears were either not observed or disregarded. At Svalof this method of selection was practised on a far larger scale than on any German farm, and the result was, broadly speaking, the same. This may be stated in the following words: improvement in a few cases, failure in all the others. Some few varieties could be improved and yielded excellent new types, some of which have since been introduced into Swedish agriculture and are now prominent races in the southern and middle parts of the country. But the station had definite aims, and among them was the improvement of the Chevalier barley. This, in Middle Sweden, is a fine brewer’s barley, but liable to failure during unfavourable summers on account of its slender stems. It was selected with a view of giving it stiffer stems, but in spite of all the care and work bestowed upon it no satisfactory result was obtained.

This experience, combined with a number of analogous failures, could not fail to throw doubt upon the whole method. It was evident that good results were only exceptions, and that in most cases the principle was not one that could be relied upon. The exceptions might be due to unknown causes, and not to the validity of the method; it became therefore of much more interest to search for the causes than to continue the work along these lines.

In the year 1892 a number of different varieties of cereals were cultivated on a large scale and a selection was again made from them. About two hundred samples of ears were chosen, each apparently constituting a different type. Their seeds were sown on separate plots and manured and treated as much as possible in the same manner. The plots were small and arranged in rows so as to facilitate the comparison of allied types. During the whole period of growth and during the ripening of the ears the plots were carefully studied and compared: they were harvested separately; ears and kernels were counted and weighed, and notes were made concerning layering, rust and other cereal pests.

The result of this experiment was, in the main, no distinct improvement. Nilsson was especially struck by the fact that the plots, which should represent distinct types, were far from uniform. Many of them were as multiform as the fields from which the parent-ears were taken. Others showed variability in a less degree, but in almost all of them it was clear that a pure race had not been obtained. The experiment was a fair one, inasmuch as it demonstrated the polymorphic variability of cereals beyond all doubt and in a degree hitherto unsuspected; but from the standpoint of the selectionist it was a failure. Fortunately there were, however, one or two exceptions. A few lots showed a perfect uniformity in regard to all the stalks and ears: these were small families. This fact suggested the idea that each might have been derived from a single ear. During the selection in the previous summer, Nilsson had tried to find as many ears as possible of each new type which he recognised in his fields. But the variability of his crops was so great, that he was rarely able to include more than two or three ears in the same group, and, in a few cases, he found only one representative of the supposed type. It might, therefore, be possible that those small uniform plots were the direct progeny of ears, the grains of which had not been mixed with those from other ears before sowing. Exact records had, of course, been kept of the chosen samples, and the number of ears had been noted in each case. It was, therefore, possible to answer the question and it was found that those plots alone were uniform on which the kernels of one single ear only had been sown. Nilsson concluded that the mixture of two or more ears in a single sowing might be the cause of the lack of uniformity in the progeny. Apparently similar ears might be different in their progeny.

Once discovered, this fact was elevated to the rank of a leading principle and tested on as large a scale as possible. The fields were again carefully investigated and every single ear, which showed a distinct divergence from the main type in one character or another, was selected. A thousand samples were chosen, but this time each sample consisted of one ear only. Next year, the result corresponded to the expectation. Uniformity prevailed almost everywhere; only a few lots showed a discrepancy, which might be ascribed to the accidental selection of hybrid ears. It was now clear that the progeny of single ears was, as a rule, pure, whereas that of mixed ears was impure. The single-ear selection or single-ear sowing, which had fallen into discredit in Germany and elsewhere in Europe, was rediscovered. It proved to be the only trustworthy principle of selection. Once isolated, such single-parent races are constant from seed and remain true to their type. No further selection is needed; they have simply to be multiplied and their real value tested.

Patrick Shirreff, in his early experiments, Le Couteur, Hays and others had observed the rare occurrence of exceptionally good yielders and the value of their isolation to the agriculturist. The possibility of error in the choice of such striking specimens and the necessity of judging their value by their progeny were also known to these investigators, but they had not the slightest idea of all the possibilities suggested by their principle. Nilsson, who is a botanist as well as an agriculturist, discovered that, besides these exceptionably good yielders, every variety of a cereal consists of hundreds of different types, which find the best conditions for success when grown together, but which, after isolation, prove to be constant. Their preference for mixed growth is so definite, that once isolated, their claims on manure and treatment are found to be much higher than those of the original mixed variety. Moreover, the greatest care is necessary to enable them to retain their purity, and as soon as they are left to themselves they begin to deteriorate through accidental crosses and admixtures and rapidly return to the mixed condition.

Reverting now to Darwin’s discussion of the variability of cereals, we may conclude that subsequent investigation has proved it to be exactly of the kind which he describes. The only difference is that in reality it reaches a degree, quite unexpected by Darwin and his contemporaries. But it is polymorphic variability in the strictest sense of the word. How the single constituents of a variety originate we do not see. We may assume, and there can hardly be a doubt about the truth of the assumption, that a new character, once produced, will slowly but surely be combined through accidental crosses with a large number of previously existing types, and so will tend to double the number of the constituents of the variety. But whether it first appears suddenly or whether it is only slowly evolved we cannot determine. It would, of course, be impossible to observe either process in such a mixture. Only cultures of pure races, of single-parent races as we have called them, can afford an opportunity for this kind of observation. In the fields of Svalof new and unexpected qualities have recently been seen, from time to time, to appear suddenly. These characters are as distinct as the older ones and appear to be constant from the moment of their origin.

Darwin has repeatedly insisted that man does not cause variability. He simply selects the variations given to him by the hand of nature. He may repeat this process in order to accumulate different new characters in the same family, thus producing varieties of a higher order. This process of accumulation would, if continued for a longer time, lead to the augmentation of the slight differences characteristic of varieties into the greater differences characteristic of species and genera. It is in this way that horticultural and agricultural experience contribute to the problem of the conversion of varieties into species, and to the explanation of the admirable adaptations of each organism to its complex conditions of life. In the long run new forms, distinguished from their allies by quite a number of new characters, would, by the extermination of the older intermediates, become distinct species.

Thus we see that the theory of the origin of species by means of natural selection is quite independent of the question, how the variations to be selected arise. They may arise slowly, from simple fluctuations, or suddenly, by mutations; in both cases natural selection will take hold of them, will multiply them if they are beneficial, and in the course of time accumulate them, so as to produce that great diversity of organic life, which we so highly admire.

Darwin has left the decision of this difficult and obviously subordinate point to his followers. But in his Pangenesis hypothesis he has given us the clue for a close study and ultimate elucidation of the subject under discussion.



Professor of Biology in the University of Cambridge.

Darwin’s work has the property of greatness in that it may be admired from more aspects than one. For some the perception of the principle of Natural Selection stands out as his most wonderful achievement to which all the rest is subordinate. Others, among whom I would range myself, look up to him rather as the first who plainly distinguished, collected, and comprehensively studied that new class of evidence from which hereafter a true understanding of the process of Evolution may be developed. We each prefer our own standpoint of admiration; but I think that it will be in their wider aspect that his labours will most command the veneration of posterity.

A treatise written to advance knowledge may be read in two moods. The reader may keep his mind passive, willing merely to receive the impress of the writer’s thought; or he may read with his attention strained and alert, asking at every instant how the new knowledge can be used in a further advance, watching continually for fresh footholds by which to climb higher still. Of Shelley it has been said that he was a poet for poets: so Darwin was a naturalist for naturalists. It is when his writings are used in the critical and more exacting spirit with which we test the outfit for our own enterprise that we learn their full value and strength. Whether we glance back and compare his performance with the efforts of his predecessors, or look forward along the course which modern research is disclosing, we shall honour most in him not the rounded merit of finite accomplishment, but the creative power by which he inaugurated a line of discovery endless in variety and extension. Let us attempt thus to see his work in true perspective between the past from which it grew, and the present which is its consequence. Darwin attacked the problem of Evolution by reference to facts of three classes: Variation; Heredity; Natural Selection. His work was not as the laity suppose, a sudden and unheralded revelation, but the first fruit of a long and hitherto barren controversy. The occurrence of variation from type, and the hereditary transmission of such variation had of course been long familiar to practical men, and inferences as to the possible bearing of those phenomena on the nature of specific difference had been from time to time drawn by naturalists. Maupertuis, for example, wrote “Ce qui nous reste a examiner, c’est comment d’un seul individu, il a pu naitre tant d’especes si differentes.” And again “La Nature contient le fonds de toutes ces varietes: mais le hasard ou l’art les mettent en oeuvre. C’est ainsi que ceux dont l’industrie s’applique a satisfaire le gout des curieux, sont, pour ainsi dire, creatures d’especes nouvelles.” (“Venus Physique, contenant deux Dissertations, l’une sur l’origine des Hommes et des Animaux: Et l’autre sur l’origine des Noirs” La Haye, 1746, pages 124 and 129. For an introduction to the writings of Maupertuis I am indebted to an article by Professor Lovejoy in “Popular Sci. Monthly”, 1902.)

Such passages, of which many (though few so emphatic) can be found in eighteenth century writers, indicate a true perception of the mode of Evolution. The speculations hinted at by Buffon (For the fullest account of the views of these pioneers of Evolution, see the works of Samuel Butler, especially “Evolution, Old and New” (2nd edition) 1882. Butler’s claims on behalf of Buffon have met with some acceptance; but after reading what Butler has said, and a considerable part of Buffon’s own works, the word “hinted” seems to me a sufficiently correct description of the part he played. It is interesting to note that in the chapter on the Ass, which contains some of his evolutionary passages, there is a reference to “plusieurs idees tres-elevees sur la generation” contained in the Letters of Maupertuis.), developed by Erasmus Darwin, and independently proclaimed above all by Lamarck, gave to the doctrine of descent a wide renown. The uniformitarian teaching which Lyell deduced from geological observation had gained acceptance. The facts of geographical distribution (See especially W. Lawrence, “Lectures on Physiology”, London, 1823, pages 213 f.) had been shown to be obviously inconsistent with the Mosaic legend. Prichard, and Lawrence, following the example of Blumenbach, had successfully demonstrated that the races of Man could be regarded as different forms of one species, contrary to the opinion up till then received. These treatises all begin, it is true, with a profound obeisance to the sons of Noah, but that performed, they continue on strictly modern lines. The question of the mutability of species was thus prominently raised.

Those who rate Lamarck no higher than did Huxley in his contemptuous phrase “buccinator tantum,” will scarcely deny that the sound of the trumpet had carried far, or that its note was clear. If then there were few who had already turned to evolution with positive conviction, all scientific men must at least have known that such views had been promulgated; and many must, as Huxley says, have taken up his own position of “critical expectancy.” (See the chapter contributed to the “Life and Letters of Charles Darwin” II. page 195. I do not clearly understand the sense in which Darwin wrote (Autobiography, ibid. I. page 87): “It has sometimes been said that the success of the “Origin” proved ‘that the subject was in the air,’ or ‘that men’s minds were prepared for it.’ I do not think that this is strictly true, for I occasionally sounded not a few naturalists, and never happened to come across a single one who seemed to doubt about the permanence of species.” This experience may perhaps have been an accident due to Darwin’s isolation. The literature of the period abounds with indications of “critical expectancy.” A most interesting expression of that feeling is given in the charming account of the “Early Days of Darwinism” by Alfred Newton, “Macmillan’s Magazine”, LVII. 1888, page 241. He tells how in 1858 when spending a dreary summer in Iceland, he and his friend, the ornithologist John Wolley, in default of active occupation, spent their days in discussion. “Both of us taking a keen interest in Natural History, it was but reasonable that a question, which in those days was always coming up wherever two or more naturalists were gathered together, should be continually recurring. That question was, ‘What is a species?’ and connected therewith was the other question, ‘How did a species begin?’…Now we were of course fairly well acquainted with what had been published on these subjects.” He then enumerates some of these publications, mentioning among others T. Vernon Wollaston’s “Variation of Species”–a work which has in my opinion never been adequately appreciated. He proceeds: “Of course we never arrived at anything like a solution of these problems, general or special, but we felt very strongly that a solution ought to be found, and that quickly, if the study of Botany and Zoology was to make any great advance.” He then describes how on his return home he received the famous number of the “Linnean Journal” on a certain evening. “I sat up late that night to read it; and never shall I forget the impression it made upon me. Herein was contained a perfectly simple solution of all the difficulties which had been troubling me for months past…I went to bed satisfied that a solution had been found.”)

Why, then, was it, that Darwin succeeded where the rest had failed? The cause of that success was two-fold. First, and obviously, in the principle of Natural Selection he had a suggestion which would work. It might not go the whole way, but it was true as far as it went. Evolution could thus in great measure be fairly represented as a consequence of demonstrable processes. Darwin seldom endangers the mechanism he devised by putting on it strains much greater than it can bear. He at least was under no illusion as to the omnipotence of Selection; and he introduces none of the forced pleading which in recent years has threatened to discredit that principle.

For example, in the latest text of the “Origin” (“Origin”, (6th edition (1882), page 421.) we find him saying:

“But as my conclusions have lately been much misrepresented, and it has been stated that I attribute the modification of species exclusively to natural selection, I may be permitted to remark that in the first edition of this work, and subsequently, I placed in a most conspicuous position– namely, at the close of the Introduction–the following words: ‘I am convinced that natural selection has been the main but not the exclusive means of modification.'”

But apart from the invention of this reasonable hypothesis, which may well, as Huxley estimated, “be the guide of biological and psychological speculation for the next three or four generations,” Darwin made a more significant and imperishable contribution. Not for a few generations, but through all ages he should be remembered as the first who showed clearly that the problems of Heredity and Variation are soluble by observation, and laid down the course by which we must proceed to their solution. (Whatever be our estimate of the importance of Natural Selection, in this we all agree. Samuel Butler, the most brilliant, and by far the most interesting of Darwin’s opponents–whose works are at length emerging from oblivion–in his Preface (1882) to the 2nd edition of “Evolution, Old and New”, repeats his earlier expression of homage to one whom he had come to regard as an enemy: “To the end of time, if the question be asked, ‘Who taught people to believe in Evolution?’ the answer must be that it was Mr. Darwin. This is true, and it is hard to see what palm of higher praise can be awarded to any philosopher.”) The moment of inspiration did not come with the reading of Malthus, but with the opening of the “first note-book on Transmutation of Species.” (“Life and Letters”, I. pages 276 and 83.) Evolution is a process of Variation and Heredity. The older writers, though they had some vague idea that it must be so, did not study Variation and Heredity. Darwin did, and so begat not a theory, but a science.

The extent to which this is true, the scientific world is only beginning to realise. So little was the fact appreciated in Darwin’s own time that the success of his writings was followed by an almost total cessation of work in that special field. Of the causes which led to this remarkable consequence I have spoken elsewhere. They proceeded from circumstances peculiar to the time; but whatever the causes there is no doubt that this statement of the result is historically exact, and those who make it their business to collect facts elucidating the physiology of Heredity and Variation are well aware that they will find little to reward their quest in the leading scientific Journals of the Darwinian epoch.

In those thirty years the original stock of evidence current and in circulation even underwent a process of attrition. As in the story of the Eastern sage who first wrote the collected learning of the universe for his sons in a thousand volumes, and by successive compression and burning reduced them to one, and from this by further burning distilled the single ejaculation of the Faith, “There is no god but God and Mohamed is the Prophet of God,” which was all his maturer wisdom deemed essential:–so in the books of that period do we find the corpus of genetic knowledge dwindle to a few prerogative instances, and these at last to the brief formula of an unquestioned creed.

And yet in all else that concerns biological science this period was, in very truth, our Golden Age, when the natural history of the earth was explored as never before; morphology and embryology were exhaustively ransacked; the physiology of plants and animals began to rival chemistry and physics in precision of method and in the rapidity of its advances; and the foundations of pathology were laid.

In contrast with this immense activity elsewhere the neglect which befel the special physiology of Descent, or Genetics as we now call it, is astonishing. This may of course be interpreted as meaning that the favoured studies seemed to promise a quicker return for effort, but it would be more true to say that those who chose these other pursuits did so without making any such comparison; for the idea that the physiology of Heredity and Variation was a coherent science, offering possibilities of extraordinary discovery, was not present to their minds at all. In a word, the existence of such a science was well nigh forgotten. It is true that in ancillary periodicals, as for example those that treat of entomology or horticulture, or in the writings of the already isolated systematists (This isolation of the systematists is the one most melancholy sequela of Darwinism. It seems an irony that we should read in the peroration to the “Origin” that when the Darwinian view is accepted “Systematists will be able to pursue their labours as at present; but they will not be incessantly haunted by the shadowy doubt whether this or that form be a true species. This, I feel sure, and I speak after experience, will be no slight relief. The endless disputes whether or not some fifty species of British brambles are good species will cease.” “Origin”, 6th edition (1882), page 425. True they have ceased to attract the attention of those who lead opinion, but anyone who will turn to the literature of systematics will find that they have not ceased in any other sense. Should there not be something disquieting in the fact that among the workers who come most into contact with specific differences, are to be found the only men who have failed to be persuaded of the unreality of those differences?), observations with this special bearing were from time to time related, but the class of fact on which Darwin built his conceptions of Heredity and Variation was not seen in the highways of biology. It formed no part of the official curriculum of biological students, and found no place among the subjects which their teachers were investigating.

During this period nevertheless one distinct advance was made, that with which Weismann’s name is prominently connected. In Darwin’s genetic scheme the hereditary transmission of parental experience and its consequences played a considerable role. Exactly how great that role was supposed to be, he with his habitual caution refrained from specifying, for the sufficient reason that he did not know. Nevertheless much of the process of Evolution, especially that by which organs have become degenerate and rudimentary, was certainly attributed by Darwin to such inheritance, though since belief in the inheritance of acquired characters fell into disrepute, the fact has been a good deal overlooked. The “Origin” without “use and disuse” would be a materially different book. A certain vacillation is discernible in Darwin’s utterances on this question, and the fact gave to the astute Butler an opportunity for his most telling attack. The discussion which best illustrates the genetic views of the period arose in regard to the production of the rudimentary condition of the wings of many beetles in the Madeira group of islands, and by comparing passages from the “Origin” (6th edition pages 109 and 401. See Butler, “Essays on Life, Art, and Science”, page 265, reprinted 1908, and “Evolution, Old and New”, chapter XXII. (2nd edition), 1882.) Butler convicts Darwin of saying first that this condition was in the main the result of Selection, with disuse aiding, and in another place that the main cause of degeneration was disuse, but that Selection had aided. To Darwin however I think the point would have seemed one of dialectics merely. To him the one paramount purpose was to show that somehow an Evolution by means of Variation and Heredity might have brought about the facts observed, and whether they had come to pass in the one way or the other was a matter of subordinate concern.

To us moderns the question at issue has a diminished significance. For over all such debates a change has been brought by Weismann’s challenge for evidence that use and disuse have any transmitted effects at all. Hitherto the transmission of many acquired characteristics had seemed to most naturalists so obvious as not to call for demonstration. (W. Lawrence was one of the few who consistently maintained the contrary opinion. Prichard, who previously had expressed himself in the same sense, does not, I believe repeat these views in his later writings, and there are signs that he came to believe in the transmission of acquired habits. See Lawrence, “Lect. Physiol.” 1823, pages 436-437, 447 Prichard, Edin. Inaug. Disp. 1808 (not seen by me), quoted ibid. and “Nat. Hist. Man”, 1843, pages 34 f.) Weismann’s demand for facts in support of the main proposition revealed at once that none having real cogency could be produced. The time-honoured examples were easily shown to be capable of different explanations. A few certainly remain which cannot be so summarily dismissed, but–though it is manifestly impossible here to do justice to such a subject–I think no one will dispute that these residual and doubtful phenomena, whatever be their true nature, are not of a kind to help us much in the interpretation of any of those complex cases of adaptation which on the hypothesis of unguided Natural Selection are especially difficult to understand. Use and disuse were invoked expressly to help us over these hard places; but whatever changes can be induced in offspring by direct treatment of the parents, they are not of a kind to encourage hope of real assistance from that quarter. It is not to be denied that through the collapse of this second line of argument the Selection hypothesis has had to take an increased and perilous burden. Various ways of meeting the difficulty have been proposed, but these mostly resolve themselves into improbable attempts to expand or magnify the powers of Natural Selection.

Weismann’s interpellation, though negative in purpose, has had a lasting and beneficial effect, for through his thorough demolition of the old loose and distracting notions of inherited experience, the ground has been cleared for the construction of a true knowledge of heredity based on experimental fact.

In another way he made a contribution of a more positive character, for his elaborate speculations as to the genetic meaning of cytological appearances have led to a minute investigation of the visible phenomena occurring in those divisions by which germ-cells arise. Though the particular views he advocated have very largely proved incompatible with the observed facts of heredity, yet we must acknowledge that it was chiefly through the stimulus of Weismann’s ideas that those advances in cytology were made; and though the doctrine of the continuity of germ-plasm cannot be maintained in the form originally propounded, it is in the main true and illuminating. (It is interesting to see how nearly Butler was led by natural penetration, and from absolutely opposite conclusions, back to this underlying truth: “So that each ovum when impregnate should be considered not as descended from its ancestors, but as being a continuation of the personality of every ovum in the chain of its ancestry, which every ovum IT ACTUALLY IS quite as truly as the octogenarian IS the same identity with the ovum from which he has been developed. This process cannot stop short of the primordial cell, which again will probably turn out to be but a brief resting-place. We therefore prove each one of us to BE ACTUALLY the primordial cell which never died nor dies, but has differentiated itself into the life of the world, all living beings whatever, being one with it and members one of another,” “Life and Habit”, 1878, page 86.) Nevertheless in the present state of knowledge we are still as a rule quite unable to connect cytological appearances with any genetic consequence and save in one respect (obviously of extreme importance–to be spoken of later) the two sets of phenomena might, for all we can see, be entirely distinct.

I cannot avoid attaching importance to this want of connection between the nuclear phenomena and the features of bodily organisation. All attempts to investigate Heredity by cytological means lie under the disadvantage that it is the nuclear changes which can alone be effectively observed. Important as they must surely be, I have never been persuaded that the rest of the cell counts for nothing. What we know of the behaviour and variability of chromosomes seems in my opinion quite incompatible with the belief that they alone govern form, and are the sole agents responsible in heredity. (This view is no doubt contrary to the received opinion. I am however interested to see it lately maintained by Driesch (“Science and Philosophy of the Organism”, London, 1907, page 233), and from the recent observations of Godlewski it has received distinct experimental support.)

If, then, progress was to be made in Genetics, work of a different kind was required. To learn the laws of Heredity and Variation there is no other way than that which Darwin himself followed, the direct examination of the phenomena. A beginning could be made by collecting fortuitous observations of this class, which have often thrown a suggestive light, but such evidence can be at best but superficial and some more penetrating instrument of research is required. This can only be provided by actual experiments in breeding.

The truth of these general considerations was becoming gradually clear to many of us when in 1900 Mendel’s work was rediscovered. Segregation, a phenomenon of the utmost novelty, was thus revealed. From that moment not only in the problem of the origin of species, but in all the great problems of biology a new era began. So unexpected was the discovery that many naturalists were convinced it was untrue, and at once proclaimed Mendel’s conclusions as either altogether mistaken, or if true, of very limited application. Many fantastic notions about the workings of Heredity had been asserted as general principles before: this was probably only another fancy of the same class.

Nevertheless those who had a preliminary acquaintance with the facts of Variation were not wholly unprepared for some such revelation. The essential deduction from the discovery of segregation was that the characters of living things are dependent on the presence of definite elements or factors, which are treated as units in the processes of Heredity. These factors can thus be recombined in various ways. They act sometimes separately, and sometimes they interact in conjunction with each other, producing their various effects. All this indicates a definiteness and specific order in heredity, and therefore in variation. This order cannot by the nature of the case be dependent on Natural Selection for its existence, but must be a consequence of the fundamental chemical and physical nature of living things. The study of Variation had from the first shown that an orderliness of this kind was present. The bodies and the properties of living things are cosmic, not chaotic. No matter how low in the scale we go, never do we find the slightest hint of a diminution in that all-pervading orderliness, nor can we conceive an organism existing for a moment in any other state. Moreover not only does this order prevail in normal forms, but again and again it is to be seen in newly-sprung varieties, which by general consent cannot have been subjected to a prolonged Selection. The discovery of Mendelian elements admirably coincided with and at once gave a rationale of these facts. Genetic Variation is then primarily the consequence of additions to, or omissions from, the stock of elements which the species contains. The further investigation of the species-problem must thus proceed by the analytical method which breeding experiments provide.

In the nine years which have elapsed since Mendel’s clue became generally known, progress has been rapid. We now understand the process by which a polymorphic race maintains its polymorphism. When a family consists of dissimilar members, given the numerical proportions in which these members are occurring, we can represent their composition symbolically and state what types can be transmitted by the various members. The difficulty of the “swamping effects of intercrossing” is practically at an end. Even the famous puzzle of sex-limited inheritance is solved, at all events in its more regular manifestations, and we know now how it is brought about that the normal sisters of a colour-blind man can transmit the colour-blindness while his normal brothers cannot transmit it.

We are still only on the fringe of the inquiry. It can be seen extending and ramifying in many directions. To enumerate these here would be impossible. A whole new range of possibilities is being brought into view by study of the interrelations between the simple factors. By following up the evidence as to segregation, indications have been obtained which can only be interpreted as meaning that when many factors are being simultaneously redistributed among the germ-cells, certain of them exert what must be described as a repulsion upon other factors. We cannot surmise whither this discovery may lead.

In the new light all the old problems wear a fresh aspect. Upon the question of the nature of Sex, for example, the bearing of Mendelian evidence is close. Elsewhere I have shown that from several sets of parallel experiments the conclusion is almost forced upon us that, in the types investigated, of the two sexes the female is to be regarded as heterozygous in sex, containing one unpaired dominant element, while the male is similarly homozygous in the absence of that element. (In other words, the ova are each EITHER female, OR male (i.e. non-female), but the sperms are all non-female.) It is not a little remarkable that on this point–which is the only one where observations of the nuclear processes of gameto-genesis have yet been brought into relation with the visible characteristics of the organisms themselves–there should be diametrical opposition between the results of breeding experiments and those derived from cytology.

Those who have followed the researches of the American school will be aware that, after it had been found in certain insects that the spermatozoa were of two kinds according as they contained or did not contain the accessory chromosome, E.B. Wilson succeeded in proving that the sperms possessing this accessory body were destined to form FEMALES on fertilisation, while sperms without it form males, the eggs being apparently indifferent. Perhaps the most striking of all this series of observations is that lately made by T.H. Morgan (Morgan, “Proc. Soc. Exp. Biol. Med.” V. 1908, and von Baehr, “Zool. Anz.” XXXII. page 507, 1908.), since confirmed by von Baehr, that in a Phylloxeran two kinds of spermatids are formed, respectively with and without an accessory (in this case, DOUBLE) chromosome. Of these, only those possessing the accessory body become functional spermatozoa, the others degenerating. We have thus an elucidation of the puzzling fact that in these forms fertilisation results in the formation of FEMALES only. How the males are formed–for of course males are eventually produced by the parthenogenetic females–we do not know.

If the accessory body is really to be regarded as bearing the factor for femaleness, then in Mendelian terms female is DD and male is DR. The eggs are indifferent and the spermatozoa are each male, OR female. But according to the evidence derived from a study of the sex-limited descent of certain features in other animals the conclusion seems equally clear that in them female must be regarded as DR and male as RR. The eggs are thus each either male or female and the spermatozoa are indifferent. How this contradictory evidence is to be reconciled we do not yet know. The breeding work concerns fowls, canaries, and the Currant moth (Abraxas grossulariata). The accessory chromosome has been now observed in most of the great divisions of insects (As Wilson has proved, the unpaired body is not a universal feature even in those orders in which it has been observed. Nearly allied types may differ. In some it is altogether unpaired. In others it is paired with a body of much smaller size, and by selection of various types all gradations can be demonstrated ranging to the condition in which the members of the pair are indistinguishable from each other.), except, as it happens, Lepidoptera. At first sight it seems difficult to suppose that a feature apparently so fundamental as sex should be differently constituted in different animals, but that seems at present the least improbable inference. I mention these two groups of facts as illustrating the nature and methods of modern genetic work. We must proceed by minute and specific analytical investigation. Wherever we look we find traces of the operation of precise and specific rules.

In the light of present knowledge it is evident that before we can attack the Species-problem with any hope of success there are vast arrears to be made up. He would be a bold man who would now assert that there was no sense in which the term Species might not have a strict and concrete meaning in contradistinction to the term Variety. We have been taught to regard the difference between species and variety as one of degree. I think it unlikely that this conclusion will bear the test of further research. To Darwin the question, What is a variation? presented no difficulties. Any difference between parent and offspring was a variation. Now we have to be more precise. First we must, as de Vries has shown, distinguish real, genetic, variation from FLUCTUATIONAL variations, due to environmental and other accidents, which cannot be transmitted. Having excluded these sources of error the variations observed must be expressed in terms of the factors to which they are due before their significance can be understood. For example, numbers of the variations seen under domestication, and not a few witnessed in nature, are simply the consequence of some ingredient being in an unknown way omitted from the composition of the varying individual. The variation may on the contrary be due to the addition of some new element, but to prove that it is so is by no means an easy matter. Casual observation is useless, for though these latter variations will always be dominants, yet many dominant characteristics may arise from another cause, namely the meeting of complementary factors, and special study of each case in two generations at least is needed before these two phenomena can be distinguished.

When such considerations are fully appreciated it will be realised that medleys of most dissimilar occurrences are all confused together under the term Variation. One of the first objects of genetic analysis is to disentangle this mass of confusion.

To those who have made no study of heredity it sometimes appears that the question of the effect of conditions in causing variation is one which we should immediately investigate, but a little thought will show that before any critical inquiry into such possibilities can be attempted, a knowledge of the working of heredity under conditions as far as possible uniform must be obtained. At the time when Darwin was writing, if a plant brought into cultivation gave off an albino variety, such an event was without hesitation ascribed to the change of life. Now we see that albino GAMETES, germs, that is to say, which are destitute of the pigment-forming factor, may have been originally produced by individuals standing an indefinite number of generations back in the ancestry of the actual albino, and it is indeed almost certain that the variation to which the appearance of the albino is due cannot have taken place in a generation later than that of the grandparents. It is true that when a new DOMINANT appears we should feel greater confidence that we were witnessing the original variation, but such events are of extreme rarity, and no such case has come under the notice of an experimenter in modern times, as far as I am aware. That they must have appeared is clear enough. Nothing corresponding to the Brown- breasted Game fowl is known wild, yet that colour is a most definite dominant, and at some moment since Gallus bankiva was domesticated, the element on which that special colour depends must have at least once been formed in the germ-cell of a fowl; but we need harder evidence than any which has yet been produced before we can declare that this novelty came through over-feeding, or change of climate, or any other disturbance consequent on domestication. When we reflect on the intricacies of genetic problems as we must now conceive them there come moments when we feel almost thankful that the Mendelian principles were unknown to Darwin. The time called for a bold pronouncement, and he made it, to our lasting profit and delight. With fuller knowledge we pass once more into a period of cautious expectation and reserve.

In every arduous enterprise it is pleasanter to look back at difficulties overcome than forward to those which still seem insurmountable, but in the next stage there is nothing to be gained by disguising the fact that the attributes of living things are not what we used to suppose. If they are more complex in the sense that the properties they display are throughout so regular (I have in view, for example, the marvellous and specific phenomena of regeneration, and those discovered by the students of “Entwicklungsmechanik”. The circumstances of its occurrence here preclude any suggestion that this regularity has been brought about by the workings of Selection. The attempts thus to represent the phenomena have resulted in mere parodies of scientific reasoning.) that the Selection of minute random variations is an unacceptable account of the origin of their diversity, yet by virtue of that very regularity the problem is limited in scope and thus simplified.

To begin with, we must relegate Selection to its proper place. Selection permits the viable to continue and decides that the non-viable shall perish; just as the temperature of our atmosphere decides that no liquid carbon shall be found on the face of the earth: but we do not suppose that the form of the diamond has been gradually achieved by a process of Selection. So again, as the course of descent branches in the successive generations, Selection determines along which branch Evolution shall proceed, but it does not decide what novelties that branch shall bring forth. “La Nature contient le fonds de toutes ces varietes, mais le hazard ou l’art les mettent en oeuvre,” as Maupertuis most truly said.

Not till knowledge of the genetic properties of organisms has attained to far greater completeness can evolutionary speculations have more than a suggestive value. By genetic experiment, cytology and physiological chemistry aiding, we may hope to acquire such knowledge. In 1872 Nathusius wrote (“Vortrage uber Viehzucht und Rassenerkenntniss”, page 120, Berlin, 1872.): “Das Gesetz der Vererbung ist noch nicht erkannt; der Apfel ist noch nicht vom Baum der Erkenntniss gefallen, welcher, der Sage nach, Newton auf den rechten Weg zur Ergrundung der Gravitationsgesetze fuhrte.” We cannot pretend that the words are not still true, but in Mendelian analysis the seeds of that apple-tree at last are sown.

If we were asked what discovery would do most to forward our inquiry, what one bit of knowledge would more than any other illuminate the problem, I think we may give the answer without hesitation. The greatest advance that we can foresee will be made when it is found possible to connect the geometrical phenomena of development with the chemical. The geometrical symmetry of living things is the key to a knowledge of their regularity, and the forces which cause it. In the symmetry of the dividing cell the basis of that resemblance we call Heredity is contained. To imitate the morphological phenomena of life we have to devise a system which can divide. It must be able to divide, and to segment as–grossly–a vibrating plate or rod does, or as an icicle can do as it becomes ribbed in a continuous stream of water; but with this distinction, that the distribution of chemical differences and properties must simultaneously be decided and disposed in orderly relation to the pattern of the segmentation. Even if a model which would do this could be constructed it might prove to be a useful beginning.

This may be looking too far ahead. If we had to choose some one piece of more proximate knowledge which we would more especially like to acquire, I suppose we should ask for the secret of interracial sterility. Nothing has yet been discovered to remove the grave difficulty, by which Huxley in particular was so much oppressed, that among the many varieties produced under domestication–which we all regard as analogous to the species seen in nature–no clear case of interracial sterility has been demonstrated. The phenomenon is probably the only one to which the domesticated products seem to afford no parallel. No solution of the difficulty can be offered which has positive value, but it is perhaps worth considering the facts in the light of modern ideas. It should be observed that we are not discussing incompatibility of two species to produce offspring (a totally distinct phenomenon), but the sterility of the offspring which many of them do produce.

When two species, both perfectly fertile severally, produce on crossing a sterile progeny, there is a presumption that the sterility is due to the development in the hybrid of some substance which can only be formed by the meeting of two complementary factors. That some such account is correct in essence may be inferred from the well-known observation that if the hybrid is not totally sterile but only partially so, and thus is able to form some good germ-cells which develop into new individuals, the sterility of these daughter-individuals is sensibly reduced or may be entirely absent. The fertility once re-established, the sterility does not return in the later progeny, a fact strongly suggestive of segregation. Now if the sterility of the cross-bred be really the consequence of the meeting of two complementary factors, we see that the phenomenon could only be produced among the divergent offspring of one species by the acquisition of at least TWO new factors; for if the acquisition of a single factor caused sterility the line would then end. Moreover each factor must be separately acquired by distinct individuals, for if both were present together, the possessors would by hypothesis be sterile. And in order to imitate the case of species each of these factors must be acquired by distinct breeds. The factors need not, and probably would not, produce any other perceptible effects; they might, like the colour-factors present in white flowers, make no difference in the form or other characters. Not till the cross was actually made between the two complementary individuals would either factor come into play, and the effects even then might be unobserved until an attempt was made to breed from the cross-bred.

Next, if the factors responsible for sterility were acquired, they would in all probability be peculiar to certain individuals and would not readily be distributed to the whole breed. Any member of the breed also into which BOTH the factors were introduced would drop out of the pedigree by virtue of its sterility. Hence the evidence that the various domesticated breeds say of dogs or fowls can when mated together produce fertile offspring, is beside the mark. The real question is, Do they ever produce sterile offspring? I think the evidence is clearly that sometimes they do, oftener perhaps than is commonly supposed. These suggestions are quite amenable to experimental tests. The most obvious way to begin is to get a pair of parents which are known to have had any sterile offspring, and to find the proportions in which these steriles were produced. If, as I anticipate, these proportions are found to be definite, the rest is simple.

In passing, certain other considerations may be referred to. First, that there are observations favouring the view that the production of totally sterile cross-breds is seldom a universal property of two species, and that it may be a matter of individuals, which is just what on the view here proposed would be expected. Moreover, as we all know now, though incompatibility may be dependent to some extent on the degree to which the species are dissimilar, no such principle can be demonstrated to determine sterility or fertility in general. For example, though all our Finches can breed together, the hybrids are all sterile. Of Ducks some species can breed together without producing the slightest sterility; others have totally sterile offspring, and so on. The hybrids between several genera of Orchids are perfectly fertile on the female side, and some on the male side also, but the hybrids produced between the Turnip (Brassica napus) and the Swede (Brassica campestris), which, according to our estimates of affinity should be nearly allied forms, are totally sterile. (See Sutton, A.W., “Journ. Linn. Soc.” XXXVIII. page 341, 1908.) Lastly, it may be recalled that in sterility we are almost certainly considering a meristic phenomenon. FAILURE TO DIVIDE is, we may feel fairly sure, the immediate “cause” of the sterility. Now, though we know very little about the heredity of meristic differences, all that we do know points to the conclusion that the less-divided is dominant to the more-divided, and we are thus justified in supposing that there are factors which can arrest or prevent cell-division. My conjecture therefore is that in the case of sterility of cross-breds we see the effect produced by a complementary pair of such factors. This and many similar problems are now open to our analysis.

The question is sometimes asked, Do the new lights on Variation and Heredity make the process of Evolution easier to understand? On the whole the answer may be given that they do. There is some appearance of loss of simplicity, but the gain is real. As was said above, the time is not ripe for the discussion of the origin of species. With faith in Evolution unshaken–if indeed the word faith can be used in application to that which is certain–we look on the manner and causation of adapted differentiation as still wholly mysterious. As Samuel Butler so truly said: “To me it seems that the ‘Origin of Variation,’ whatever it is, is the only true ‘Origin of Species'” (“Life and Habit”, London, page 263, 1878.), and of that Origin not one of us knows anything. But given Variation–and it is given: assuming further that the variations are not guided into paths of adaptation–and both to the Darwinian and to the modern school this hypothesis appears to be sound if unproven–an evolution of species proceeding by definite steps is more, rather than less, easy to imagine than an evolution proceeding by the accumulation of indefinite and insensible steps. Those who have lost themselves in contemplating the miracles of Adaptation (whether real or spurious) have not unnaturally fixed their hopes rather on the indefinite than on the definite changes. The reasons are obvious. By suggesting that the steps through which an adaptative mechanism arose were indefinite and insensible, all further trouble is spared. While it could be said that species arise by an insensible and imperceptible process of variation, there was clearly no use in tiring ourselves by trying to perceive that process. This labour-saving counsel found great favour. All that had to be done to develop evolution- theory was to discover the good in everything, a task which, in the complete absence of any control or test whereby to check the truth of the discovery, is not very onerous. The doctrine “que tout est au mieux” was therefore preached with fresh vigour, and examples of that illuminating principle were discovered with a facility that Pangloss himself might have envied, till at last even the spectators wearied of such dazzling performances.

But in all seriousness, why should indefinite and unlimited variation have been regarded as a more probable account of the origin of Adaptation? Only, I think, because the obstacle was shifted one plane back, and so looked rather less prominent. The abundance of Adaptation, we all grant, is an immense, almost an unsurpassable difficulty in all non-Lamarckian views of Evolution; but if the steps by which that adaptation arose were fortuitous, to imagine them insensible is assuredly no help. In one most important respect indeed, as has often been observed, it is a multiplication of troubles. For the smaller the steps, the less could Natural Selection act upon them. Definite variations–and of the occurrence of definite variations in abundance we have now the most convincing proof–have at least the obvious merit that they can make and often do make a real difference in the chances of life.

There is another aspect of the Adaptation problem to which I can only allude very briefly. May not our present ideas of the universality and precision of Adaptation be greatly exaggerated? The fit of organism to its environment is not after all so very close–a proposition unwelcome perhaps, but one which could be illustrated by very copious evidence. Natural Selection is stern, but she has her tolerant moods.

We have now most certain and irrefragable proof that much definiteness exists in living things apart from Selection, and also much that may very well have been preserved and so in a sense constituted by Selection. Here the matter is likely to rest. There is a passage in the sixth edition of the “Origin” which has I think been overlooked. On page 70 Darwin says “The tuft of hair on the breast of the wild turkey-cock cannot be of any use, and it is doubtful whether it can be ornamental in the eyes of the female bird.” This tuft of hair is a most definite and unusual structure, and I am afraid that the remark that it “cannot be of any use” may have been made inadvertently; but it may have been intended, for in the first edition the usual qualification was given and must therefore have been deliberately excised. Anyhow I should like to think that Darwin did throw over that tuft of hair, and that he felt relief when he had done so. Whether however we have his great authority for such a course or not, I feel quite sure that we shall be rightly interpreting the facts of nature if we cease to expect to find purposefulness wherever we meet with definite structures or patterns. Such things are, as often as not, I suspect rather of the nature of tool-marks, mere incidents of manufacture, benefiting their possessor not more than the wire-marks in a sheet of paper, or the ribbing on the bottom of an oriental plate renders those objects more attractive in our eyes.

If Variation may be in any way definite, the question once more arises, may it not be definite in direction? The belief that it is has had many supporters, from Lamarck onwards, who held that it was guided by need, and others who, like Nageli, while laying no emphasis on need, yet were convinced that there was guidance of some kind. The latter view under the name of “Orthogenesis,” devised I believe by Eimer, at the present day commends itself to some naturalists. The objection to such a suggestion is of course that no fragment of real evidence can be produced in its support. On the other hand, with the experimental proof that variation consists largely in the unpacking and repacking of an original complexity, it is not so certain as we might like to think that the order of these events is not pre-determined. For instance the original “pack” may have been made in such a way that at the nth division of the germ-cells of a Sweet Pea a colour-factor might be dropped, and that at the n plus n prime division the hooded variety be given off, and so on. I see no ground whatever for holding such a view, but in fairness the possibility should not be forgotten, and in the light of modern research it scarcely looks so absurdly improbable as before.

No one can survey the work of recent years without perceiving that evolutionary orthodoxy developed too fast, and that a great deal has got to come down; but this satisfaction at least remains, that in the experimental methods which Mendel inaugurated, we have means of reaching certainty in regard to the physiology of Heredity and Variation upon which a more lasting structure may be built.


Professor of Botany in the University of Bonn.

Since 1875 an unexpected insight has been gained into the internal structure of cells. Those who are familiar with the results of investigations in this branch of Science are convinced that any modern theory of heredity must rest on a basis of cytology and cannot be at variance with cytological facts. Many histological discoveries, both such as have been proved correct and others which may be accepted as probably well founded, have acquired a fundamental importance from the point of view of the problems of heredity.

My aim is to describe the present position of our knowledge of Cytology. The account must be confined to essentials and cannot deal with far- reaching and controversial questions. In cases where difference of opinion exists, I adopt my own view for which I hold myself responsible. I hope to succeed in making myself intelligible even without the aid of illustrations: in order to convey to the uninitiated an adequate idea of the phenomena connected with the life of a cell, a greater number of figures would be required than could be included within the scope of this article.

So long as the most eminent investigators (As for example the illustrious Wilhelm Hofmeister in his “Lehre von der Pflanzenzelle” (1867).) believed that the nucleus of a cell was destroyed in the course of each division and that the nuclei of the daughter-cells were produced de novo, theories of heredity were able to dispense with the nucleus. If they sought, as did Charles Darwin, who showed a correct grasp of the problem in the enunciation of his Pangenesis hypothesis, for histological connecting links, their hypotheses, or at least the best of them, had reference to the cell as a whole. It was known to Darwin that the cell multiplied by division and was derived from a similar pre-existing cell. Towards 1870 it was first demonstrated that cell-nuclei do not arise de novo, but are invariably the result of division of pre-existing nuclei. Better methods of investigation rendered possible a deeper insight into the phenomena accompanying cell and nuclear divisions and at the same time disclosed the existence of remarkable structures. The work of O. Butschli, O. Hertwig, W. Flemming H. Fol and of the author of this article (For further reference to literature, see my article on “Die Ontogenie der Zelle seit 1875”, in the “Progressus Rei Botanicae”, Vol. I. page 1, Jena, 1907.), have furnished conclusive evidence in favour of these facts. It was found that when the reticular framework of a nucleus prepares to divide, it separates into single segments. These then become thicker and denser, taking up with avidity certain stains, which are used as aids to investigation, and finally form longer or shorter, variously bent, rodlets of uniform thickness. In these organs which, on account of their special property of absorbing certain stains, were styled Chromosomes (By W. Waldeyer in 1888.), there may usually be recognised a separation into thicker and thinner discs; the former are often termed Chromomeres. (Discovered by W. Pfitzner in 1880.) In the course of division of the nucleus, the single rows of chromomeres in the chromosomes are doubled and this produces a band-like flattening and leads to the longitudinal splitting by which each chromosome is divided into two exactly equal halves. The nuclear membrane then disappears and fibrillar cell-plasma or cytoplasm invades the nuclear area. In animal cells these fibrillae in the cytoplasm centre on definite bodies (Their existence and their multiplication by fission were demonstrated by E. van Beneden and Th. Boveri in 1887.), which it is customary to speak of as Centrosomes. Radiating lines in the adjacent cell-plasma suggest that these bodies constitute centres of force. The cells of the higher plants do not possess such individualised centres; they have probably disappeared in the course of phylogenetic development: in spite of this, however, in the nuclear division-figures the fibrillae of the cell-plasma are seen to radiate from two opposite poles. In both animal and plant cells a fibrillar bipolar spindle is formed, the fibrillae of which grasp the longitudinally divided chromosomes from two opposite sides and arrange them on the equatorial plane of the spindle as the so- called nuclear or equatorial plate. Each half-chromosome is connected with one of the spindle poles only and is then drawn towards that pole. (These important facts, suspected by W. Flemming in 1882, were demonstrated by E. Heuser, L. Guignard, E. van Beneden, M. Nussbaum, and C. Rabl.)

The formation of the daughter-nuclei is then effected. The changes which the daughter-chromosomes undergo in the process of producing the daughter- nuclei repeat in the reverse order the changes which they went through in the course of their progressive differentiation from the mother-nucleus. The division of the cell-body is completed midway between the two daughter- nuclei. In animal cells, which possess no chemically differentiated membrane, separation is effected by simple constriction, while in the case of plant cells provided with a definite wall, the process begins with the formation of a cytoplasmic separating layer.

The phenomena observed in the course of the division of the nucleus show beyond doubt that an exact halving of its substance is of the greatest importance. (First shown by W. Roux in 1883.) Compared with the method of division of the nucleus, that of the cytoplasm appears to be very simple. This led to the conception that the cell-nucleus must be the chief if not the sole carrier of hereditary characters in the organism. It is for this reason that the detailed investigation of fertilisation phenomena immediately followed researches into the nucleus. The fundamental discovery of the union of two nuclei in the sexual act was then made (By O. Hertwig in 1875.) and this afforded a new support for the correct conception of the nuclear functions. The minute study of the behaviour of the other constituents of sexual cells during fertilisation led to the result, that the nucleus alone is concerned with handing on hereditary characters (This was done by O. Hertwig and the author of this essay simultaneously in 1884.) from one generation to another. Especially important, from the point of view of this conclusion, is the study of fertilisation in Angiosperms (Flowering plants); in these plants the male sexual cells lose their cell-body in the pollen-tube and the nucleus only– the sperm-nucleus–reaches the egg. The cytoplasm of the male sexual cell is therefore not necessary to ensure a transference of hereditary characters from parents to offspring. I lay stress on the case of the Angiosperms because researches recently repeated with the help of the latest methods failed to obtain different results. As regards the descendants of angiospermous plants, the same laws of heredity hold good as for other sexually differentiated organisms; we may, therefore, extend to the latter what the Angiosperms so clearly teach us.

The next advance in the hitherto rapid progress in our knowledge of nuclear division was delayed, because it was not at once recognised that there are two absolutely different methods of nuclear division. All such nuclear divisions were united under the head of indirect or mitotic divisions; these were also spoken of as karyo-kineses, and were distinguished from the direct or amitotic divisions which are characterised by a simple constriction of the nuclear body. So long as the two kinds of indirect nuclear division were not clearly distinguished, their correct interpretation was impossible. This was accomplished after long and laborious research, which has recently been carried out and with results which should, perhaps, be regarded as provisional.

Soon after the new study of the nucleus began, investigators were struck by the fact that the course of nuclear division in the mother-cells, or more correctly in the grandmother-cells, of spores, pollen-grains, and embryo- sacs of the more highly organised plants and in the spermatozoids and eggs of the higher animals, exhibits similar phenomena, distinct from those which occur in the somatic cells.

In the nuclei of all those cells which we may group together as gonotokonts (At the suggestion of J.P. Lotsy in 1904.) (i.e. cells concerned in reproduction) there are fewer chromosomes than in the adjacent body-cells (somatic cells). It was noticed also that there is a peculiarity characteristic of the gonotokonts, namely the occurrence of two nuclear divisions rapidly succeeding one another. It was afterwards recognised that in the first stage of nuclear division in the gonotokonts the chromosomes unite in pairs: it is these chromosome-pairs, and not the two longitudinal halves of single chromosomes, which form the nuclear plate in the equatorial plane of the nuclear spindle. It has been proposed to call these pairs gemini. (J.E.S. Moore and A.L. Embleton, “Proc. Roy. Soc.” London, Vol. LXXVII. page 555, 1906; V. Gregoire, 1907.) In the course of this division the spindle-fibrillae attach themselves to the gemini, i.e. to entire chromosomes and direct them to the points where the new daughter- nuclei are formed, that is to those positions towards which the longitudinal halves of the chromosomes travel in ordinary nuclear divisions. It is clear that in this way the number of chromosomes which the daughter-nuclei contain, as the result of the first stage in division in the gonotokonts, will be reduced by one half, while in ordinary divisions the number of chromosomes always remains the same. The first stage in the division of the nucleus in the gonotokonts has therefore been termed the reduction division. (In 1887 W. Flemming termed this the heterotypic form of nuclear division.) This stage in division determines the conditions for the second division which rapidly ensues. Each of the paired chromosomes of the mother-nucleus has already, as in an ordinary nuclear division, completed the longitudinal fission, but in this case it is not succeeded by the immediate separation of the longitudinal halves and their allotment to different nuclei. Each chromosome, therefore, takes its two longitudinal halves into the same daughter-nucleus. Thus, in each daughter-nucleus the longitudinal halves of the chromosomes are present ready for the next stage in the division; they only require to be arranged in the nuclear plate and then distributed among the granddaughter-nuclei. This method of division, which takes place with chromosomes already split, and which have only to provide for the distribution of their longitudinal halves to the next nuclear generation, has been called homotypic nuclear division. (The name was proposed by W. Flemming in 1887; the nature of this type of division was, however, not explained until later.)

Reduction division and homotypic nuclear division are included together under the term allotypic nuclear division and are distinguished from the ordinary or typical nuclear division. The name Meiosis (By J. Bretland Farmer and J.E.S. Moore in 1905.) has also been proposed for these two allotypic nuclear divisions. The typical divisions are often spoken of as somatic.

Observers who were actively engaged in this branch of recent histological research soon noticed that the chromosomes of a given organism are differentiated in definite numbers from the nuclear network in the course of division. This is especially striking in the gonotokonts, but it applies also to the somatic tissues. In the latter, one usually finds twice as many chromosomes as in the gonotokonts. Thus the conclusion was gradually reached that the doubling of chromosomes, which necessarily accompanies fertilisation, is maintained in the product of fertilisation, to be again reduced to one half in the gonotokonts at the stage of reduction-division. This enabled us to form a conception as to the essence of true alternation of generations, in which generations containing single and double chromosomes alternate with one another.

The single-chromosome generation, which I will call the HAPLOID, must have been the primitive generation in all organisms; it might also persist as the only generation. Every sexual differentiation in organisms, which occurred in the course of phylogenetic development, was followed by fertilisation and therefore by the creation of a diploid or double- chromosome product. So long as the germination of the product of fertilisation, the zygote, began with a reducing process, a special DIPLOID generation was not represented. This, however, appeared later as a product of the further evolution of the zygote, and the reduction division was correspondingly postponed. In animals, as in plants, the diploid generation attained the higher development and gradually assumed the dominant position. The haploid generation suffered a proportional reduction, until it finally ceased to have an independent existence and became restricted to the role of producing the sexual products within the body of the diploid generation. Those who do not possess the necessary special knowledge are unable to realise what remains of the first haploid generation in a phanerogamic plant or in a vertebrate animal. In Angiosperms this is actually represented only by the short developmental stages which extend from the pollen mother-cells to the sperm-nucleus of the pollen-tube, and from the embryo-sac mother-cell to the egg and the endosperm tissue. The embryo-sac remains enclosed in the diploid ovule, and within this from the fertilised egg is formed the embryo which introduces the new diploid generation. On the full development of the diploid embryo of the next generation, the diploid ovule of the preceding diploid generation is separated from the latter as a ripe seed. The uninitiated sees in the more highly organised plants only a succession of diploid generations. Similarly all the higher animals appear to us as independent organisms with diploid nuclei only. The haploid generation is confined in them to the cells produced as the result of the reduction division of the gonotokonts; the development of these is completed with the homotypic stage of division which succeeds the reduction division and produces the sexual products.

The constancy of the numbers in which the chromosomes separate themselves from the nuclear network during division gave rise to the conception that, in a certain degree, chromosomes possess individuality. Indeed the most careful investigations (Particularly those of V. Gregoire and his pupils.) have shown that the segments of the nuclear network, which separate from one another and condense so as to produce chromosomes for a new division, correspond to the segments produced from the chromosomes of the preceding division. The behaviour of such nuclei as possess chromosomes of unequal size affords confirmatory evidence of the permanence of individual chromosomes in corresponding sections of an apparently uniform nuclear network. Moreover at each stage in division chromosomes with the same differences in size reappear. Other cases are known in which thicker portions occur in the substance of the resting nucleus, and these agree in number with the chromosomes. In this network, therefore, the individual chromosomes must have retained their original position. But the chromosomes cannot be regarded as the ultimate hereditary units in the nuclei, as their number is too small. Moreover, related species not infrequently show a difference in the number of their chromosomes, whereas the number of hereditary units must approximately agree. We thus picture to ourselves the carriers of hereditary characters as enclosed in the chromosomes; the transmitted fixed number of chromosomes is for us only the visible expression of the conception that the number of hereditary units which the chromosomes carry must be also constant. The ultimate hereditary units may, like the chromosomes themselves, retain a definite position in the resting nucleus. Further, it may be assumed that during the separation of the chromosomes from one another and during their assumption of the rod- like form, the hereditary units become aggregated in the chromomeres and that these are characterised by a constant order of succession. The hereditary units then grow, divide into two and are uniformly distributed by the fission of the chromosomes between their longitudinal halves.

As the contraction and rod-like separation of the chromosomes serve to isnure the transmission of all hereditary units in the products of division of a nucleus, so, on the other hand, the reticular distension of each chromosome in the so-called resting nucleus may effect a separation of the carriers of hereditary units from each other and facilitate the specific activity of each of them.

In the stages preliminary to their division, the chromosomes become denser and take up a substance which increases their staining capacity; this is called chromatin. This substance collects in the chromomeres and may form the nutritive material for the carriers of hereditary units which we now believe to be enclosed in them. The chromatin cannot itself be the hereditary substance, as it afterwards leaves the chromosomes, and the amount of it is subject to considerable variation in the nucleus, according to its stage of development. Conjointly with the materials which take part in the formation of the nuclear spindle and other processes in the cell, the chromatin accumulates in the resting nucleus to form the nucleoli.

Naturally connected with the conclusion that the nuclei are the carriers of hereditary characters in the organism, is the question whether enucleate organisms can also exist. Phylogenetic considerations give an affirmative answer to this question. The differentiation into nucleus and cytoplasm represents a division of labour in the protoplast. A study of organisms which belong to the lowest class of the organic world teaches us how this was accomplished. Instead of well-defined nuclei, scattered granules have been described in the protoplasm of several of these organisms (Bacteria, Cyanophyceae, Protozoa.), characterised by the same reactions as nuclear material, provided also with a nuclear network, but without a limiting membrane. (This is the result of the work of R. Hertwig and of the most recently published investigations.) Thus the carriers of hereditary characters may originally have been distributed in the common protoplasm, afterwards coming together and eventually assuming a definite form as special organs of the cell. It may be also assumed that in the protoplasm and in the primitive types of nucleus, the carriers of the same hereditary unit were represented in considerable quantity; they became gradually differentiated to an extent commensurate with newly acquired characters. It was also necessary that, in proportion as this happened, the mechanism of nuclear division must be refined. At first processes resembling a simple constriction would suffice to provide for the distribution of all hereditary units to each of the products of division, but eventually in both organic kingdoms nuclear division, which alone insured the qualitative identity of the products of division, became a more marked feature in the course of cell-multiplication.

Where direct nuclear division occurs by constriction in the higher organisms, it does not result in the halving of hereditary units. So far as my observations go, direct nuclear division occurs in the more highly organised plants only in cells which have lost their specific functions. Such cells are no longer capable of specific reproduction. An interesting case in this connection is afforded by the internodal cells of the Characeae, which possess only vegetative functions. These cells grow vigorously and their cytoplasm increases, their growth being accompanied by a correspondingly direct multiplication of the nuclei. They serve chiefly to nourish the plant, but, unlike the other cells, they are incapable of producing any offspring. This is a very instructive case, because it clearly shows that the nuclei are not only carriers of hereditary characters, but that they also play a definite part in the metabolism of the protoplasts.

Attention was drawn to the fact that during the reducing division of nuclei which contain chromosomes of unequal size, gemini are constantly produced by the pairing of chromosomes of the same size. This led to the conclusion that the pairing chromosomes are homologous, and that one comes from the father, the other from the mother. (First stated by T.H. Montgomery in 1901 and by W.S. Sutton in 1902.) This evidently applies also to the pairing of chromosomes in those reduction-divisions in which differences in size do not enable us to distinguish the individual chromosomes. In this case also each pair would be formed by two homologous chromosomes, the one of paternal, the other of maternal origin. When the separation of these chromosomes and their distribution to both daughter-nuclei occur a chromosome of each kind is provided for each of these nuclei. It would seem that the components of each pair might pass to either pole of the nuclear spindle, so that the paternal and maternal chromosomes would be distributed in varying proportion between the daughter-nuclei; and it is not impossible that one daughter-nucleus might occasionally contain paternal chromosomes only and its sister-nucleus exclusively maternal chromosomes.

The fact that in nuclei containing chromosomes of various sizes, the chromosomes which pair together in reduction-division are always of equal size, constitutes a further and more important proof of their qualitative difference. This is supported also by ingenious experiments which led to an unequal distribution of chromosomes in the products of division of a sea-urchin’s egg, with the result that a difference was induced in their further development. (Demonstrated by Th. Boveri in 1902.)

The recently discovered fact that in diploid nuclei the chromosomes are arranged in pairs affords additional evidence in favour of the unequal value of the chromosomes. This is still more striking in the case of chromosomes of different sizes. It has been shown that in the first division-figure in the nucleus of the fertilised egg the chromosomes of corresponding size form pairs. They appear with this arrangement in all subsequent nuclear divisions in the diploid generation. The longitudinal fissions of the chromosomes provide for the unaltered preservation of this condition. In the reduction nucleus of the gonotokonts the homologous chromosomes being near together need not seek out one another; they are ready to form gemini. The next stage is their separation to the haploid daughter-nuclei, which have resulted from the reduction process.

Peculiar phenomena in the reduction nucleus accompany the formation of gemini in both organic kingdoms. (This has been shown more particularly by the work of L. Guignard, M. Mottier, J.B. Farmer, C.B. Wilson, V. Hacker and more recently by V. Gregoire and his pupil C.A. Allen, by the researches conducted in the Bonn Botanical Institute, and by A. and K.E. Schreiner.) Probably for the purpose of entering into most intimate relation, the pairs are stretched to long threads in which the chromomeres come to lie opposite one another. (C.A. Allen, A. and K.E. Schreiner, and Strasburger.) It seems probable that these are homologous chromomeres, and that the pairs afterwards unite for a short time, so that an exchange of hereditary units is rendered possible. (H. de Vries and Strasburger.) This cannot be actually seen, but certain facts of heredity point to the conclusion that this occurs. It follows from these phenomena that any exchange which may be effected must be one of homologous carriers of hereditary units only. These units continue to form exchangeable segments after they have undergone unequal changes; they then constitute allelotropic pairs. We may thus calculate what sum of possible combinations the exchange of homologous hereditary units between the pairing chromosomes provides for before the reduction division and the subsequent distribution of paternal and maternal chromosomes in the haploid daughter-nuclei. These nuclei then transmit their characters to the sexual cells, the conjugation of which in fertilization again produces the most varied combinations. (A. Weismann gave the impulse to these ideas in his theory on “Amphimixis”.) In this way all the cooperations which the carriers of hereditary characters are capable of in a species are produced; this must give it an appreciable advantage in the struggle for life.

The admirers of Charles Darwin must deeply regret that he did not live to see the results achieved by the new Cytology. What service would they have been to him in the presentation of his hypothesis of Pangenesis; what an outlook into the future would they have given to his active mind!

The Darwinian hypothesis of Pangenesis rests on the conception that all inheritable properties are represented in the cells by small invisible particles or gemmules and that these gemmules increase by division. Cytology began to develop on new lines some years after the publication in 1868 of Charles Darwin’s “Provisional hypothesis of Pangenesis” (“Animals and Plants under Domestication”, London, 1868, Chapter XXVII.), and when he died in 1882 it was still in its infancy. Darwin would have soon suggested the substitution of the nuclei for his gemmules. At least the great majority of present-day investigators in the domain of cytology have been led to the conclusion that the nucleus is the carrier of hereditary characters, and they also believe that hereditary characters are represented in the nucleus as distinct units. Such would be Darwin’s gemmules, which in conformity with the name of his hypothesis may be called pangens (So called by H. de Vries in 1889.): these pangens multiply by division. All recently adopted views may be thus linked on to this part of Darwin’s hypothesis. It is otherwise with Darwin’s conception to which Pangenesis owes its name, namely the view that all cells continually give off gemmules, which migrate to other places in the organism, where they unite to form reproductive cells. When Darwin foresaw this possibility, the continuity of the germinal substance was still unknown (Demonstrated by Nussbaum in 1880, by Sachs in 1882, and by Weismann in 1885.), a fact which excludes a transference of gemmules.

But even Charles Darwin’s genius was confined within finite boundaries by the state of science in his day.

It is not my province to deal with other theories of development which followed from Darwin’s Pangenesis, or to discuss their histological probabilities. We can, however, affirm that Charles Darwin’s idea that invisible gemmules are the carriers of hereditary characters and that they multiply by division has been removed from the position of a provisional hypothesis to that of a well-founded theory. It is supported by histology, and the results of experimental work in heredity, which are now assuming extraordinary prominence, are in close agreement with it.


Professor of Anatomy in the University of Strassburg.

The problem of the origin of the human race, of the descent of man, is ranked by Huxley in his epoch-making book “Man’s Place in Nature”, as the deepest with which biology has to concern itself, “the question of questions,”–the problem which underlies all others. In the same brilliant and lucid exposition, which appeared in 1863, soon after the publication of Darwin’s “Origin of Species”, Huxley stated his own views in regard to this great problem. He tells us how the idea of a natural descent of man gradually grew up in his mind, it was especially the assertions of Owen in regard to the total difference between the human and the simian brain that called forth strong dissent from the great anatomist Huxley, and he easily succeeded in showing that Owen’s supposed differences had no real existence; he even established, on the basis of his own anatomical investigations, the proposition that the anatomical differences between the Marmoset and the Chimpanzee are much greater than those between the Chimpanzee and Man.

But why do we thus introduce the study of Darwin’s “Descent of Man”, which is to occupy us here, by insisting on the fact that Huxley had taken the field in defence of the descent of man in 1863, while Darwin’s book on the subject did not appear till 1871? It is in order that we may clearly understand how it happened that from this time onwards Darwin and Huxley followed the same great aim in the most intimate association.

Huxley and Darwin working at the same Problema maximum! Huxley fiery, impetuous, eager for battle, contemptuous of the resistance of a dull world, or energetically triumphing over it. Darwin calm, weighing every problem slowly, letting it mature thoroughly,–not a fighter, yet having the greater and more lasting influence by virtue of his immense mass of critically sifted proofs. Darwin’s friend, Huxley, was the first to do him justice, to understand his nature, and to find in it the reason why the detailed and carefully considered book on the descent of man made its appearance so late. Huxley, always generous, never thought of claiming priority for himself. In enthusiastic language he tells how Darwin’s immortal work, “The Origin of Species”, first shed light for him on the problem of the descent of man; the recognition of a vera causa in the transformation of species illuminated his thoughts as with a flash. He was now content to leave what perplexed him, what he could not yet solve, as he says himself, “in the mighty hands of Darwin.” Happy in the bustle of strife against old and deep-rooted prejudices, against intolerance and superstition, he wielded his sharp weapons on Darwin’s behalf; wearing Darwin’s armour he joyously overthrew adversary after adversary. Darwin spoke of Huxley as his “general agent.” (“Life and Letters of Thomas Henry Huxley”, Vol. I. page 171, London, 1900.) Huxley says of himself “I am Darwin’s bulldog.” (Ibid. page 363.)

Thus Huxley openly acknowledged that it was Darwin’s “Origin of Species” that first set the problem of the descent of man in its true light, that made the question of the origin of the human race a pressing one. That this was the logical consequence of his book Darwin himself had long felt. He had been reproached with intentionally shirking the application of his theory to Man. Let us hear what he says on this point in his autobiography: “As soon as I had become, in the year 1837 or 1838, convinced that species were mutable productions, I could not avoid the belief that man must come under the same law. Accordingly I collected notes on the subject for my own satisfaction, and not for a long time with any intention of publishing. Although in the ‘Origin of Species’ the derivation of any particular species is never discussed, yet I thought it best, in order THAT NO HONOURABLE MAN SHOULD ACCUSE ME OF CONCEALING MY VIEWS (No italics in original.), to add that by the work ‘light would be thrown on the origin of man and his history.’ It would have been useless and injurious to the success of the book to have paraded, without giving any evidence, my conviction with respect to his origin.” (“Life and Letters of Charles Darwin”, Vol. 1. page 93.)

In a letter written in January, 1860, to the Rev. L. Blomefield, Darwin expresses himself in similar terms. “With respect to man, I am very far from wishing to obtrude my belief; but I thought it dishonest to quite conceal my opinion.” (Ibid. Vol. II. page 263.)

The brief allusion in the “Origin of Species” is so far from prominent and so incidental that it was excusable to assume that Darwin had not touched upon the descent of man in this work. It was solely the desire to have his mass of evidence sufficiently complete, solely Darwin’s great characteristic of never publishing till he had carefully weighed all aspects of his subject for years, solely, in short, his most fastidious scientific conscience that restrained him from challenging the world in 1859 with a book in which the theory of the descent of man was fully set forth. Three years, frequently interrupted by ill-health, were needed for the actual writing of the book (“Life and Letters”, Vol. I. page 94.): the first edition, which appeared in 1871, was followed in 1874 by a much improved second edition, the preparation of which he very reluctantly undertook. (Ibid. Vol. III. page 175.)

This, briefly, is the history of the work, which, with the “Origin of Species”, marks an epoch in the history of biological sciences–the work with which the cautious, peace-loving investigator ventured forth from his contemplative life into the arena of strife and unrest, and laid himself open to all the annoyances that deep-rooted belief and prejudice, and the prevailing tendency of scientific thought at the time could devise.

Darwin did not take this step lightly. Of great interest in this connection is a letter written to Wallace on Dec. 22, 1857 (Ibid. Vol. II. page 109.), in which he says “You ask whether I shall discuss ‘man.’ I think I shall avoid the whole subject, as so surrounded with prejudices; though I fully admit that it is the highest and most interesting problem for the naturalist.” But his conscientiousness compelled him to state briefly his opinion on the subject in the “Origin of Species” in 1859. Nevertheless he did not escape reproaches for having been so reticent. This is unmistakably apparent from a letter to Fritz Muller dated February 22 (1869?), in which he says: “I am thinking of writing a little essay on the Origin of Mankind, as I have been taunted with concealing my opinions.” (Ibid. Vol. III. page 112.)

It might be thought that Darwin behaved thus hesitatingly, and was so slow in deciding on the full publication of his collected material in regard to the descent of man, because he had religious difficulties to overcome.

But this was not the case, as we can see from his admirable confession of faith, the publication of which we owe to his son Francis. (Ibid. Vol. I. pages 304-317.) Whoever wishes really to understand the lofty character of this great man should read these immortal lines in which he unfolds to us in simple and straightforward words the development of his conception of the universe. He describes how, though he was still quite orthodox during his voyage round the world on board the “Beagle”, he came gradually to see, shortly afterwards (1836-1839) that the Old Testament was no more to be trusted than the Sacred Books of the Hindoos; the miracles by which Christianity is supported, the discrepancies between the accounts in the different Gospels, gradually led him to disbelieve in Christianity as a divine revelation. “Thus,” he writes (“Life and Letters”, Vol. 1. page 309.), “disbelief crept over me at a very slow rate, but was at last complete. The rate was so slow that I felt no distress.” But Darwin was too modest to presume to go beyond the limits laid down by science. He wanted nothing more than to be able to go, freely and unhampered by belief in authority or in the Bible, as far as human knowledge could lead him. We learn this from the concluding words of his chapter on religion: “The mystery of the beginning of all things is insoluble by us; and I for one must be content to remain an Agnostic.” (Loc. cit. page 313.)

Darwin was always very unwilling to give publicity to his views in regard to religion. In a letter to Asa Gray on May 22, 1860 (Ibid. Vol. II. page 310.), he declares that it is always painful to him to have to enter into discussion of religious problems. He had, he said, no intention of writing atheistically.

Finally, let us cite one characteristic sentence from a letter from Darwin to C. Ridley (Ibid. Vol. III. page. 236. (“C. Ridley,” Mr Francis Darwin points out to me, should be H.N. Ridley. A.C.S.)) (Nov. 28, 1878.) A clergyman, Dr Pusey, had asserted that Darwin had written the “Origin of Species” with some relation to theology. Darwin writes emphatically, “Many years ago, when I was collecting facts for the ‘Origin’, my belief in what is called a personal God was as firm as that of Dr Pusey himself, and as to the eternity of matter I never troubled myself about such insoluble questions.” The expression “many years ago” refers to the time of his voyage round the world, as has already been pointed out. Darwin means by this utterance that the views which had gradually developed in his mind in regard to the origin of species were quite compatible with the faith of the Church.

If we consider all these utterances of Darwin in regard to religion and to his outlook on life (Weltanschauung), we shall see at least so much, that religious reflection could in no way have influenced him in regard to the writing and publishing of his book on “The Descent of Man”. Darwin had early won for himself freedom of thought, and to this freedom he remained true to the end of his life, uninfluenced by the customs and opinions of the world around him.

Darwin was thus inwardly fortified and armed against the host of calumnies, accusations, and attacks called forth by the publication of the “Origin of Species”, and to an even greater extent by the appearance of the “Descent of Man”. But in his defence he could rely on the aid of a band of distinguished auxiliaries of the rarest ability. His faithful confederate, Huxley, was joined by the botanist Hooker, and, after longer resistance, by the famous geologist Lyell, whose “conversion” afforded Darwin peculiar satisfaction. All three took the field with enthusiasm in defence of the natural descent of man. From Wallace, on the other hand, though he shared with him the idea of natural selection, Darwin got no support in this matter. Wallace expressed himself in a strange manner. He admitted everything in regard to the morphological descent of man, but maintained, in a mystic way, that something else, something of a spiritual nature must have been added to what man inherited from his animal ancestors. Darwin, whose esteem for Wallace was extraordinarily high, could not understand how he could give utterance to such a mystical view in regard to man; the idea seemed to him so “incredibly strange” that he thought some one else must have added these sentences to Wallace’s paper.

Even now there are thinkers who, like Wallace, shrink from applying to man the ultimate consequences of the theory of descent. The idea that man is derived from ape-like forms is to them unpleasant and humiliating.

So far I have been depicting the development of Darwin’s work on the descent of man. In what follows I shall endeavour to give a condensed survey of the contents of the book.

It must at once be said that the contents of Darwin’s work fall into two parts, dealing with entirely different subjects. “The Descent of Man” includes a very detailed investigation in regard to secondary sexual characters in the animal series, and on this investigation Darwin founded a new theory, that of sexual selection. With astonishing patience he gathered together an immense mass of material, and showed, in regard to Arthropods and Vertebrates, the wide distribution of secondary characters, which develop almost exclusively in the male, and which enable him, on the one hand, to get the better of his rivals in the struggle for the female by the greater perfection of his weapons, and on the other hand, to offer greater allurements to the female through the higher development of decorative characters, of song, or of scent-producing glands. The best equipped males will thus crowd out the less well-equipped in the matter of reproduction, and thus the relevant characters will be increased and perfected through sexual selection. It is, of course, a necessary assumption that these secondary sexual characters may be transmitted to the female, although perhaps in rudimentary form.

As we have said, this theory of sexual selection takes up a great deal of space in Darwin’s book, and it need only be considered here in so far as Darwin applied it to the descent of man. To this latter problem the whole of Part I is devoted, while Part III contains a discussion of sexual selection in relation to man, and a general summary. Part II treats of sexual selection in general, and may be disregarded in our present study. Moreover, many interesting details must necessarily be passed over in what follows, for want of space.

The first part of the “Descent of Man” begins with an enumeration of the proofs of the animal descent of man taken from the structure of the human body. Darwin chiefly emphasises the fact that the human body consists of the same organs and of the same tissues as those of the other mammals; he shows also that man is subject to the same diseases and tormented by the same parasites as the apes. He further dwells on the general agreement exhibited by young, embryonic forms, and he illustrates this by two figures placed one above the other, one representing a human embryo, after Eaker, the other a dog embryo, after Bischoff. (“Descent of Man” (Popular Edition, 1901), fig. 1, page 14.)

Darwin finds further proofs of the animal origin of man in the reduced structures, in themselves extremely variable, which are either absolutely useless to their possessors, or of so little use that they could never have developed under existing conditions. Of such vestiges he enumerates: the defective development of the panniculus carnosus (muscle of the skin) so widely distributed among mammals, the ear-muscles, the occasional persistence of the animal ear-point in man, the rudimentary nictitating membrane (plica semilunaris) in the human eye, the slight development of the organ of smell, the general hairiness of the human body, the frequently defective development or entire absence of the third molar (the wisdom tooth), the vermiform appendix, the occasional reappearance of a bony canal (foramen supracondyloideum) at the lower end of the humerus, the rudimentary tail of man (the so-called taillessness), and so on. Of these rudimentary structures the occasional occurrence of the animal ear-point in man is most fully discussed. Darwin’s attention was called to this interesting structure by the sculptor Woolner. He figures such a case observed in man, and also the head of an alleged orang-foetus, the photograph of which he received from Nitsche.

Darwin’s interpretation of Woolner’s case as having arisen through a folding over of the free edge of a pointed ear has been fully borne out by my investigations on the external ear. (G. Schwalbe, “Das Darwin’sche Spitzohr beim menschlichen Embryo”, “Anatom. Anzeiger”, 1889, pages 176- 189, and other papers.) In particular, it was established by these investigations that the human foetus, about the middle of its embryonic life, possesses a pointed ear somewhat similar to that of the monkey genus Macacus. One of Darwin’s statements in regard to the head of the orang- foetus must be corrected. A LARGE ear with a point is shown in the photograph (“Descent of Man”, fig.3, page 24.), but it can easily be demonstrated–and Deniker has already pointed this out–that the figure is not that of an orang-foetus at all, for that form has much smaller ears with no point; nor can it be a gibbon-foetus, as Deniker supposes, for the gibbon ear is also without a point. I myself regard it as that of a Macacus-embryo. But this mistake, which is due to Nitsche, in no way affects the fact recognised by Darwin, that ear-forms showing the point characteristic of the animal ear occur in man with extraordinary frequency.

Finally, there is a discussion of those rudimentary structures which occur only in ONE sex, such as the rudimentary mammary glands in the male, the vesicula prostatica, which corresponds to the uterus of the female, and others. All these facts tell in favour of the common descent of man and all other vertebrates. The conclusion of this section is characteristic: “IT IS ONLY OUR NATURAL PREJUDICE, AND THAT ARROGANCE WHICH MADE OUR FOREFATHERS DECLARE THAT THEY WERE DESCENDED FROM DEMI-GODS, WHICH LEADS US TO DEMUR TO THIS CONCLUSION. BUT THE TIME WILL BEFORE LONG COME, WHEN IT WILL BE THOUGHT WONDERFUL THAT NATURALISTS, WHO WERE WELL ACQUAINTED WITH THE COMPARATIVE STRUCTURE AND DEVELOPMENT OF MAN, AND OTHER MAMMALS, SHOULD HAVE BELIEVED THAT EACH WAS THE WORK OF A SEPARATE ACT OF CREATION.” (Ibid. page 36.)

In the second chapter there is a more detailed discussion, again based upon an extraordinary wealth of facts, of the problem as to the manner in which, and the causes through which, man evolved from a lower form. Precisely the same causes are here suggested for the origin of man, as for the origin of species in general. Variability, which is a necessary assumption in regard to all transformations, occurs in man to a high degree. Moreover, the rapid multiplication of the human race creates conditions which necessitate an energetic struggle for existence, and thus afford scope for the intervention of natural selection. Of the exercise of ARTIFICIAL selection in the human race, there is nothing to be said, unless we cite such cases as the grenadiers of Frederick William I, or the population of ancient Sparta. In the passages already referred to and in those which follow, the transmission of acquired characters, upon which Darwin does not dwell, is taken for granted. In man, direct effects of changed conditions can be demonstrated (for instance in regard to bodily size), and there are also proofs of the influence exerted on his physical constitution by increased use or disuse. Reference is here made to the fact, established by Forbes, that the Quechua-Indians of the high plateaus of Peru show a striking development of lungs and thorax, as a result of living constantly at high altitudes.

Such special forms of variation as arrests of development (microcephalism) and reversion to lower forms are next discussed. Darwin himself felt (“Descent of Man”, page 54.) that these subjects are so nearly related to the cases mentioned in the first chapter, that many of them might as well have been dealt with there. It seems to me that it would have been better so, for the citation of additional instances of reversion at this place rather disturbs the logical sequence of his ideas as to the conditions which have brought about the evolution of man from lower forms. The instances of reversion here discussed are microcephalism, which Darwin wrongly interpreted as atavistic, supernumerary mammae, supernumerary digits, bicornuate uterus, the development of abnormal muscles, and so on. Brief mention is also made of correlative variations observed in man.

Darwin next discusses the question as to the manner in which man attained to the erect position from the state of a climbing quadruped. Here again he puts the influence of Natural Selection in the first rank. The immediate progenitors of man had to maintain a struggle for existence in which success was to the more intelligent, and to those with social instincts. The hand of these climbing ancestors, which had little skill and served mainly for locomotion, could only undergo further development when some early member of the Primate series came to live more on the ground and less among trees.

A bipedal existence thus became possible, and with it the liberation of the hand from locomotion, and the one-sided development of the human foot. The upright position brought about correlated variations in the bodily structure; with the free use of the hand it became possible to manufacture weapons and to use them; and this again resulted in a degeneration of the powerful canine teeth and the jaws, which were then no longer necessary for defence. Above all, however, the intelligence immediately increased, and with it skull and brain. The nakedness of man, and the absence of a tail (rudimentariness of the tail vertebrae) are next discussed. Darwin is inclined to attribute the nakedness of man, not to the action of natural selection on ancestors who originally inhabited a tropical land, but to sexual selection, which, for aesthetic reasons, brought about the loss of the hairy covering in man, or primarily in woman. An interesting discussion of the loss of the tail, which, however, man shares with the anthropoid apes, some other monkeys and lemurs, forms the conclusion of the almost superabundant material which Darwin worked up in the second chapter. His object was to show that some of the most distinctive human characters are in all probability directly or indirectly due to natural selection. With characteristic modesty he adds (“Descent of Man”, page 92.): “Hence, if I have erred in giving to natural selection great power, which I am very far from admitting, or in having exaggerated its power, which is in itself probable, I have at least, as I hope, done good service in aiding to overthrow the dogma of separate creations.” At the end of the chapter he touches upon the objection as to man’s helpless and defenceless condition. Against this he urges his intelligence and social instincts.

The two following chapters contain a detailed discussion of the objections drawn from the supposed great differences between the mental powers of men and animals. Darwin at once admits that the differences are enormous, but not that any fundamental difference between the two can be found. Very characteristic of him is the following passage: “In what manner the mental powers were first developed in the lowest organisms, is as hopeless an enquiry as how life itself first originated. These are problems for the distant future, if they are ever to be solved by man.” (Ibid. page 100.)

After some brief observations on instinct and intelligence, Darwin brings forward evidence to show that the greater number of the emotional states, such as pleasure and pain, happiness and misery, love and hate are common to man and the higher animals. He goes on to give various examples showing that wonder and curiosity, imitation, attention, memory and imagination (dreams of animals), can also be observed in the higher mammals, especially in apes. In regard even to reason there are no sharply defined limits. A certain faculty of deliberation is characteristic of some animals, and the more thoroughly we know an animal the more intelligence we are inclined to credit it with. Examples are brought forward of the intelligent and deliberate actions of apes, dogs and elephants. But although no sharply defined differences exist between man and animals, there is, nevertheless, a series of other mental powers which are characteristics usually regarded as absolutely peculiar to man. Some of these characteristics are examined in detail, and it is shown that the arguments drawn from them are not conclusive. Man alone is said to be capable of progressive improvement; but against this must be placed as something analogous in animals, the fact that they learn cunning and caution through long continued persecution. Even the use of tools is not in itself peculiar to man (monkeys use sticks, stones and twigs), but man alone fashions and uses implements DESIGNED FOR A SPECIAL PURPOSE. In this connection the remarks taken from Lubbock in regard to the origin and gradual development of the earliest flint implements will be read with interest; these are similar to the observations on modern eoliths, and their bearing on the development of the stone-industry. It is interesting to learn from a letter to Hooker (“Life and Letters”, Vol. II. page 161, June 22, 1859.), that Darwin himself at first doubted whether the stone implements discovered by Boucher de Perthes were really of the nature of tools. With the relentless candour as to himself which characterised him, he writes four years later in a letter to Lyell in regard to this view of Boucher de Perthes’ discoveries: “I know something about his errors, and looked at his book many years ago, and am ashamed to think that I concluded the whole was rubbish! Yet he has done for man something like what Agassiz did for glaciers.” (Ibid. Vol. III. page 15, March 17, 1863.)

To return to Darwin’s further comparisons between the higher mental powers of man and animals. He takes much of the force from the argument that man alone is capable of abstraction and self-consciousness by his own observations on dogs. One of the main differences between man and animals, speech, receives detailed treatment. He points out that various animals (birds, monkeys, dogs) have a large number of different sounds for different emotions, that, further, man produces in common with animals a whole series of inarticulate cries combined with gestures, and that dogs learn to understand whole sentences of human speech. In regard to human language, Darwin expresses a view contrary to that held by Max Muller (“Descent of Man”, page 132.): “I cannot doubt that language owes its origin to the imitation and modification of various natural sounds, the voices of other animals, and man’s own instinctive cries, aided by signs and gestures.” The development of actual language presupposes a higher degree of intelligence than is found in any kind of ape. Darwin remarks on this point (Ibid. pages 136, 137.): “The fact of the higher apes not using their vocal organs for speech no doubt depends on their intelligence not having been sufficiently advanced.”

The sense of beauty, too, has been alleged to be peculiar to man. In refutation of this assertion Darwin points to the decorative colours of birds, which are used for display. And to the last objection, that man alone has religion, that he alone has a belief in God, it is answered “that numerous races have existed, and still exist, who have no idea of one or more gods, and who have no words in their languages to express such an idea.” (Ibid. page 143.)

The result of the investigations recorded in this chapter is to show that, great as the difference in mental powers between man and the higher animals may be, it is undoubtedly only a difference “of degree and not of kind.” (“Descent of Man”, page 193.)

In the fourth chapter Darwin deals with the MORAL SENSE or CONSCIENCE, which is the most important of all differences between man and animals. It is a result of social instincts, which lead to sympathy for other members of the same society, to non-egoistic actions for the good of others. Darwin shows that social tendencies are found among many animals, and that among these love and kin-sympathy exist, and he gives examples of animals (especially dogs) which may exhibit characters that we should call moral in man (e.g. disinterested self-sacrifice for the sake of others). The early ape-like progenitors of the human race were undoubtedly social. With the increase of intelligence the moral sense develops farther; with the acquisition of speech public opinion arises, and finally, moral sense becomes habit. The rest of Darwin’s detailed discussions on moral philosophy may be passed over.

The fifth chapter may be very briefly summarised. In it Darwin shows that the intellectual and moral faculties are perfected through natural selection. He inquires how it can come about that a tribe at a low level of evolution attains to a higher, although the best and bravest among them often pay for their fidelity and courage with their lives without leaving any descendants. In this case it is the sentiment of glory, praise and blame, the admiration of others, which bring about the increase of the better members of the tribe. Property, fixed dwellings, and the association of families into a community are also indispensable requirements for civilisation. In the longer second section of the fifth chapter Darwin acts mainly as recorder. On the basis of numerous investigations, especially those of Greg, Wallace, and Galton, he inquires how far the influence of natural selection can be demonstrated in regard to civilised nations. In the final section, which deals with the proofs that all civilised nations were once barbarians, Darwin again uses the results gained by other investigators, such as Lubbock and Tylor. There are two sets of facts which prove the proposition in question. In the first place, we find traces of a former lower state in the customs and beliefs of all civilised nations, and in the second place, there are proofs to show that savage races are independently able to raise themselves a few steps in the scale of civilisation, and that they have thus raised themselves.

In the sixth chapter of the work, Morphology comes into the foreground once more. Darwin first goes back, however, to the argument based on the great difference between the mental powers of the highest animals and those of man. That this is only quantitative, not qualitative, he has already shown. Very instructive in this connection is the reference to the enormous difference in mental powers in another class. No one would draw from the fact that the cochineal insect (Coccus) and the ant exhibit enormous differences in their mental powers, the conclusion that the ant should therefore be regarded as something quite distinct, and withdrawn from the class of insects altogether.

Darwin next attempts to establish the SPECIFIC genealogical tree of man, and carefully weighs the differences and resemblances between the different families of the Primates. The erect position of man is an adaptive character, just as are the various characters referable to aquatic life in the seals, which, notwithstanding these, are ranked as a mere family of the Carnivores. The following utterance is very characteristic of Darwin (“Descent of Man”, page 231.): “If man had not been his own classifier, he would never have thought of founding a separate order for his own reception.” In numerous characters not mentioned in systematic works, in the features of the face, in the form of the nose, in the structure of the external ear, man resembles the apes. The arrangement of the hair in man has also much in common with the apes; as also the occurrence of hair on the forehead of the human embryo, the beard, the convergence of the hair of the upper and under arm towards the elbow, which occurs not only in the anthropoid apes, but also in some American monkeys. Darwin here adopts Wallace’s explanation of the origin of the ascending direction of the hair in the forearm of the orang,–that it has arisen through the habit of holding the hands over the head in rain. But this explanation cannot be maintained when we consider that this disposition of the hair is widely distributed among the most different mammals, being found in the dog, in the sloth, and in many of the lower monkeys.

After further careful analysis of the anatomical characters Darwin reaches the conclusion that the New World monkeys (Platyrrhine) may be excluded from the genealogical tree altogether, but that man is an offshoot from the Old World monkeys (Catarrhine) whose progenitors existed as far back as the Miocene period. Among these Old World monkeys the forms to which man shows the greatest resemblance are the anthropoid apes, which, like him, possess neither tail nor ischial callosities. The platyrrhine and catarrhine monkeys have their primitive ancestor among extinct forms of the Lemuridae. Darwin also touches on the question of the original home of the human race and supposes that it may have been in Africa, because it is there that man’s nearest relatives, the gorilla and the chimpanzee, are found. But he regards speculation on this point as useless. It is remarkable that, in this connection, Darwin regards the loss of the hair-covering in man as having some relation to a warm climate, while elsewhere he is inclined to make sexual selection responsible for it. Darwin recognises the great gap between man and his nearest relatives, but similar gaps exist at other parts of the mammalian genealogical tree: the allied forms have become extinct. After the extermination of the lower races of mankind, on the one hand, and of the anthropoid apes on the other, which will undoubtedly take place, the gulf will be greater than ever, since the baboons will then bound it on the one side, and the white races on the other. Little weight need be attached to the lack of fossil remains to fill up this gap, since the discovery of these depends upon chance. The last part of the chapter is devoted to a discussion of the earlier stages in the genealogy of man. Here Darwin accepts in the main the genealogical tree, which had meantime been published by Haeckel, who traces the pedigree back through Monotremes, Reptiles, Amphibians, and Fishes, to Amphioxus.

Then follows an attempt to reconstruct, from the atavistic characters, a picture of our primitive ancestor who was undoubtedly an arboreal animal. The occurrence of rudiments of parts in one sex which only come to full development in the other is next discussed. This state of things Darwin regards as derived from an original hermaphroditism. In regard to the mammary glands of the male he does not accept the theory that they are vestigial, but considers them rather as not fully developed.

The last chapter of Part I deals with the question whether the different races of man are to be regarded as different species, or as sub-species of a race of monophyletic origin. The striking differences between the races are first emphasised, and the question of the fertility or infertility of hybrids is discussed. That fertility is the more usual is shown by the excessive fertility of the hybrid population of Brazil. This, and the great variability of the distinguishing characters of the different races, as well as the fact that all grades of transition stages are found between these, while considerable general agreement exists, tell in favour of the unity of the races and lead to the conclusion that they all had a common primitive ancestor.

Darwin therefore classifies all the different races as sub-species of ONE AND THE SAME SPECIES. Then follows an interesting inquiry into the reasons for the extinction of human races. He recognises as the ultimate reason the injurious effects of a change of the conditions of life, which may bring about an increase in infantile mortality, and a diminished fertility. It is precisely the reproductive system, among animals also, which is most susceptible to changes in the environment.

The final section of this chapter deals with the formation of the races of mankind. Darwin discusses the question how far the direct effect of different conditions of life, or the inherited effects of increased use or disuse may have brought about the characteristic differences between the different races. Even in regard to the origin of the colour of the skin he rejects the transmitted effects of an original difference of climate as an explanation. In so doing he is following his tendency to exclude Lamarckian explanations as far as possible. But here he makes gratuitous difficulties from which, since natural selection fails, there is no escape except by bringing in the principle of sexual selection, to which, he regarded it as possible, skin-colouring, arrangement of hair, and form of features might be traced. But with his characteristic conscientiousness he guards himself thus: “I do not intend to assert that sexual selection will account for all the differences between the races.” (“Descent of Man”, page 308.)

I may be permitted a remark as to Darwin’s attitude towards Lamarck. While, at an earlier stage, when he was engaged in the preliminary labours for his immortal work, “The Origin of Species”, Darwin expresses himself very forcibly against the views of Lamarck, speaking of Lamarckian “nonsense,” (“Life and Letters”, Vol. II. page 23.), and of Lamarck’s “absurd, though clever work” (Loc. cit. page 39.) and expressly declaring, “I attribute very little to the direct action of climate, etc.” (Loc. cit. (1856), page 82.) yet in later life he became more and more convinced of the influence of external conditions. In 1876, that is, two years after the appearance of the second edition of “The Descent of Man”, he writes with his usual candid honesty: “In my opinion the greatest error which I have committed, has been not allowing sufficient weight to the direct action of the environment, i.e. food, climate, etc. independently of natural selection.” (Ibid. Vol. III. page 159.) It is certain from this change of opinion that, if he had been able to make up his mind to issue a third edition of “The Descent of Man”, he would have ascribed a much greater influence to the effect of external conditions in explaining the different characters of the races of man than he did in the second edition. He would also undoubtedly have attributed less influence to sexual selection as a factor in the origin of the different bodily characteristics, if indeed he would not have excluded it altogether.

In Part III of the “Descent” two additional chapters are devoted to the discussion of sexual selection in relation to man. These may be very briefly referred to. Darwin here seeks to show that sexual selection has been operative on man and his primitive progenitor. Space fails me to follow out his interesting arguments. I can only mention that he is inclined to trace back hairlessness, the development of the beard in man, and the characteristic colour of the different human races to sexual selection. Since bareness of the skin could be no advantage, but rather a disadvantage, this character cannot have been brought about by natural selection. Darwin also rejected a direct influence of climate as a cause of the origin of the skin-colour. I have already expressed the opinion, based on the development of his views as shown in his letters, that in a third edition Darwin would probably have laid more stress on the influence of external environment. He himself feels that there are gaps in his proofs here, and says in self-criticism: “The views here advanced, on the part which sexual selection has played in the history of man, want scientific precision.” (“Descent of Man”, page 924.) I need here only point out that it is impossible to explain the graduated stages of skin- colour by sexual selection, since it would have produced races sharply defined by their colour and not united to other races by transition stages, and this, it is well known, is not the case. Moreover, the fact established by me (“Die Hautfarbe des Menschen”, “Mitteilungen der Anthropologischen Gesellschaft in Wien”, Vol. XXXIV. pages 331-352.), that in all races the ventral side of the trunk is paler than the dorsal side, and the inner surface of the extremities paler than the outer side, cannot be explained by sexual selection in the Darwinian sense.

With this I conclude my brief survey of the rich contents of Darwin’s book. I may be permitted to conclude by quoting the magnificent final words of “The Descent of Man”: “We must, however, acknowledge, as it seems to me, that man, with all his noble qualities, with sympathy which feels for the most debased, with benevolence which extends not only to other men but to the humblest living creature, with his god-like intellect which has penetrated into the movements and constitution of the solar system–with all these exalted powers–Man still bears in his bodily frame the indelible stamp of his lowly origin.” (Ibid. page 947.)

What has been the fate of Darwin’s doctrines since his great achievement? How have they been received and followed up by the scientific and lay world? And what do the successors of the mighty hero and genius think now in regard to the origin of the human race?

At the present time we are incomparably more favourably placed than Darwin was for answering this question of all questions. We have at our command an incomparably greater wealth of material than he had at his disposal. And we are more fortunate than he in this respect, that we now know transition-forms which help to fill up the gap, still great, between the lowest human races and the highest apes. Let us consider for a little the more essential additions to our knowledge since the publication of “The Descent of Man”.

Since that time our knowledge of animal embryos has increased enormously. While Darwin was obliged to content himself with comparing a human embryo with that of a dog, there are now available the youngest embryos of monkeys of all possible groups (Orang, Gibbon, Semnopithecus, Macacus), thanks to Selenka’s most successful tour in the East Indies in search of such material. We can now compare corresponding stages of the lower monkeys and of the Anthropoid apes with human embryos, and convince ourselves of their great resemblance to one another, thus strengthening enormously the armour prepared by Darwin in defence of his view on man’s nearest relatives. It may be said that Selenka’s material fils up the blanks in Darwin’s array of proofs in the most satisfactory manner.

The deepening of our knowledge of comparative anatomy also gives us much surer foundations than those on which Darwin was obliged to build. Just of late there have been many workers in the domain of the anatomy of apes and lemurs, and their investigations extend to the most different organs. Our knowledge of fossil apes and lemurs has also become much wider and more