Stories of Inventors by Russell Doubleday

Produced by Dave Morgan and the Online Distributed Proofreading Team STORIES OF INVENTORS The Adventures Of Inventors And Engineers. True Incidents And Personal Experiences By RUSSELL DOUBLEDAY 1904 ACKNOWLEDGMENT The author and publishers take pleasure in acknowledging the courtesy of _The Scientific American_ _The Booklovers Magazine_ _The Holiday Magazine_, and Messrs. Wood & Nathan Company
This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
  • 1904
Buy it on Amazon Listen via Audible FREE Audible 30 days

Produced by Dave Morgan and the Online Distributed Proofreading Team



The Adventures Of Inventors And Engineers. True Incidents And Personal Experiences





The author and publishers take pleasure in acknowledging the courtesy of

_The Scientific American_
_The Booklovers Magazine_
_The Holiday Magazine_, and
Messrs. Wood & Nathan Company

for the use of a number of illustrations in this book.

From _The Scientific American_, illustrations facing pages 16, 48, 78, 80, 88, 94, 118, 126, 142, and 162.

From _The Booklovers Magazine_, illustrations facing pages 184, 190, 194, and 196.

From _The Holiday Magazine_, illustrations facing pages 100 and 110.


How Guglielmo Marconi Telegraphs Without Wires Santos-Dumont and His Air-Ship
How a Fast Train Is Run
How Automobiles Work
The Fastest Steamboats
The Life-Savers and Their Apparatus Moving Pictures–Some Strange Subjects and How They Were Taken Bridge Builders and Some of Their Achievements Submarines in War and Peace
Long-Distance Telephony–What Happens When You Talk into a Telephone Receiver
A Machine That Thinks–A Type-Setting Machine That Makes Mathematical Calculations
How Heat Produces Cold–Artificial Ice-Making


Marconi Reading a Message _Frontispiece_

Marconi Station at Wellfleet, Massachusetts The Wireless Telegraph Station at Glace Bay Santos-Dumont Preparing for a Flight
Rounding the Eiffel Tower
The Motor and Basket of “Santos-Dumont No. 9” Firing a Fast Locomotive
Track Tank
Railroad Semaphore Signals
Thirty Years’ Advance in Locomotive Building The “Lighthouse” of the Rail
A Giant Automobile Mower-Thrasher
An Automobile Buckboard
An Automobile Plow
The _Velox_, of the British Navy
The Engines of the _Arrow_
A Life-Saving Crew Drilling
Life-Savers at Work
Biograph Pictures of a Military Hazing Developing Moving-Picture Films
Building an American Bridge in Burmah Viaduct Across Canyon Diablo
Beginning an American Bridge in Mid-Africa Lake’s Submarine Torpedo-Boat _Protector_ Speeding at the Rate of 102 Miles an Hour Singing Into the Telephone
“Central” Telephone Operators at Work Central Making Connections
The Back of a Telephone Switchboard A Few Telephone Trunk Wires
The Lanston Type-Setter Keyboard
Where the “Brains” are Located
The Type Moulds and the Work They Produce


There are many thrilling incidents–all the more attractive because of their truth–in the study, the trials, the disappointments, the obstacles overcome, and the final triumph of the successful inventor.

Every great invention, afterward marvelled at, was first derided. Each great inventor, after solving problems in mechanics or chemistry, had to face the jeers of the incredulous.

The story of James Watt’s sensations when the driving-wheels of his first rude engine began to revolve will never be told; the visions of Robert Fulton, when he puffed up the Hudson, of the fleets of vessels that would follow the faint track of his little vessel, can never be put in print.

It is the purpose of this book to give, in a measure, the adventurous side of invention. The trials and dangers of the builders of the submarine; the triumphant thrill of the inventor who hears for the first time the vibration of the long-distance message through the air; the daring and tension of the engineer who drives a locomotive at one hundred miles an hour.

The wonder of the mechanic is lost in the marvel of the machine; the doer is overshadowed by the greatness of his achievement.

These are true stories of adventure in invention.



A nineteen-year-old boy, just a quiet, unobtrusive young fellow, who talked little but thought much, saw in the discovery of an older scientist the means of producing a revolutionising invention by which nations could talk to nations without the use of wires or tangible connection, no matter how far apart they might be or by what they might be separated. The possibilities of Guglielmo (William) Marconi’s invention are just beginning to be realised, and what it has already accomplished would seem too wonderful to be true if the people of these marvellous times were not almost surfeited with wonders.

It is of the boy and man Marconi that this chapter will tell, and through him the story of his invention, for the personality, the talents, and the character of the inventor made wireless telegraphy possible.

It was an article in an electrical journal describing the properties of the “Hertzian waves” that suggested to young Marconi the possibility of sending messages from one place to another without wires. Many men doubtless read the same article, but all except the young Italian lacked the training, the power of thought, and the imagination, first to foresee the great things that could be accomplished through this discovery, and then to study out the mechanical problem, and finally to steadfastly push the work through to practical usefulness.

It would seem that Marconi was not the kind of boy to produce a revolutionising invention, for he was not in the least spectacular, but, on the contrary, almost shy, and lacking in the aggressive enthusiasm that is supposed to mark the successful inventor; quiet determination was a strong characteristic of the young Italian, and a studious habit which had much to do with the great results accomplished by him at so early an age.

He was well equipped to grapple with the mighty problem which he had been the first to conceive, since from early boyhood he had made electricity his chief study, and a comfortable income saved him from the grinding struggle for bare existence that many inventors have had to endure. Although born in Bologna (in 1874) and bearing an Italian name, Marconi is half Irish, his mother being a native of Britain. Having been educated in Bologna, Florence, and Leghorn, Italy’s schools may rightly claim to have had great influence in the shaping of his career. Certain it is, in any case, that he was well educated, especially in his chosen branch.

Marconi, like many other inventors, did not discover the means by which the end was accomplished; he used the discovery of other men, and turned their impractical theories and inventions to practical uses, and, in addition, invented many theories of his own. The man who does old things in a new way, or makes new uses of old inventions, is the one who achieves great things. And so it was the reading of the discovery of Hertz that started the boy on the train of thought and the series of experiments that ended with practical, everyday telegraphy without the use of wires. To begin with, it is necessary to give some idea of the medium that carries the wireless messages.

It is known that all matter, even the most compact and solid of substances, is permeated by what is called ether, and that the vibrations that make light, heat, and colour are carried by this mysterious substance as water carries the wave motions on its surface. This strange substance, ether, which pervades everything, surrounds everything, and penetrates all things, is mysterious, since it cannot be seen nor felt, nor made known to the human senses in any way; colourless, odourless, and intangible in every way, its properties are only known through the things that it accomplishes that are beyond the powers of the known elements. Ether has been compared by one writer to jelly which, filling all space, serves as a setting for the planets, moons, and stars, and, in fact, all solid substances; and as a bowl of jelly carries a plum, so all solid things float in it.

Heinrich Hertz discovered that in addition to the light, heat, and colour waves carried by ether, this substance also served to carry electric waves or vibrations, so that electric impulses could be sent from one place to another without the aid of wires. These electric waves have been named “Hertzian waves,” in honour of their discoverer; but it remained for Marconi, who first conceived their value, to put them to practical use. But for a year he did not attempt to work out his plan, thinking that all the world of scientists were studying the problem. The expected did not happen, however. No news of wireless telegraphy reached the young Italian, and so he set to work at his father’s farm in Bologna to develop his idea.

[Illustration: THE MARCONI STATION AT GLACE BAY, CAPE BRETON From the wires hung to these towers are sent the messages that carry clear across to England.]

And so the boy began to work out his great idea with a dogged determination to succeed, and with the thought constantly in mind spurring him on that it was more than likely that some other scientist was striving with might and main to gain the same end.

His father’s farm was his first field of operations, the small beginnings of experiments that were later to stretch across many hundreds of miles of ocean. Set up on a pole planted at one side of the garden, he rigged a tin box to which he connected, by an insulated wire, his rude transmitting apparatus. At the other side of the garden a corresponding pole with another tin box was set up and connected with the receiving apparatus. The interest of the young inventor can easily be imagined as he sat and watched for the tick of his recording instrument that he knew should come from the flash sent across the garden by his companion. Much time had been spent in the planning and the making of both sets of instruments, and this was the first test; silent he waited, his nerves tense, impatient, eager. Suddenly the Morse sounder began to tick and burr-r-r; the boy’s eyes flashed, and his heart gave an exultant bound–the first wireless message had been sent and received, and a new marvel had been added to the list of world’s wonders. The quiet farm was the scene of many succeeding experiments, the place having been put at his disposal by his appreciative father, and in addition ample funds were generously supplied from the same source. Different heights of poles were tried, and it was found that the distance could be increased in proportion to the altitude of the pole bearing the receiving and transmitting tin boxes or “capacities”–the higher the poles the greater distance the message could be sent. The success of Marconi’s system depended largely on his receiving apparatus, and it is on account of his use of some of the devices invented by other men that unthinking people have criticised him. He adapted to the use of wireless telegraphy certain inventions that had heretofore been merely interesting scientific toys–curious little instruments of no apparent practical value until his eye saw in them a contributory means to a great end.

Though Hertz caught the etheric waves on a wire hoop and saw the answering sparks jump across the unjoined ends, there was no way to record the flashes and so read the message. The electric current of a wireless message was too weak to work a recording device, so Marconi made use of an ingenious little instrument invented by M. Branly, called a coherer, to hitch on, as it were, the stronger current of a local battery. So the weak current of the ether waves, aided by the stronger current of the local circuit, worked the recorder and wrote the message down. The coherer was a little tube of glass not as long as your finger, and smaller than a lead pencil, into each end of which was tightly fitted plugs of silver; the plugs met within a small fraction of an inch in the centre of the tube, and the very small space between the ends of the plugs was filled with silver and nickel dust so fine as to be almost as light as air. Though a small instrument, and more delicate than a clinical thermometer, it loomed large in the working-out of wireless telegraphy. One of the silver plugs of the coherer was connected to the receiving wire, while the other was connected to the earth (grounded). To one plug of the coherer also was joined one pole of the local battery, while the other pole was in circuit with the other plug of the coherer through the recording instrument. The fine dust-like silver and nickel particles in the coherer possessed the quality of high resistance, except when charged by the electric current of the ether waves; then the particles of metal clung together, cohered, and allowed of the passage of the ether waves’ current and the strong current of the local battery, which in turn actuated the Morse sounder and recorder. The difficulty with this instrument was in the fact that the metal particles continued to cohere, unless shaken apart, after the ether waves’ current was discontinued. So Marconi invented a little device which was in circuit with the recorder and tapped the coherer tube with a tiny mallet at just the right moment, causing the particles to separate, or decohere, and so break the circuit and stop the local battery current. As no wireless message could have been received without the coherer, so no record or reading could have been made without the young Italian’s improvement.

In sending the message from one side of his father’s estate at Bologna to the other the young inventor used practically the same methods that he uses to-day. Marconi’s transmitting apparatus consisted of electric batteries, an induction coil by which the force of the current is increased, a telegrapher’s key to make and break the circuit, and a pair of brass knobs. The batteries were connected with the induction coil, which in turn was connected with the brass knobs; the telegrapher’s key was placed between the battery and the coil. It was the boy scarcely out of his teens who worked out the principles of his system, but it took time and many, many experiments to overcome the obstacles of long-distance wireless telegraphy. The sending of a message across the garden in far-away Italy was a simple matter–the depressed key completed the electric circuit created by a strong battery through the induction coil and made a spark jump between the two brass knobs, which in turn started the ether vibrating at the rate of three or four hundred million times a minute from the tin box on top of a pole. The vibrations in the ether circled wider and wider, as the circular waves spread from the spot where a stone is dropped into a pool, but with the speed of light, until they reached a corresponding tin box on top of a like pole on the other side of the garden; this box, and the wire connected with it, caught the waves, carried them down to the coherer, and, joining the current from the local battery, a dot or dash was recorded; immediately after, the tapper separated the metal particles in the coherer and it was ready for the next series of waves.

One spark made a single dot, a stream of sparks the dash of the Morse telegraphic code. The apparatus was crude at first, and worked spasmodically, but Marconi knew he was on the right track and persevered. With the heightening of the pole he found he could send farther without an increase of electric power, until wireless messages were sent from one extreme limit of his father’s farm to the other.

It is hard to realize that the young inventor only began his experiments in wireless telegraphy in 1895, and that it is scarcely eight years since the great idea first occurred to him.

After a year of experimenting on his father’s property, Marconi was able to report to W.H. Preece, chief electrician of the British postal system, certain definite facts–not theories, but facts. He had actually sent and received messages, without the aid of wires, about two miles, but the facilities for further experimenting at Bologna were exhausted, and he went to England.

Here was a youth (scarcely twenty-one), with a great invention already within his grasp–a revolutionising invention, the possibilities of which can hardly yet be conceived. And so this young Italian, quiet, retiring, unassuming, and yet possessing Jove’s power of sending thunderbolts, came to London (in 1896), to upbuild and link nation to nation more closely. With his successful experiments behind him, Marconi was well received in England, and began his further work with all the encouragement possible. Then followed a series of tests that were fairly bewildering. Messages were sent through brick walls–through houses, indeed–over long stretches of plain, and even through hills, proving beyond a doubt that the etheric electric waves penetrated everything. For a long time Marconi used modifications of the tin boxes which were a feature of his early trials, but later balloons covered with tin-foil, and then a kite six feet high, covered with thin metallic sheets, was used, the wire leading down to the sending and receiving instruments running down the cord. With the kite, signals were sent eight miles by the middle of 1897. Marconi was working on the theory that the higher the transmitting and receiving “capacity,” as it was then called, or wire, or “antenna,” the greater distance the message could be sent; so that the distance covered was only limited by the height of the transmitting and receiving conductors. This theory has since been abandoned, great power having been substituted for great height.

Marconi saw that balloons and kites, the playthings of the winds, were unsuitable for his purpose, and sought some more stable support for his sending and receiving apparatus. He set up, therefore (in November, 1897), at the Needles, Isle of Wight, a 120-foot mast, from the apex of which was strung his transmitting wire (an insulated wire, instead of a box, or large metal body, as heretofore used). This was the forerunner of all the tall spars that have since pointed to the sky, and which have been the centre of innumerable etheric waves bearing man’s messages over land and sea.

With the planting of the mast at the Needles began a new series of experiments which must have tried the endurance and determination of the young man to the utmost. A tug was chartered, and to the sixty-foot mast erected thereon was connected the wire and transmitting and receiving apparatus. From this little vessel Marconi sent and received wireless signals day after day, no matter what the state of the weather. With each trip experience was accumulated and the apparatus was improved; the moving station steamed farther and farther out to sea, and the ether waves circled wider and wider, until, at the end of two months of sea-going, wireless telegraphy signals were received clear across to the mainland, fourteen miles, whereupon a mast was set up and a station established (at Bournemouth), and later eighteen miles away at Poole.

By the middle of 1898 Marconi’s wireless system was doing actual commercial service in reporting, for a Dublin newspaper, the events at a regatta at Kingstown, when about seven hundred messages were sent from a floating station to land, at a maximum distance of twenty-five miles.

It was shortly afterward, while the royal yacht was in Cowes Bay, that one hundred and fifty messages between the then Prince of Wales and his royal mother at Osborne House were exchanged, most of them of a very private nature.

One of the great objections to wireless telegraphy has been the inability to make it secret, since the ether waves circle from the centre in all directions, and any receiving apparatus within certain limits would be affected by the waves just as the station to which the message was sent would be affected by them. To illustrate: the waves radiating from a stone dropped into a still pool would make a dead leaf bob up and down anywhere on the pool within the circle of the waves, and so the ether waves excited the receiving apparatus of any station within the effective reach of the circle.

Of course, the use of a cipher code would secure the secrecy of a message, but Marconi was looking for a mechanical device that would make it impossible for any but the station to which the message was sent to receive it. He finally hit upon the plan of focussing the ether waves as the rays of a searchlight are concentrated in a given direction by the use of a reflector, and though this adaptation of the searchlight principle was to a certain extent successful, much penetrating power was lost. This plan has been abandoned for one much more ingenious and effective, based on the principle of attunement, of which more later.

It was a proud day for the young Italian when his receiver at Dover recorded the first wireless message sent across the British Channel from Boulogne in 1899–just the letters V M and three or four words in the Morse alphabet of dots and dashes. He had bridged that space of stormy, restless water with an invisible, intangible something that could be neither seen, felt, nor heard, and yet was stronger and surer than steel–a connection that nothing could interrupt, that no barrier could prevent. The first message from England to France was soon followed by one to M. Branly, the inventor of the coherer, that made the receiving of the message possible, and one to the queen of Marconi’s country. The inventor’s march of progress was rapid after this–stations were established at various points all around the coast of England; vessels were equipped with the apparatus so that they might talk to the mainland and to one another. England’s great dogs of war, her battle-ships, fought an imaginary war with one another and the orders were flashed from the flagship to the fighters, and from the Admiral’s cabin to the shore, in spite of fog and great stretches of open water heaving between.


A lightship anchored off the coast of England was fitted with the Marconi apparatus and served to warn several vessels of impending danger, and at last, after a collision in the dark and fog, saved the men who were aboard of her by sending a wireless message to the mainland for help.

From the very beginning Marconi had set a high standard for himself. He worked for an end that should be both commercially practical and universal. When he had spanned the Channel with his wireless messages, he immediately set to work to fling the ether waves farther and farther. Even then the project of spanning the Atlantic was in his mind.

On the coast of Cornwall, near Penzance, England, Marconi erected a great station. A forest of tall poles were set up, and from the wires strung from one to the other hung a whole group of wires which were in turn connected to the transmitting apparatus. From a little distance the station looked for all the world like ships’ masts that had been taken out and ranged in a circle round the low buildings. This was the station of Poldhu, from which Marconi planned to send vibrations in the ether that would reach clear across to St. Johns, Newfoundland, on the other side of the Atlantic–more than two thousand miles away. A power-driven dynamo took the place of the more feeble batteries at Poldhu, converters to increase the power displaced the induction coil, and many sending-wires, or antennae, were used instead of one.

On Signal Hill, at St. Johns, Newfoundland–a bold bluff overlooking the sea–a group of men worked for several days, first in the little stone house at the brink of the bluff, setting up some electric apparatus; and later, on the flat ground nearby, the same men were very busy flying a great kite and raising a balloon. There was no doubt about the earnestness of these men: they were not raising that kite for fun. They worked with care and yet with an eagerness that no boy ever displays when setting his home-made or store flyer to the breeze. They had hard luck: time and time again the wind or the rain, or else the fog, baffled them, but a quiet young fellow with a determined, thoughtful face urged them on, tugged at the cord, or held the kite while the others ran with the line. Whether Marconi stood to one side and directed or took hold with his men, there was no doubt who was master. At last the kite was flying gallantly, high overhead in the blue. From the sagging kite-string hung a wire that ran into the low stone house.

One cold December day in 1901, Guglielmo Marconi sat still in a room in the Government building at Signal Hill, St. Johns, Newfoundland, with a telephone receiver at his ear and his eye on the clock that ticked loudly nearby. Overhead flew his kite bearing his receiving-wire. It was 12:30 o’clock on the American side of the ocean, and Marconi had ordered his operator in far-off Poldhu, two thousand watery miles away, to begin signalling the letter “S”–three dots of the Morse code, three flashes of the bluish sparks–at that corresponding hour. For six years he had been looking forward to and working for that moment–the final test of all his effort and the beginning of a new triumph. He sat waiting to hear three small sounds, the br-br-br of the Morse code “S,” humming on the diaphragm of his receiver–the signature of the ether waves that had travelled two thousand miles to his listening ear. As the hands of the clock, whose ticking alone broke the stillness of the room, reached thirty minutes past twelve, the receiver at the inventor’s ear began to hum, br-br-br, as distinctly as the sharp rap of a pencil on a table–the unmistakable note of the ether vibrations sounded in the telephone receiver. The telephone receiver was used instead of the usual recorder on account of its superior sensitiveness.

Transatlantic wireless telegraphy was an accomplished fact.

Though many doubted that an actual signal had been sent across the Atlantic, the scientists of both continents, almost without exception, accepted Marconi’s statement. The sending of the transatlantic signal, the spanning of the wide ocean with translatable vibrations, was a great achievement, but the young Italian bore his honours modestly, and immediately went to work to perfect his system.

Two months after receiving the message from Poldhu at St. Johns, Marconi set sail from England for America, in the _Philadelphia_, to carry out, on a much larger scale, the experiments he had worked out with the tug three years ago. The steamship was fitted with a complete receiving and sending outfit, and soon after she steamed out from the harbor she began to talk to the Cornwall station in the dot-and-dash sign language. The long-distance talk between ship and shore continued at intervals, the recording instrument writing the messages down so that any one who understood the Morse code could read. Message after message came and went until one hundred and fifty miles of sea lay between Marconi and his station. Then the ship could talk no more, her sending apparatus not being strong enough; but the faithful men at Poldhu kept sending messages to their chief, and the recorder on the _Philadelphia_ kept taking them down in the telegrapher’s shorthand, though the steamship was plowing westward at twenty miles an hour. Day after day, at the appointed hour to the very second, the messages came from the station on land, flung into the air with the speed of light, to the young man in the deck cabin of a speeding steamship two hundred and fifty, five hundred, a thousand, fifteen hundred, yes, two thousand and ninety-nine miles away–messages that were written down automatically as they came, being permanent records that none might gainsay and that all might observe.

To Marconi it was the simple carrying out of his orders, for he said that he had fitted the Poldhu instruments to work to two thousand one hundred miles, but to those who saw the thing done–saw the narrow strips of paper come reeling off the recorder, stamped with the blue impressions of the messages through the air, it was astounding almost beyond belief; but there was the record, duly attested by those who knew, and clearly marked with the position of the ship in longitude and latitude at the time they were received.

It was only a few months afterward that Marconi, from his first station in the United States, at Wellfleet, Cape Cod, Mass., sent a message direct to Poldhu, three thousand miles. At frequent intervals messages go from one country to the other across the ocean, carried through fog, unaffected by the winds, and following the curvature of the earth, without the aid of wires.

Again the unassuming nature of the young Italian was shown. There was no brass band nor display of national colours in honour of the great achievement; it was all accomplished quietly, and suddenly the world woke up to find that the thing had been done. Then the great personages on both sides of the water congratulated and complimented each other by Marconi’s wireless system.

At Marconi’s new station at Glace Bay, Cape Breton, and at the powerful station at Wellfleet, Cape Cod, the receiving and sending wires are supported by four great towers more than two hundred feet high. Many wires are used instead of one, and much greater power is of course employed than at first, but the marvellously simple principle is the same that was used in the garden at Bologna. The coherer has been displaced by a new device invented by Marconi, called a magnetic detector, by which the ether waves are aided by a stronger current to record the message. The effect is the same, but the method is entirely different.

The sending of a long-distance message is a spectacular thing. Current of great power is used, and the spark is a blinding flash accompanied by deafening noises that suggest a volley from rifles. But Marconi is experimenting to reduce the noise, and the use of the mercury vapour invented by Peter Cooper Hewitt will do much to increase the rapidity in sending.

After much experimenting Marconi discovered that the longer the waves in the ether the more penetrating and lasting the quality they possessed, just as long swells on a body of water carry farther and endure longer than short ones. Moreover, he discovered that if many sending-wires were used instead of one, and strong electric power was employed instead of weak, these long, penetrating, enduring waves could be produced. All the new Marconi stations, therefore, built for long-distance work, are fitted with many sending-wires, and powerful dynamos are run which are capable of producing a spark between the silvered knobs as thick as a man’s wrist.

Marconi and several other workers in the field of wireless telegraphy are now busy experimenting on a system of attunement, or syntony, by which it will be possible to so adjust the sending instruments that none but the receiver for whom the message is meant can receive it. He is working on the principle whereby one tuning-fork, when set vibrating, will set another of the same pitch humming. This problem is practically solved now, and in the near future every station, every ship, and each installation will have its own key, and will respond to none other than the particular vibrations, wave lengths, or oscillations, for which it is adjusted.

All through the wonders he has brought about, Marconi, the boy and the man, has shown but little–he is the strong character that does things and says little, and his works speak so amazingly, so loudly, that the personality of the man is obscured.

The Marconi station at Glace Bay, Cape Breton, is now receiving messages for cableless transmission to England at the rate of ten cents a word–newspaper matter at five cents a word. Transatlantic wireless telegraphy is an everyday occurrence, and the common practical uses are almost beyond mention. It is quite within the bounds of possibility for England to talk clear across to Australia over the Isthmus of Panama, and soon France will be actually holding converse with her strange ally, Russia, across Germany and Austria, without asking the permission of either country. Ships talk to one another while in mid-ocean, separated by miles of salt water. Newspapers have been published aboard transatlantic steamers with the latest news telegraphed while en route; indeed, a regular news service of this kind, at a very reasonable rate, has been established. These are facts; what wonders the future has in store we can only guess. But these are some of the possibilities–news service supplied to subscribers at their homes, the important items to be ticked off on each private instrument automatically, “Marconigraphed” from the editorial rooms; the sending and receiving of messages from moving trains or any other kind of a conveyance; the direction of a submarine craft from a safe-distance point, or the control of a submarine torpedo.

One is apt to grow dizzy if the imagination is allowed to run on too far–but why should not one friend talk to another though he be miles away, and to him alone, since his portable instrument is attuned to but one kind of vibration. It will be like having a separate language for each person, so that “friend communeth with friend, and a stranger intermeddleth not–” and which none but that one person can understand.


There was a boy in far-away Brazil who played with his friends the game of “Pigeon Flies.”

In this pastime the boy who is “it” calls out “pigeon flies,” or “bat flies,” and the others raise their fingers; but if he should call “fox flies,” and one of his mates should raise his hand, that boy would have to pay a forfeit.

The Brazilian boy, however, insisted on raising his finger when the catchwords “man flies” were called, and firmly protested against paying a forfeit.

Alberto Santos-Dumont, even in those early days, was sure that if man did not fly then he would some day.

Many an imaginative boy with a mechanical turn of mind has dreamed and planned wonderful machines that would carry him triumphantly over the tree-tops, and when the tug of the kite-string has been felt has wished that it would pull him up in the air and carry him soaring among the clouds. Santos-Dumont was just such a boy, and he spent much time in setting miniature balloons afloat, and in launching tiny air-ships actuated by twisted rubber bands. But he never outgrew this interest in overhead sailing, and his dreams turned into practical working inventions that enabled him to do what never a mortal man had done before–that is, move about at will in the air.

Perhaps it was the clear blue sky of his native land, and the dense, almost impenetrable thickets below, as Santos-Dumont himself has suggested, that made him think how fine it would be to float in the air above the tangle, where neither rough ground nor wide streams could hinder. At any rate, the thought came into the boy’s mind when he was very small, and it stuck there.

His father owned great plantations and many miles of railroad in Brazil, and the boy grew up in the atmosphere of ponderous machinery and puffing locomotives. By the time Santos-Dumont was ten years old he had learned enough about mechanics to control the engines of his father’s railroads and handle the machinery in the factories. The boy had a natural bent for mechanics and mathematics, and possessed a cool courage that made him appear almost phlegmatic. Besides his inherited aptitude for mechanics, his father, who was an engineer of the Central School of Arts and Manufactures of Paris, gave him much useful instruction. Like Marconi, Santos-Dumont had many advantages, and also, like the inventor of wireless telegraphy, he had the high intelligence and determination to win success in spite of many discouragements. Like an explorer in a strange land, Santos-Dumont was a pioneer in his work, each trial being different from any other, though the means in themselves were familiar enough.

[Illustration: SANTOS-DUMONT PREPARING FOR A FLIGHT IN “SANTOS-DUMONT NO. 6” The steering-wheel can be seen in front of basket, the motor is suspended in frame to the rear, the propeller and rudder at extreme end.]

The boy Santos-Dumont dreamed air-ships, planned air-ships, and read about aerial navigation, until he was possessed with the idea that he must build an air-ship for himself.

He set his face toward France, the land of aerial navigation and the country where light motors had been most highly developed for automobiles. The same year, 1897, when he was twenty-four years old, he, with M. Machuron, made his first ascent in a spherical balloon, the only kind in existence at that time. He has described that first ascension with an enthusiasm that proclaims him a devotee of the science for all time.

His first ascension was full of incident: a storm was encountered; the clouds spread themselves between them and the map-like earth, so that nothing could be seen except the white, billowy masses of vapour shining in the sun; some difficulty was experienced in getting down, for the air currents were blowing upward and carried the balloon with them; the tree-tops finally caught them, but they escaped by throwing out ballast, and finally landed in an open place, and watched the dying balloon as it convulsively gasped out its last breath of escaping gas.

After a few trips with an experienced aeronaut, Santos-Dumont determined to go alone into the regions above the clouds. This was the first of a series of ascensions in his own balloon. It was made of very light silk, which he could pack in a valise and carry easily back to Paris from his landing point. In all kinds of weather this determined sky navigator went aloft; in wind, rain, and sunshine he studied the atmospheric conditions, air currents, and the action of his balloon.

The young Brazilian ascended thirty times in spherical balloons before he attempted any work on an elongated shape. He realised that many things must be learned before he could handle successfully the much more delicate and sensitive elongated gas-bag.

In general, Santos-Dumont worked on the theory of the dirigible balloon–that is, one that might be controlled and made to go in any direction desired, by means of a motor and propeller carried by a buoyant gas-bag. His plan was to build a balloon, cigar-shaped, of sufficient capacity to a little more than lift his machinery and himself, this extra lifting power to be balanced by ballast, so that the balloon and the weight it carried would practically equal the weight of air it displaced. The push of the revolving propeller would be depended upon to move the whole air-ship up or down or forward, just as the motion of a fish’s fins and tail move it up, down, forward, or back, its weight being nearly the same as the water it displaces.

The theory seems so simple that it strikes one as strange that the problem of aerial navigation was not solved long ago. The story of Santos-Dumont’s experiments, however, his adventures and his successes, will show that the problem was not so simple as it seemed.

Santos-Dumont was built to jockey a Pegasus or guide an air-ship, for he weighed but a hundred pounds when he made his first ascensions, and added very little live ballast as he grew older.

Weight, of course, was the great bugbear of every air-ship inventor, and the chief problem was to provide a motor light enough to furnish sufficient power for driving a balloon that had sufficient lifting capacity to support it and the aeronaut in the air. Steam-engines had been tried, but found too heavy for the power generated; electric motors had been tested, and proved entirely out of the question for the same reason.

Santos-Dumont has been very fortunate in this respect, his success, indeed, being largely due to the compact and powerful gasoline motors that have been developed for use on automobiles.

Even before the balloon for the first air-ship was ordered the young Brazilian experimented with his three-and-one-half horse-power gasoline motor in every possible way, adding to its power, and reducing its weight until he had cut it down to sixty-six pounds, or a little less than twenty pounds to a horse-power. Putting the little motor on a tricycle, he led the procession of powerful automobiles in the Paris-Amsterdam race for some distance, proving its power and speed. The motor tested to his satisfaction, Santos-Dumont ordered his balloon of the famous maker, Lachambre, and while it was building he experimented still further with his little engine. To the horizontal shaft of his motor he attached a propeller made of silk stretched tightly over a light wooden framework. The motor was secured to the aeronaut’s basket behind, and the reservoir of gasoline hung to the basket in front. All this was done and tested before the balloon was finished–in fact, the aeronaut hung himself up in his basket from the roof of his workshop and started his motor to find out how much pushing power it exerted and if everything worked satisfactorily.

On September 18, 1898, Santos-Dumont made his first ascension in his first air-ship–in fact, he had never tried to operate an elongated balloon before, and so much of this first experience was absolutely new. Imagine a great bag of yellow oiled silk, cigar-shaped, fully inflated with hydrogen gas, but swaying in the morning breeze, and tugging at its restraining ropes: a vast bubble eighty-two feet long, and twelve feel in diameter at its greatest girth. Such was the balloon of Santos-Dumont’s first air-ship. Suspended by cords from the great gas-bag was the basket, to which was attached the motor and six-foot propeller, hung sixteen feet below the belly of the great air-fish.

Many friends and curiosity seekers had assembled to see the aeronaut make his first foolhardy attempt, as they called it. Never before had a spark-spitting motor been hung under a great reservoir of highly inflammable hydrogen gas, and most of the group thought the daring inventor would never see another sunset. Santos-Dumont moved around his suspended air-ship, testing a cord here and a connection there, for he well knew that his life might depend on such a small thing as a length of twine or a slender rod. At one side of a small open space on the outskirts of Paris the long, yellow balloon tugged at its fastenings, while the navigator made his final round to see that all was well. A twist of a strap around the driving-wheel set the motor going, and a moment later Santos-Dumont was standing in his basket, giving the signal to release the air-ship. It rose heavily, and travelling with the fresh wind, the propellers whirling swiftly, it crashed into the trees at the other side of the enclosure. The aeronaut had, against his better judgment, gone with the wind rather than against it, so the power of the propeller was added to the force of the breeze, and the trees were encountered before the ship could rise sufficiently to clear them. The damage was repaired, and two days later, September 20, 1898, the Brazilian started again from the same enclosure, but this time against the wind. The propeller whirled merrily, the explosions of the little motor snapped sharply as the great yellow bulk and the tiny basket with its human freight, the captain of the craft, rose slowly in the air. Santos-Dumont stood quietly in his basket, his hand on the controlling cords of the great rudder on the end of the balloon; near at hand was a bag of loose sand, while small bags of ballast were packed around his feet. Steadily she rose and began to move against the wind with the slow grace of a great bird, while the little man in the basket steered right or left, up or down, as he willed. He turned his rudder for the lateral movements, and changed his shifting bags of ballast hanging fore and aft, pulling in the after bag when he wished to point her nose down, and doing likewise with the forward ballast when he wished to ascend–the propeller pushing up or down as she was pointed. For the first time a man had actual control of an air-ship that carried him. He commanded it as a captain governs his ship, and it obeyed as a vessel answers its helm.

A quarter of a mile above the heads of the pygmy crowd who watched him the little South American maneuvered his air-ship, turning circles and figure eights with and against the breeze, too busy with his rudder, his vibrating little engine, his shifting bags of ballast, and the great palpitating bag of yellow silk above him, to think of his triumph, though he could still hear faintly the shouts of his friends on earth. For a time all went well and he felt the exhilaration that no earth-travelling can ever give, as he experienced somewhat of the freedom that the birds must know when they soar through the air unfettered. As he descended to a lower, denser atmosphere he felt rather than saw that something was wrong–that there was a lack of buoyancy to his craft. The engine kept on with its rapid “phut, phut, phut” steadily, but the air-ship was sinking much more rapidly than it should. Looking up, the aeronaut saw that his long gas-bag was beginning to crease in the middle and was getting flabby, the cords from the ends of the long balloon were beginning to sag, and threatened to catch in the propeller. The earth seemed to be leaping up toward him and destruction stared him in the face. A hand air-pump was provided to fill an air balloon inside the larger one and so make up for the compression of the hydrogen gas caused by the denser, lower atmosphere. He started this pump, but it proved too small, and as the gas was compressed more and more, and the flabbiness of the balloon increased, the whole thing became unmanageable. The great ship dropped and dropped through the air, while the aeronaut, no longer in control of his ship, but controlled by it, worked at the pump and threw out ballast in a vain endeavour to escape the inevitable. He was descending directly over the greensward in the centre of the Longchamps race-course, when he caught sight of some boys flying kites in the open space. He shouted to them to take hold of his trailing guide-rope and run with it against the wind. They understood at once and as instantly obeyed. The wind had the same effect on the air-ship as it has on a kite when one runs with it, and the speed of the fall was checked. Man and air-ship landed with a thud that smashed almost everything but the man. The smart boys that had saved Santos-Dumont’s life helped him pack what was left of “Santos-Dumont No. 1” into its basket, and a cab took inventor and invention back to Paris.

In spite of the narrow escape and the discouraging ending of his first flight, Santos-Dumont launched his second air-ship the following May. Number 2 was slightly larger than the first, and the fault that was dangerous in it was corrected, its inventor thought, by a ventilator connecting the inner bag with the outer air, which was designed to compensate for the contraction of the gas and keep the skin of the balloon taut. But No. 2 doubled up as had No. 1, while she was still held captive by a line; falling into a tree hurt the balloon, but the aeronaut escaped unscratched. Santos-Dumont, in spite of his quiet ways and almost effeminate speech, his diminutive body, and wealth that permitted him to enjoy every luxury, persisted in his work with rare courage and determination. The difficulties were great and the available information meager to the last degree. The young inventor had to experiment and find out for himself the obstacles to success and then invent ways to surmount them. He had need of ample wealth, for the building of air-ships was expensive business. The balloons were made of the finest, lightest Japanese silk, carefully prepared and still more vigorously tested. They were made by the most famous of the world’s balloon-makers, Lachambre, and required the spending of money unstintedly. The motors cost according to their lightness rather than their weight, and all the materials, cordage, metal-work, etc., were expensive for the same reason. The cost of the hydrogen gas was very great also, at twenty cents per cubic meter (thirty-five cubic feet); and as at each ascension all the gas was usually lost, the expense of each sail in the air for gas alone amounted to from $57 for the smallest ship to $122 for the largest.


Nevertheless, in November of 1899 Santos-Dumont launched another air-ship–No. 3. This one was supported by a balloon of much greater diameter, though the length remained about the same–sixty-six feet. The capacity, however, was almost three times as great as No. 1, being 17,655 cubic feet. The balloon was so much larger that the less expensive but heavier illuminating gas could be used instead of hydrogen. When the air-ship “Santos-Dumont No. 3” collapsed and dumped its navigator into the trees, Santos-Dumont’s friends took it upon themselves to stop his dangerous experimenting, but he said nothing, and straightway set to work to plan a new machine. It was characteristic of the man that to him the danger, the expense, and the discouragements counted not at all.

In the afternoon of November 13, 1899, Santos-Dumont started on his first flight in No. 3. The wind was blowing hard, and for a time the great bulk of the balloon made little headway against it; 600 feet in air it hung poised almost motionless, the winglike propeller whirling rapidly. Then slowly the great balloon began nosing its way into the wind, and the plucky little man, all alone, beyond the reach of any human voice, could not tell his joy, although the feeling of triumph was strong within him. Far below him, looking like two-legged hats, so foreshortened they were from the aeronaut’s point of view, were the people of Paris, while in front loomed the tall steel spire of the Eiffel Tower. To sail round that tower even as the birds float about had been the dream of the young aeronaut since his first ascension. The motor was running smoothly, the balloon skin was taut, and everything was working well; pulling the rudder slightly, Santos-Dumont headed directly for the great steel shaft.

The people who were on the Eiffel Tower that breezy afternoon saw a sight that never a man saw before. Out of the haze a yellow shape loomed larger each minute until its outlines could be distinctly seen. It was a big cigar-shaped balloon, and under it, swung by what seemed gossamer threads, was a basket in which was a man. The air-ship was going against the wind, and the man in the basket evidently had full control, for the amazed people on the tower saw the air-ship turn right and left as her navigator pulled the rudder-cords, and she rose and fell as her master regulated his shifting ballast. For twenty minutes Santos-Dumont maneuvered around the tower as a sailboat tacks around a buoy. While the people on that tall spire were still watching, the aeronaut turned his ship around and sailed off for the Longchamps race-course, the green oval of which could be just distinguished in the distance.

On the exact spot where, a little more than a year before, the same man almost lost his life and wrecked his first air-ship, No. 3 landed as softly and neatly as a bird.

Though he made many other successful flights, he discovered so many improvements that with the first small mishap he abandoned No. 3 and began on No. 4.

The balloon “Santos-Dumont No. 4” was long and slim, and had an inner air-bag to compensate for the contraction of the hydrogen gas. This air-ship had one feature that was entirely new; the aeronaut had arranged for himself, not a secure basket to stand in, but a frail, unprotected bicycle seat attached to an ordinary bicycle frame. The cranks were connected with the starting-gear of the motor.

Seated on his unguarded bicycle seat, and holding on to the handle-bars, to which were attached the rudder-cords, Santos-Dumont made voyages in the air with all the assurance of the sailor on the sea.

But No. 4 was soon too imperfect for the exacting Brazilian, and in April, 1901, he had finished No. 5. This air-cruiser was the longest of all (105 feet), and was fitted with a sixteen horse-power motor. Instead of the bicycle frame, he built a triangular keel of pine strips and strengthened it with tightly strung piano wires, the whole frame, though sixty feet long, weighing but 110 pounds. Hung between the rods, being suspended by piano wires as in a spider-web, was the motor, basket, and propeller-shaft.

The last-named air-ship was built, if not expressly at least with the intention of trying for the Deutsch Prize of 100,000 francs. This was a big undertaking, and many people thought it would never be accomplished; the successful aeronaut had to travel more than three miles in one direction, round the Eiffel Tower as a racing yacht rounds a stake-boat, and return to the starting point, all within thirty minutes–_i.e._, almost seven miles in two directions in half an hour.

The new machine worked well, though at one time the aerial navigator’s friends thought that they would have to pick him up in pieces and carry him home in a basket. This incident occurred during one of the first flights in No. 5. Everything was going smoothly, and the air-ship circled like a hawk, when the spectators, who were craning their necks to see, noticed that something was wrong; the motor slowed down, the propeller spun less swiftly, and the whole fabric began to sink toward the ground. While the people gazed, their hearts in their mouths, they saw Santos-Dumont scramble out of his basket and crawl out on the framework, while the balloon swayed in the air. He calmly knotted the cord that had parted and crept back to his place, as unconcernedly as if he were on solid ground.

It was in August of 1901 that he made his first official trial for the Deutsch Prize. The start was perfect, and the machine swooped toward the distant tower straight as a crow flies and almost as fast. The first half of the distance was covered in nine minutes, so twenty-one minutes remained for the balance of the journey: success seemed assured; the prize was almost within the grasp of the aeronaut. Of a sudden assured success was changed to dire peril; the automatic valves began to leak, the balloon to sag, the cords supporting the wooden keel hung low, and before Santos-Dumont could stop the motor the propeller had cut them and the whole system was threatened. The wind was drifting the air-ship toward the Eiffel Tower; the navigator had lost control; 500 feet below were the roofs of the Trocadero Hotels; he had to decide which was the least dangerous; there was but a moment to think. Santos-Dumont, death staring him in the face, chose the roofs. A swift jerk of a cord, and a big slit was made in the balloon. Instantly man, motor, gas-bag, and keel went tumbling down straight into the court of the hotels. The great balloon burst with a noise like an explosion, and the man was lost in a confusion of yellow-silk covering, cords, and wires. When the firemen reached the place and put down their long ladders they found him standing calmly in his wicker basket, entirely unhurt. The long, staunch keel, resting by its ends on the walls of the court, prevented him from being dashed to pieces. And so ended No. 5.

Most men would have given up aerial navigation after such an experience, but Santos-Dumont could not be deterred from continuing his experiments. The night of the very day which witnessed his fearful fall and the destruction of No. 5 he ordered a new balloon for “Santos-Dumont No. 6.” It showed the pluck and determination of the man as nothing else could.

Twenty-two days after the aeronaut’s narrow escape his new air-ship was finished and ready for a flight. No. 6 was practically the same as its predecessor–the triangular keel was retained, but an eighteen horse-power gasoline motor was substituted for the sixteen horse-power used previously. The propeller, made of silk stretched over a bamboo frame, was hung at the after end of the keel; the motor was a little aft of the centre, while the basket to which led the steering-gear, the emergency valve to the balloon, and the motor-controlling gear was suspended farther forward. To control the upward or downward pointing of the new air-ship, shifting ballast was used which ran along a wire under the keel from one end to the other; the cords controlling this ran to the basket also.

The new air-ship worked well, and the experimental flights were successful with one exception–when the balloon came in contact with a tree.

It was in October, 1901 (the 19th), when the Deutsch Prize Committee was asked to meet again and see a man try to drive a balloon against the wind, round the Eiffel Tower, and return.

The start took place at 2:42 P.M. of October 19, 1901, with a beam wind blowing. Straight as a bullet the air-ship sped for the steel shaft of the tower, rising as she flew. On and on she sped, while the spectators, remembering the finish of the last trial, watched almost breathlessly. With the air of a cup-racer turning the stake-boat she rounded the steel spire, a run of three and three-fifth miles, in nine minutes (at the rate of more than twenty-two miles an hour), and started on the home-stretch.

For a few moments all went well, then those who watched were horrified to see the propeller slow down and nearly stop, while the wind carried the air-ship toward the Tower. Just in time the motor was speeded up and the course was resumed. As the group of men watched the speck grow larger and larger until things began to take definite shape, the white blur of the whirling propeller could be seen and the small figure in the basket could be at last distinguished. Again the motor failed, the speed slackened, and the ship began to sink. Santos-Dumont threw out enough ballast to recover his equilibrium and adjusted the motor. With but three minutes left and some distance to go, the great dirigible balloon got up speed and rushed for the goal. At eleven and a half minutes past three, twenty-nine minutes and thirty-one seconds after starting, Santos-Dumont crossed the line, the winner of the Deutsch Prize. And so the young Brazilian accomplished that which had been declared impossible.

[Illustration: THE MOTOR AND BASKET OF “SANTOS-DUMONT NO. 9” The gasoline holder, from which a tube leads to the motor, can be seen on the side of the basket.]

The following winter the aerial navigator, in the same No. 5, sailed many times over the waters of the Mediterranean from Monte Carlo. These flights over the water, against, athwart, and with the wind, some of them faster than the attending steamboats could travel, continued until through careless inflation of the balloon the air-ship and navigator sank into the sea. Santos-Dumont was rescued without being harmed in the least, and the air-ship was preserved intact, to be exhibited later to American sightseers.

“Santos-Dumont No. 6,” the most successful of the series built by the determined Brazilian, looks as if it were altogether too frail to intrust with the carrying of a human being. The 105-foot-long balloon, a light yellow in colour, sways and undulates with every passing breeze. The steel piano wires by which the keel and apparatus are hung to the balloon skin are like spider-webs in lightness and delicacy, and the motor that has the strength of eighteen horses is hardly bigger than a barrel. A little forward of the motor is suspended to the keel the cigar-shaped gasoline reservoir, and strung along the top rod are the batteries which furnish the current to make the sparks for the purpose of exploding the gas in the motor.

Santos-Dumont himself says that the world is still a long way from practical, everyday aerial navigation, but he points out the apparent fact that the dirigible balloon in the hands of determined men will practically put a stop to war. Henri Rochefort has said: “The day when it is established that a man can direct an air-ship in a given direction and cause it to maneuver as he wills–there will remain little for the nations to do but to lay down their arms.”

The man who has done so much toward the abolishing of war can rest well content with his work.


The conductor stood at the end of the train, watch in hand, and at the moment when the hands indicated the appointed hour he leisurely climbed aboard and pulled the whistle cord. A sharp, penetrating hiss of escaping air answered the pull, and the train moved out of the great train-shed in its race against time. It was all so easy and comfortable that the passengers never thought of the work and study that had been spent to produce the result. The train gathered speed and rushed on at an appalling rate, but the passengers did not realise how fast they were going unless they looked out of the windows and saw the houses and trees, telegraph poles, and signal towers flash by.

It is the purpose of this chapter to tell how high speed is attained without loss of comfort to the passengers–in other words, to tell how a fast train is run.

When the conductor pulled the cord at the rear end of the long train a whistling signal was thus given in the engine-cab, and the engineer, after glancing down the tracks to see that the signals indicated a clear track, pulled out the long handle of the throttle, and the great machine obeyed his will as a docile horse answers a touch on the rein. He opened the throttle-valve just a little, so that but little steam was admitted to the cylinders, and the pistons being pushed out slowly, the driving-wheels revolved slowly and the train started gradually. When the end of the piston stroke was reached the used steam was expelled into the smokestack, creating a draught which in turn strengthened the heat of the fire. With each revolution of the driving-wheels, each cylinder–there is one on each side of every locomotive–blew its steamy breath into the stack twice. This kept the fire glowing and made the chou-chou sound that everybody knows and every baby imitates.

As the train gathered speed the engineer pulled the throttle open wider and wider, the puffs in the short, stubby stack grew more and more frequent, and the rattle and roar of the iron horse increased.

Down in the pit of the engine-cab the fireman, a great shovel in his hands, stood ready to feed the ravenous fires. Every minute or two he pulled the chain and yanked the furnace door open to throw in the coal, shutting the door again after each shovelful, to keep the fire hot.

[Illustration: “FIRING” A FAST LOCOMOTIVE An operation that is practically continuous during a fast trip.]

The fireman on a fast locomotive is kept extremely busy, for he must keep the steam-pressure up to the required standard–150 or 200 pounds–no matter how fast the sucking cylinders may draw it out. He kept his eyes on the steam-gage most of the time, and the minute the quivering finger began to drop, showing reduced pressure, he opened the door to the glowing furnace and fed the fire. The steam-cylinders act on the boiler a good deal as a lung-tester acts on a human being; the cylinders draw out the steam from the boiler, requiring a roaring fire to make the vapour rapidly enough and keep up the pressure.

Though the engineer seemed to be taking it easily enough with his hand resting lightly on the reversing-lever, his body at rest, the fireman was kept on the jump. If he was not shovelling coal he was looking ahead for signals (for many roads require him to verify the engineer), or adjusting the valves that admitted steam to the train-pipes and heated the cars, or else, noticing that the water in the boiler was getting low–and this is one of his greatest responsibilities, which, however, the engineer sometimes shares–he turned on the steam in the injector, which forced the water against the pressure into the boiler. All these things he has to do repeatedly even on a short run.

The engineer–or “runner,” as he is called by his fellows–has much to do also, and has infinitely greater responsibility. On him depends the safety and the comfort of the passengers to a large degree; he must nurse his engine to produce the greatest speed at the least cost of coal, and he must round the curves, climb the grades, and make the slow-downs and stops so gradually that the passengers will not be disturbed.

To the outsider who rides in a locomotive-cab for the first time it seems as if the engineer settles down to his real work with a sigh of relief when the limits of the city have been passed; for in the towns there are many signals to be watched, many crossings to be looked out for, and a multitude of moving trains, snorting engines, and tooting whistles to distract one’s attention. The “runner,” however, seemed not to mind it at all. He pulled on his cap a little more firmly, and, after glancing at his watch, reached out for the throttle handle. A very little pull satisfied him, and though the increase in speed was hardly perceptible, the more rapid exhaust told the story of faster movement. As the train sped on, the engineer moved the reversing-lever notch by notch nearer the centre of the guide. This adjusted the “link-motion” mechanism, which is operated by the driving-axle, and cut off the steam entering the cylinders in such a way that it expanded more fully and economically, thus saving fuel without loss of power.

When a station was reached, when a “caution” signal was displayed, or whenever any one of the hundred or more things occurred that might require a stop or a slow-down, the engineer closed down the throttle and very gradually opened the air-brake valve that admitted compressed air to the brake-cylinders, not only on the locomotive but on all the cars. The speed of the train slackened steadily but without jar, until the power of the compressed air clamped the brake-shoes on the wheels so tightly that they were practically locked and the train was stopped. By means of the air-brake the engineer had almost entire control of the train. The pump that compresses the air is on the engine, and keeps the pressure in the car and locomotive reservoirs automatically up to the required standard.

Each stage of every trip of a train not a freight is carefully charted, and the engineer is provided with a time-table that shows where his train should be at a given time. It is a matter of pride with the engineers of fast trains to keep close to their schedules, and their good records depend largely on this running-time, but delays of various kinds creep in, and in spite of their best efforts engineers are not always able to make all their schedules. To arrive at their destinations on time, therefore, certain sections must be covered in better than schedule time, and then great skill is required to get the speed without a sacrifice of comfort for the passenger.

To most travellers time is more valuable than money, and so everything about a train is planned to facilitate rapid travelling. Almost every part of a locomotive is controlled from the cab, which prevents unnecessary stopping to correct defects; from his seat the engineer can let the condensed water out of the cylinders; he can start a jet of steam in the stack and create a draft through the fire-box; by the pressure of a lever he is able to pour sand on a slippery track, or by the manipulation of another lever a snow-scraper is let down from the cowcatcher. The practised ear of a locomotive engineer often enables him to discover defects in the working of his powerful machine, and he is generally able, with the aid of various devices always on hand, to prevent an increase of trouble without leaving the cab.

As explained above, a fast run means the use of a great deal of steam and therefore water; indeed, the higher the speed the greater consumption of water. Often the schedules do not allow time enough to stop for water, and the consumption is so great that it is impossible to carry enough to keep the engine going to the end of the run. There are provided, therefore, at various places along the line, tanks eighteen inches to two feet wide, six inches deep, and a quarter of a mile long. These are filled with water and serve as long, narrow reservoirs, from which the locomotive-tenders are filled while going at almost full speed. Curved pipes are let down into the track-tank as the train speeds on, and scoop up the water so fast that the great reservoirs are very quickly filled. This operation, too, is controlled from the engine-cab, and it is one of the fireman’s duties to let down the pipe when the water-signal alongside the track appears. The locomotive, when taking water from a track-tank, looks as if it was going through a river: the water is dashed into spray and flies out on either side like the waves before a fast boat. Trainmen tell the story of a tramp who stole a ride on the front or “dead” end platform of the baggage car of a fast train. This car was coupled to the rear end of the engine-tender; it was quite a long run, without stops, and the engine took water from a track-tank on the way. When the train stopped, the tramp was discovered prone on the platform of the baggage car, half-drowned from the water thrown back when the engine took its drink on the run.

“Here, get off!” growled the brakeman. “What are you doing there?”

“All right, boss,” sputtered the tramp. “Say,” he asked after a moment, “what was that river we went through a while ago?”

Though the engineer’s work is not hard, the strain is great, and fast runs are divided up into sections so that no one engine or its runner has to work more than three or four hours at a time.

It is realised that in order to keep the trainmen–and especially the engineers–alert and keenly alive to their work and responsibilities, it is necessary to make the periods of labour short; the same thing is found to apply to the machines also–they need rest to keep them perfectly fit.

Before the engineer can run his train, the way must be cleared for him, and when the train starts out it becomes part of a vast system. Each part of this intricate system is affected by every other part, so each train must run according to schedule or disarrange the entire plan.

[Illustration: TRACK TANK]

Each train has its right-of-way over certain other trains, and the fastest train has the right-of-way over all others. If, for any reason, the fastest train is late, all others that might be in the way must wait till the flyer has passed. When anything of this sort occurs the whole plan has to be changed, and all trains have to be run on a new schedule that must be made up on the moment.

The ideal train schedules, or those by which the systems are regularly governed, are charted out beforehand on a ruled sheet, as a ship’s course is charted on a voyage, in the main office of the railroad. Each engineer and conductor is provided with a printed copy in the form of a table giving the time of departure and arrival at the different points. When the trains run on time it is all very simple, and the work of the despatcher, the man who keeps track of the trains, is easy. When, however, the system is disarranged by the failure of a train to keep to its schedule, the despatcher’s work becomes most difficult. From long training the despatchers become perfectly familiar with every detail of the sections of road under their control, the position of every switch, each station, all curves, bridges, grades, and crossings. When a train is delayed and the system spoiled, it is the despatcher’s duty to make up another one on the spot, and arrange by telegrams, which are repeated for fear of mistakes, for the holding of this train and the movement of others until the tangle is straightened out. This problem is particularly difficult when a road has but one track and trains moving in both directions have to run on the same pair of rails. It is on roads of this sort that most of the accidents occur. Almost if not quite all depends on the clear-headedness and quick-witted grasp of the despatchers and strict obedience to orders by the trainmen. To remove as much chance of error as possible, safety signalling methods have been devised to warn the engineer of danger ahead. Many modern railroads are divided into short sections or “blocks,” each of which is presided over by a signal-tower. At the beginning of each block stand poles with projecting arms that are connected with the signal-tower by wires running over pulleys. There are generally two to each track in each block, and when both are slanting downward the engineer of the approaching locomotive knows that the block he is about to enter is clear and also that the rails of the section before that is clear as well. The lower arm, or “semaphore,” stands for the second block, and if it is horizontal the engineer knows that he must proceed cautiously because the second section already has a train in it; if the upper arm is straight the “runner” knows that a train or obstruction of some sort makes it unsafe to enter the first block, and if he obeys the strict rules he must stay where he is until the arm is lowered At night, red, white, and green lights serve instead of the arms: white, safety; green, caution; and red, danger. Accidents have sometimes occurred because the engineers were colour-blind and red and green looked alike to them. Most roads nowadays test all their engineers for this defect in vision.

In spite of all precautions, it sometimes happens that the block-signals are not set properly, and to avoid danger of rear-end collisions, conductors and brakemen are instructed (when, for any reason, their train stops where it is not so scheduled) to go back with lanterns at night, or flags by day, and be ready to warn any following train. If for any reason a train is delayed and has to move ahead slowly, torpedoes are placed on the track which are exploded by the engine that comes after and warn its engineer to proceed cautiously.

All these things the engineer must bear in mind, and beside his jockey-like handling of his iron horse, he must watch for signals that flash by in an instant when he is going at full speed, and at the same time keep a sharp lookout ahead for obstructions on the track and for damaged roadbed.

The conductor has nothing to do with the mechanical running of the train, though he receives the orders and is, in a general way, responsible. The passengers are his special care, and it is his business to see that their getting on and off is in accordance with their tickets. He is responsible for their comfort also, and must be an animated information bureau, loaded with facts about every conceivable thing connected with travel. The brakemen are his assistants, and stay with him to the end of the division; the engineer and fireman, with their engine, are cut off at the end of their division also.

The fastest train of a road is the pride of all its employees; all the trainmen aspire to a place on the flyer. It never starts out on any run without the good wishes of the entire force, and it seldom puffs out of the train-shed and over the maze of rails in the yard without receiving the homage of those who happen to be within sight. It is impossible to tell of all the things that enter into the running of a fast train, but as it flashes across States, intersects cities, thunders past humble stations, and whistles imperiously at crossings, it attracts the attention of all. It is the spectacular thing that makes fame for the road, appears in large type in the newspapers, and makes havoc with the time-tables, while the steady-going passenger trains and labouring freights do the work and make the money.



Every boy and almost every man has longed to ride on a locomotive, and has dreamed of holding the throttle-lever and of feeling the great machine move under him in answer to his will. Many of us have protested vigorously that we wanted to become grimy, hard-working firemen for the sake of having to do with the “iron horse.”

It is this joy of control that comes to the driver of an automobile which is one of the motor-car’s chief attractions: it is the longing of the boy to run a locomotive reproduced in the grown-up.

The ponderous, snorting, thundering locomotive, towering high above its steel road, seems far removed from the swift, crouching, almost noiseless motor-car, and yet the relationship is very close. In fact, the automobile, which is but a locomotive that runs at will anywhere, is the father of the greater machine.

About the beginning of 1800, self-propelled vehicles steamed along the roads of Old England, carrying passengers safely, if not swiftly, and, strange to say, continued to run more or less successfully until prohibited by law from using the highways, because of their interference with the horse traffic. Therefore the locomotive and the railroads throve at the expense of the automobile, and the permanent iron-bound right of way of the railroads left the highways to the horse.

The old-time automobiles were cumbrous affairs, with clumsy boilers, and steam-engines that required one man’s entire attention to keep them going. The concentrated fuels were not known in those days, and heat-economising appliances were not invented.

It was the invention by Gottlieb Daimler of the high-speed gasoline engine, in 1885, that really gave an impetus to the building of efficient automobiles of all powers. The success of his explosive gasoline engine, forerunner of all succeeding gasoline motor-car engines, was the incentive to inventors to perfect the steam-engine for use on self-propelled vehicles.

Unlike a locomotive, the automobile must be light, must be able to carry power or fuel enough to drive it a long distance, and yet must be almost automatic in its workings. All of these things the modern motor car accomplishes, but the struggle to make the machinery more efficient still continues.

The three kinds of power used to run automobiles are steam, electricity, and gasoline, taken in the order of application. The steam-engines in motor-cars are not very different from the engines used to run locomotives, factory machinery, or street-rollers, but they are much lighter and, of course, smaller–very much smaller in proportion to the power they produce. It will be seen how compact and efficient these little steam plants are when a ten-horse-power engine, boiler, water-tank, and gasoline reservoir holding enough to drive the machine one hundred miles, are stored in a carriage with a wheel-base of less than seven feet and a width of five feet, and still leave ample room for four passengers.

It is the use of gasoline for fuel that makes all this possible. Gasoline, being a very volatile liquid, turns into a highly inflammable gas when heated and mixed with the oxygen in the air. A tank holding from twenty to forty gallons of gasoline is connected, through an automatic regulator which controls the flow of oil, to a burner under the boiler. The burner allows the oil, which turns into gas on coming in contact with its hot surface, to escape through a multitude of small openings and mix with the air, which is supplied from beneath. The openings are so many and so close together that the whole surface is practically one solid sheet of very hot blue flame. In getting up steam a separate blaze or flame of alcohol or gasoline is made, which heats the steel or iron with which the fuel-oil comes in contact until it is sufficiently hot to turn the oil to gas, after which the burner works automatically. A hand air-pump or one automatically operated by the engine maintains sufficient air pressure in the fuel-tank to keep a constant flow.

Most steam automobile boilers are of the water-tube variety–that is, water to be turned into steam is carried through the flames in pipes, instead of the heat in pipes through the water, as in the ordinary flue boilers. Compactness, quick-heating, and strength are the characteristics of motor-car boilers. Some of the boilers are less than twenty inches high and of the same diameter, and yet are capable of generating seven and one-half horse-power at a high steam pressure (150 to 200 pounds). In these boilers the heat is made to play directly on a great many tubes, and a full head of steam is generated in a few minutes. As the steam pressure increases, a regulator that shuts off the supply of gasoline is operated automatically, and so the pressure is maintained.

[Illustration: THE “LIGHTHOUSE” OF THE RAIL The switchman’s house (on the left), commanding a view of the railroad yard, from which the switches of the complicated system are worked and the semaphore signals operated.]

The water from which the steam is made is also fed automatically into the boiler, when the engine is in motion, by a pump worked by the engine piston. A hand-pump is also supplied by which the driver can keep the proper amount when the machine is still or in case of a breakdown. A water-gauge in plain sight keeps the driver informed at all times as to the amount of water in the boiler. From the boiler the steam goes through the throttle-valve–the handle of which is by the driver’s side–direct to the engine, and there expands, pushes the piston up and down, and by means of a crank on the axle does its work.

The engines of modern automobiles are marvels of compactness–so compact, indeed, that a seven-horse-power engine occupies much less space than an ordinary barrel. The steam, after being used, is admitted to a coil of pipes cooled by the breeze caused by the motion of the vehicle, and so condensed into water and returned to the tank. The engine is started, stopped, slowed, and sped by the cutting off or admission of the steam through the throttle-valve. It is reversed by means of the same mechanism used on locomotives–the link-motion and reversing-lever, by which the direction of the steam is reversed and the engine made to run the other way.

After doing its work the steam is made to circulate round the cylinder (or cylinders, if there are more than one), keeping it extra hot–“superheated”; and thereafter it is made to perform a like duty to the boiler-feed water, before it is allowed to escape.

All steam-propelled automobiles, from the light steam runabout to the clumsy steam roller, are worked practically as described. Some machines are worked by compound engines, which simply use the power of expansion still left in the steam in a second larger cylinder after it has worked the first, in which case every ounce of power is extracted from the vapour.

The automobile builders have a problem that troubles locomotive builders very little–that is, compensating the difference between the speeds of the two driving-wheels when turning corners. Just as the inside man of a military company takes short steps when turning and the outside man takes long ones, so the inside wheel of a vehicle turns slowly while the outside wheel revolves quickly when rounding a corner. As most automobiles are propelled by power applied to the rear axle, to which the wheels are fixed, it is manifest that unless some device were made to correct the fault one wheel would have to slide while the other revolved. This difficulty has been overcome by cutting the axle in two and placing between the ends a series of gears which permit the two wheels to revolve at different speeds and also apply the power to both alike. This device is called a compensating gear, and is worked out in various ways by the different builders.

The locomotive builder accomplishes the same thing by making his wheels larger on the outside, so that in turning the wide curves of the railroad the whole machine slides to the inside, bringing to bear the large diameter of the outer wheel and the small diameter of the inner, the wheels being fixed to a solid axle.

The steam machine can always be distinguished by the thin stream of white vapour that escapes from the rear or underneath while it is in motion and also, as a rule, when it is at rest.

The motor of a steam vehicle always stops when the machine is not moving, which is another distinguishing feature, as the gasoline motors run continually, or at least unless the car is left standing for a long time.

As the owners of different makes of bicycles formerly wrangled over the merits of their respective machines, so now motor-car owners discuss the value of the different powers–steam, gasoline, and electricity.

Though steam was the propelling force of the earliest automobiles, and the power best understood, it was the perfection of the gasoline motor that revived the interest in self-propelled vehicles and set the inventors to work.

A gasoline motor is somewhat like a gun–the explosion of the gas in the motor-cylinder pushes the piston (which may be likened to the projectile), and the power thus generated turns a crank and drives the wheels.

The gasoline motor is the lightest power-generator that has yet been discovered, and it is this characteristic that makes it particularly valuable to propel automobiles. Santos-Dumont’s success in aerial navigation is due largely to the gasoline motor, which generated great power in proportion to its weight.

A gasoline motor works by a series of explosions, which make the noise that is now heard on every hand. From the gasoline tank, which is always of sufficient capacity for a good long run, a pipe is connected with a device called the carbureter. This is really a gas machine, for it turns the liquid oil into gas, this being done by turning it into fine spray and mixing it with pure air. The gasoline vapour thus formed is highly inflammable, and if lighted in a closed space will explode. It is the explosive power that is made to do the work, and it is a series of small gun-fires that make the gasoline motor-car go.

All this sounds simple enough, but a great many things must be considered that make the construction of a successful working motor a difficult problem.

In the first place, the carbureter, which turns the oil into gas, must work automatically, the proper amount of oil being fed into the machine and the exact proportion of air admitted for the successful mixture. Then the gas must be admitted to the cylinders in just the right quantity for the work to be done. This is usually regulated automatically, and can also be controlled directly by the driver. Since the explosion of gas in the cylinder drives the piston out only, and not, as in the case of the steam-engine, back and forward, some provision must be made to complete the cycle, to bring back the piston, exhaust the burned gas, and refill the cylinder with a new charge.

In the steam-engine the piston is forced backward and forward by the expansive power of the steam, the vapour being admitted alternately to the forward and rear ends of the cylinder. The piston of the gasoline engine, however, working by the force of exploded gas, produces power when moving in one direction only–the piston-head is pushed out by the force of the explosion, just as the plunger of a bicycle pump is sometimes forced out by the pressure of air behind it. The piston is connected with the engine-crank and revolves the shaft, which is in turn connected with the driving-wheels. The movement of the piston in the cylinder performs four functions: first, the downward stroke, the result of the explosion of gas, produces the power; second, the returning up-stroke pushes out the burned gas; third, the next down-stroke sucks in a fresh supply of gas, which (fourth) is compressed by the following-up movement and is ready for the next explosion. This is called a two-cycle motor, because two complete revolutions are necessary to accomplish all the operations. Many machines are fitted with heavy fly-wheels, the swift revolution of which carries the impetus of the power stroke through the other three operations.

[Illustration: A GIANT AUTOMOBILE MOWER-THRASHER This machine cuts a swath 35 feet wide and thrashes and sacks the grain as it moves along. Seventy to 100 acres of grain a day are harvested by this machine, and 1,000 to 1,500 sacks are produced each working day.]

To keep a practically continuous forward movement on the driving-shaft, many motors are made with four cylinders, the piston of each being connected with the crank-shaft at a different angle, and each cylinder doing a different part of the work; for example, while No. 1 cylinder is doing the work from the force of the explosion, No. 2 is compressing, No. 3 is getting a fresh supply of gas, and No. 4 is cleaning out waste gas. A four-cylinder motor is practically putting forth power continuously, since one of the four pistons is always at work.

While this takes long to describe, the motion is faster than the eye can follow, and the “phut, phut” noise of the exhaust sounds like the tattoo of a drum. Almost every gasoline motor vehicle carries its own electric plant, either a set of batteries or more commonly a little magneto dynamo, which is run by the shaft of the motor. Electricity is used to make the spark that explodes the gas at just the right moment in the cylinders. All this is automatic, though sometimes the driver has to resort to the persuasive qualities of a monkey-wrench and an oil-can.

The exploding gas creates great heat, and unless something is done to cool the cylinders they get so hot that the gas is ignited by the heat of the metal. Some motors are cooled by a stream of water which, flowing round the cylinders and through coils of pipe, is blown upon by the breeze made by the movement of the vehicle. Others are kept cool by a revolving fan geared to the driving-shaft, which blows on the cylinders; while still others–small motors used on motor bicycles, generally–have wide ridges or projections on the outside of the cylinders to catch the wind as the machine rushes along.

The inventors of the gasoline motor vehicles had many difficulties to overcome that did not trouble those who had to deal with steam. For instance, the gasoline motor cannot be started as easily as a steam-engine. It is necessary to make the driving-shaft revolve a few times by hand in order to start the cylinders working in their proper order. Therefore, the motor of a gasoline machine goes all the time, even when the vehicle is at rest. Friction clutches are used by which the driving-shaft and the axles can be connected or disconnected at the will of the driver, so that the vehicle can stand while the motor is running; friction clutches are used also to throw in gears of different sizes to increase or decrease the speed of the vehicle, as well as to drive backward.


The early gasoline automobiles sounded, when moving, like an artillery company coming full tilt down a badly paved street. The exhausted gas coughed resoundingly, the gears groaned and shrieked loudly when improperly lubricated, and the whole machine rattled like a runaway tin-peddler. Ingenious mufflers have subdued the sputtering exhaust, the gears are made to run in oil or are so carefully cut as to mesh perfectly, rubber tires deaden the pounding of the wheels, and carefully designed frames take up the jar.

Steam and gasoline vehicles can be used to travel long distances from the cities, for water can be had and gasoline bought almost anywhere; but electric automobiles, driven by the third of the three powers used for self-propelled vehicles, must keep within easy reach of the charging stations.

Just as the perfection of the gasoline motor spurred on the inventors to adapt the steam-engine for use in automobiles, so the inventors of the storage battery, which is the heart of an electric carriage, were stirred up to make electric propulsion practical.

The storage battery of an electric vehicle is practically a tank that holds electricity; the electrical energy of the dynamo is transformed into chemical energy in the batteries, which in turn is changed into electrical energy again and used to run the motors.

Electric automobiles are the most simple of all the self-propelled vehicles. The current stored in the batteries is simply turned off and on the motors, or the pressure reduced by means of resistance which obstructs the flow, and therefore the power, of the current. To reverse, it is only necessary to change the direction of the current’s flow; and in order to stop, the connection between motor and battery is broken by a switch.

Electricity is the ideal power for automobiles. Being clean and easily controlled, it seems just the thing; but it is expensive, and sometimes hard to get. No satisfactory substitute has been found for it, however, in the larger cities, and it may be that creative or “primary” batteries both cheap and effective will be invented and will do away with the one objection to electricity for automobiles.

The astonishing things of to-day are the commonplaces of to-morrow, and so the achievements of automobile builders as here set down may be greatly surpassed by the time this appears in print.

The sensations of the locomotive engineer, who feels his great machine strain forward over the smooth steel rails, are as nothing to the almost numbing sensations of the automobile driver who covered space at the rate of eighty-eight miles an hour on the road between Paris and Madrid: he felt every inequality in the road, every grade along the way, and each curve, each shadow, was a menace that required the greatest nerve and skill. Locomotive driving at a hundred miles an hour is but mild exhilaration as compared to the feelings of the motor-car driver who travels at fifty miles an hour on the public highway.

Gigantic motor trucks carrying tons of freight twist in and out through crowded streets, controlled by one man more easily than a driver guides a spirited horse on a country road.

Frail motor bicycles dash round the platter-like curves of cycle tracks at railroad speed, and climb hills while the riders sit at ease with feet on coasters.

An electric motor-car wends the streets of New York every day with thirty-five or forty sightseers on its broad back, while a groom in whipcord blows an incongruous coaching-horn in the rear.

Motor plows, motor ambulances, motor stages, delivery wagons, street-cars without tracks, pleasure vehicles, and even baby carriages, are to be seen everywhere.

In 1845, motor vehicles were forbidden the streets for the sake of the horses; in 1903, the horses are being crowded off by the motor-cars. The motor is the more economical–it is the survival of the fittest.

A form of automobile that can be applied to all sorts of uses on the farm.]


In 1807, the first practical steamboat puffed slowly up the Hudson, while the people ranged along the banks gazed in wonder. Even the grim walls of the Palisades must have been surprised at the strange intruder. Robert Fulton’s _Clermont_ was the forerunner of the fleets upon fleets of power-driven craft that have stemmed the currents of a thousand streams and parted the waves of many seas.

The _Clermont_ took several days to go from New York to Albany, and the trip was the wonder of that time.

During the summer of 1902 a long, slim, white craft, with a single brass smokestack and a low deck-house, went gliding up the Hudson with a kind of crouching motion that suggested a cat ready to spring. On her deck several men were standing behind the pilot-house with stop-watches in their hands. The little craft seemed alive under their feet and quivered with eagerness to be off. The passenger boats going in the same direction were passed in a twinkling, and the tugs and sailing vessels seemed to dwindle as houses and trees seem to shrink when viewed from the rear platform of a fast train.

Two posts, painted white and in line with each other–one almost at the river’s edge, the other 150 feet back–marked the starting-line of a measured mile, and were eagerly watched by the men aboard the yacht. She sped toward the starting-line as a sprinter dashes for the tape; almost instantly the two posts were in line, the men with watches cried “Time!” and the race was on. Then began such a struggle with Father Time as was never before seen; the wind roared in the ears of the passengers and snatched their words away almost before their lips had formed them; the water, a foam-flecked streak, dashed away from the gleaming white sides as if in terror. As the wonderful craft sped on she seemed to settle down to her work as a good horse finds himself and gets into his stride. Faster and faster she went, while the speed of her going swept off the black flume of smoke from her stack and trailed it behind, a dense, low-lying shadow.

“Look!” shouted one of the men into another’s ear, and raised his arm to point. “We’re beating the train!”

[Illustration: THE STEAM TURBINE-DRIVEN _VELOX_, OF THE BRITISH NAVY The fastest torpedo-boat destroyer.]

Sure enough, a passenger train running along the river’s edge, the wheels spinning round, the locomotive throwing out clouds of smoke, was dropping behind. The train was being beaten by the boat. Quivering, throbbing with the tremendous effort, she dashed on, the water climbing her sides and lashing to spume at her stern.

“Time!” shouted several together, as the second pair of posts came in line, marking the finish of the mile. The word was passed to the frantically struggling firemen and engineers below, while those on deck compared watches.

“One minute and thirty-two seconds,” said one.

“Right,” answered the others.

Then, as the wonderful yacht _Arrow_ gradually slowed down, they tried to realise the speed and to accustom themselves to the fact that they had made the fastest mile on record on water.

And so the _Arrow_, moving at the rate of forty-six miles an hour, followed the course of her ancestress, the _Clermont_, when she made her first long trip almost a hundred years before.

The _Clermont_ was the first practical steamboat, and the _Arrow_ the fastest, and so both were record-breakers. While there are not many points of resemblance between the first and the fastest boat, one is clearly the outgrowth of the other, but so vastly improved is the modern craft that it is hard to even trace its ancestry. The little _Arrow_ is a screw-driven vessel, and her reciprocating engines–that is, engines operated by the pulling and pushing power of the steam-driven pistons in cylinders–developed the power of 4,000 horses, equal to 32,000 men, when making her record-breaking run. All this enormous power was used to produce speed, there being practically no room left in the little 130-foot hull for anything but engines and boilers.

There is little difference, except in detail, between the _Arrow’s_ machinery and an ordinary propeller tugboat. Her hull is very light for its strength, and it was so built as to slip easily through the water. She has twin engines, each operating its own shaft and propeller. These are quadruple expansion. The steam, instead of being allowed to escape after doing its work in the first cylinder, is turned into a larger one and then successively into two more, so that all of its expansive power is used. After passing through the four cylinders, the steam is condensed into water again by turning it into pipes around which circulates the cool water in which the vessel floats. The steam thus condensed to water is heated and pumped into the boiler, to be turned into steam, so the water has to do its work many times. All this saves weight and, therefore, power, for the lighter a vessel is the more easily she can be driven. The boilers save weight also by producing steam at the enormous pressure of 400 pounds to the square inch. Steadily maintained pressure means power; the greater the pressure the more the power. It was the inventive skill of Charles D. Mosher, who has built many fast yachts, that enabled him to build engines and boilers of great power in proportion to their weight. It was the ability of the inventor to build boilers and engines of 4,000 horse-power compact and light enough to be carried in a vessel 130 feet long, of 12 feet 6 inches breadth, and 3 feet 6 inches depth, that made it possible for the _Arrow_ to go a mile in one minute and thirty-two seconds. The speed of the wonderful little American boat, however, was not the result of any new invention, but was due to the perfection of old methods.

In England, about five years before the _Arrow’s_ achievement, a little torpedo-boat, scarcely bigger than a launch, set the whole world talking by travelling at the rate of thirty-nine and three-fourths miles an hour. The little craft seemed to disappear in the white smother of her wake, and those who watched the speed trial marvelled at the railroad speed she made. The _Turbina_–for that was the little record-breaker’s name–was propelled by a new kind of engine, and her speed was all the more remarkable on that account. C.A. Parsons, the inventor of the engine, worked out the idea that inventors have been studying for a long time–since 1629, in fact–that is, the rotary principle, or the rolling movement without the up-and-down driving mechanism of the piston.

The _Turbina_ was driven by a number of steam-turbines that worked a good deal like the water-turbines that use the power of Niagara. Just as a water-wheel is driven by the weight or force of the water striking the blades or paddles of the wheel, so the force of the many jets of steam striking against the little wings makes the wheels of the steam-turbines revolve. If you take a card that has been cut to a circular shape and cut the edges so that little wings will be made, then blow on this winged edge, the card will revolve with a buzz; the Parsons steam-turbine works in the same way. A shaft bearing a number of steel disks or wheels, each having many wings set at an angle like the blades of a propeller, is enclosed by a drumlike casing. The disks at one end of the shaft are smaller than those at the other; the steam enters at the small end in a circle of jets that blow against the wings and set them and the whole shaft whirling. After passing the first disk and its little vanes, the steam goes through the holes of an intervening fixed partition that deflects it so that it blows afresh on the second, and so on to the third and fourth, blowing upon a succession of wheels, each set larger than the preceding one. Each of Parsons’s steam-turbine engines is a series of turbines put in a steel casing, so that they use every ounce of the expansive power of the steam.

It will be noticed that the little wind-turbine that you blow with your breath spins very rapidly; so, too, do the wheels spun by the steamy breath of the boilers, and Mr. Parsons found that the propeller fastened to the shaft of his engine revolved so fast that a vacuum was formed around the blades, and its work was not half done. So he lengthened his shaft and put three propellers on it, reducing the speed, and allowing all of the blades to catch the water strongly.

The _Turbina_, speeding like an express train, glided like a ghost over the water; the smoke poured from her stack and the cleft wave foamed at her prow, but there was little else to remind her inventor that 2,300 horse-power was being expended to drive her. There was no jar, no shock, no thumping of cylinders and pounding of rapidly revolving cranks; the motion of the engine was rotary, and the propeller shafts, spinning at 2,000 revolutions per minute, made no more vibration than a windmill whirling in the breeze.

To stop the _Turbina_ was an easy matter; Mr. Parsons had only to turn off the steam. But to make the vessel go backward another set of turbines was necessary, built to run the other way, and working on the same shaft. To reverse the direction, the steam was shut off the engines which revolved from right to left and turned on those designed to run backward, or from left to right. One set of the turbines revolved the propellers so that they pushed, and the other set, turning them the other way, pulled the vessel backward–one set revolving in a vacuum and doing no work, while the other supplied the power.

The Parsons turbine-engines have been used to propel torpedo-boats, fast yachts, and vessels built to carry passengers across the English Channel, and recently it has been reported that two new transatlantic Cunarders are to be equipped with them.

[Illustration: THE ENGINES OF THE _ARROW_]

A few years after the Pilgrims sailed for the land of freedom in the tiny _Mayflower_ a man named Branca built a steam-turbine that worked in a crude way on the same principle as Parsons’s modern giant. The pictures of this first steam-turbine show the head and shoulders of a bronze man set over the flaming brands of a wood fire; his metallic lungs are evidently filled with water, for a jet of steam spurts from his mouth and blows against the paddles of a horizontal turbine wheel, which, revolving, sets in motion some crude machinery.

There is nothing picturesque about the steel-tube lungs of the boilers used by Parsons in the _Turbina_ and the later boats built by him, and plain steel or copper pipes convey the steam to the whirling blades of the enclosed turbine wheels, but enormous power has been generated and marvellous speed gained. In the modern turbine a glowing coal fire, kept intensely hot by an artificial draft, has taken the place of the blazing sticks; the coils of steel tubes carrying the boiling water surrounded by flame replace the bronze-figure boiler, and the whirling, tightly jacketed turbine wheels, that use every ounce of pressure and save all the steam, to be condensed to water and used over again, have grown out of the crude machine invented by Branca.

As the engines of the _Arrow_ are but perfected copies of the engine that drove the _Clermont_, so the power of the _Turbina_ is derived from steam-motors that work on the same principle as the engine built by Branca in 1629, and his steam-turbine following the same old, old, ages old idea of the moss-covered, splashing, tireless water-wheel.


Forming the outside boundary of Great South Bay, Long Island, a long row of sand-dunes faces the ocean. In summer groups of laughing bathers splash in the gentle surf at the foot of the low sand-hills, while the sun shines benignly over all. The irregular points of vessels’ sails notch the horizon as they are swept along by the gentle summer breezes. Old Ocean is in a playful mood, and even children sport in his waters.

After the last summer visitor has gone, and the little craft that sail over the shallow bay have been hauled up high and dry, the pavilions deserted and the bathing-houses boarded up, the beaches take on a new aspect. The sun shines with a cold gleam, and the surf has an angry snarl to it as it surges up the sandy slopes and then recedes, dragging the pebbles after it with a rattling sound. The outer line of sand-bars, which in summer breaks the blue sea into sunny ripples and flashing whitecaps, then churns the water into fury and grips with a mighty hold the keel of any vessel that is unlucky enough to be driven on them. When the keen winter winds whip through the beach grasses on the dunes and throw spiteful handfuls of cutting sand and spray; when the great waves pound the beach and the crested tops are blown off into vapour, then the life-saver patrolling the beach must be most vigilant.

All along the coast, from Maine to Florida, along the Gulf of Mexico, the Great Lakes, and the Pacific, these men patrol the beach as a policeman walks his beat. When the winds blow hardest and sleet adds cutting force to the gale, then the surfmen, whose business it is to save life regardless of their own comfort or safety, are most alert.

All day the wind whistled through the grasses and moaned round the corners of the life-saving station; the gusts were cold, damp, and penetrating. With the setting of the sun there was a lull, but when the patrols started out at eight o’clock, on their four-hours’ tour of duty, the wind had risen again and was blowing with renewed force. Separating at the station, one surf man went east and the other west, following the line of the surf-beaten beach, each carrying on his back a recording clock in a leather case, and also several candle-like Coston lights and a wooden handle.

[Illustration: A LIFE-SAVING CREW DRILLING WITH BEACH APPARATUS Hauling in a breeches-buoy and a passenger.]

“Wind’s blowing some,” said one of the men, raising his voice above the howl of the blast.

“Hope nothing hits the bar to-night,” the other answered. Then both trudged off in opposite directions.

With pea-coats buttoned tightly and sou’westers tied down securely, the surfmen fought the gale on their watch-tour of duty. At the end of his beat each man stopped to take a key attached to a post, and, inserting it in the clock, record the time of his visit at that spot, for by this means is an actual record kept of the movements of the patrol at all times.

With head bent low in deference to the force of the blast, and eyes narrowed to slits, the surfman searched the seething sea for the shadowy outlines of a vessel in trouble.

Perchance as he looked his eye caught the dark bulk of a ship in a sea of foam, or the faint lines of spars and rigging through the spume and frozen haze–the unmistakable signs of a vessel in distress. An instant’s concentrated gaze to make sure, then, taking a Coston signal from his pocket and fitting it to the handle, he struck the end on the sole of his boot. Like a parlour match it caught fire and flared out a brilliant red light. This served to warn the crew of the vessel of their danger, or notified them that their distress was observed and that help was soon forthcoming; it also served, if the surfman was near enough to the station, to notify the lookout there of the ship in distress. If the distance was too great or the weather too thick, the patrol raced back with all possible speed to the station and reported what he had seen. The patrol, through his long vigils under all kinds of weather conditions, learns every foot of his beat thoroughly, and is able to tell exactly how and where a stranded vessel lies, and whether she is likely to be forced over on to the beach or whether she will stick on the outer bar far beyond the reach of a line shot from shore.

In a few words spoken quickly and exactly to the point–for upon the accuracy of his report much depends–he tells the situation. For different conditions different apparatus is needed. The vessel reported one stormy winter’s night struck on the shoal that runs parallel to the