This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
Language:
Form:
Genre:
Published:
  • 1832
Edition:
Collection:
Tags:
Buy it on Amazon FREE Audible 30 days

soon be supplied with the best materials the country can produce. (6*) It may also be apprehended that such a combination of authors would be favourable to each other. There are two temptations to which an editor of a review is commonly exposed: the first is, a tendency to consult too much, in the works he criticizes, the interest of the proprietor of his review; the second, a similar inclination to consult the interests of his friends. The plan which has been proposed removes one of these temptations, but it would be very difficult, if not impossible, to destroy the other.

NOTES:

1. The whole of the subsequent details relate to the first edition of this work.

2. These details vary with different books and different publishers; those given in the text are believed to substantially correct, and are applicable to works like the present.

3. It is now understood that the use of spies has been given up; and it is also known that the system of underselling is again privately resorted to by many, so that the injury arising from this arbitrary system, pursued by the great booksellers, affects only, or most severely, those whose adherence to an extorted promise most deserves respect. Note to the second edition.

4 The monopoly cases. Nos. 1. 2. and 3. of those published by Mr Pickering, should be consulted upon this point; and, as the public will be better able to form a judgement by hearing the other side of the question, it is to be hoped the Chairman of the Committee (Mr Richardson) will publish those regulations respecting the trade, a copy of which. Mr Pickering states, is refused by the Committee even to those who sign them.

5. At the moment when this opinion as to the necessity for a new review was passing through the press. I was informed that the elements of such an undertaking were already organized.

6. I have been suggested to me, that the doctrines maintained in this chapter may subject the present volume to the opposition of that combination which it has opposed. I do not entertain that opinion; and for this reason, that the booksellers are too shrewd a class to supply such an admirable passport to publicity as their opposition would prove to be if generally suspected. But should my readers take a different view of the question, they can easily assist in remedying the evil, by each mentioning the existence of this little volume to two of his friends.

{I was wrong in this conjecture; all booksellers are not so shrewd as I had imagined, for some did refuse to sell this volume; consequently others sold a larger number of copies.

In the preface to the second edition, at the commencement of this volume, the reader will find some further observation on the effect of the booksellers’ combination.}

Chapter 23

On the Effect of Machinery in Reducing the Demand for Labour

404. One of the objections most frequently urged against machinery is, that it has a tendency to supersede much of the hand labour which was previously employed; and in fact unless a machine diminished the labour necessary to make an article, it could never come into use. But if it have that effect, its owner, in order to extend the sale of his produce, will be obliged to undersell his competitors; this will induce them also to introduce the new machine, and the effect of this competition will soon cause the article to fall, until the profits on capital, under the new system, shall be reduced to the same rate as under the old. Although, therefore, the use of machinery has at first a tendency to throw labour out of employment, yet the increased demand consequent upon the reduced price, almost immediately absorbs a considerable portion of that labour, and perhaps, in some cases, the whole of what would otherwise have been displaced.

That the effect of a new machine is to diminish the labour required for the production of the same quantity of manufactured commodities may beclearlyperceived, byimaginingasociety, inwhichoccupation are not divided, each man himself manufacturing all the articles he consumes. Supposing each individual to labour during ten hours daily, one of which is devoted to making shoes, it is evident that if any tool or machine be introduced, by the use ofwhich his shoes can be made in halfthe usual time, then each member ofthe community will enjoy the same comforts as before by only nine and one-half hours’ labour.

405. If, therefore, we wish to prove that the total quantity oflabourisnot diminished by the introduction of machines, we must have recourse to some other principle of our nature. But the same motive which urges a man to activity will become additionally powerful, when he finds his comforts procured with diminished labour; and in such circumstances, it is probable, that many would employ the time thus redeemed in contriving new tools for other branches of their occupations. He who has habitually worked ten hours a day, will employ the half hour saved by the new machine in gratifying some other want; and as each new machine adds to these gratifications, new luxuries will open to his view, which continued enjoyment will as surely render necessary to his happiness.

406. In countries where occupations are divided, and where the division of labour is practised, the ultimate consequence of improvements in machinery is almost invariably to cause a greater demand for labour. Frequently the new labour requires, at its commencement, a higher degree of skill than the old; and, unfortunately, the class of persons driven out of the old employment are not always qualified for the new one; so that a certain interval must elapse before the whole of their labour is wanted. This, for a time, produces considerable suffering amongst the working classes; and it is of great importance for their happiness that they should be aware of these effects, and be enabled to foresee them at an early period, in order to diminish, as much as possible, the injury resulting from them.

407. One very important enquiry which this subject presents is the question whether it is more for the interest of the working classes, that improved machinery should be so perfect as to defy the competition of hand labour; and that they should thus be at once driven out of the trade by it; or be gradually forced to quit it by the slow and successive advances of the machine? The suffering which arises from a quick transition is undoubtedly more intense; but it is also much less permanent than that which results from the slower process: and if the competition is perceived to be perfectly hopeless, the workman will at once set himself to learn a new department of his art. On the other hand, although new machinery causes an increased demand for skill in those who make and repair it, and in those who first superintend its use; yet there are other cases in which it enables children and inferior workmen to execute work that previously required greater skill. In such circumstances, even though the increased demand for the article, produced by its diminished price, should speedily give occupation to all who were before employed, yet the very diminution of the skill required, would open a wider field of competition amongst the working classes themselves.

That machines do not, even at their first introduction, invariably throw human labour out of employment, must be admitted; and it has been maintained, by persons very competent to form an opinion on the subject, that they never produce that effect. The solution of this question depends on facts, which, unfortunately, have not yet been collected: and the circumstance of our not possessing the data necessary for the full examination of so important a subject, supplies an additional reason for impressing, upon the minds of all who are interested in such enquiries, the importance of procuring accurate registries, at various times, of the number of persons employed in particular branches of manufacture, of the number of machines used by them. and of the wages they receive.

408. In relation to the enquiry just mentioned, I shall offer some remarks upon the facts within my knowledge; and only regret that those which I can support by numerical statement are so few. When the crushing mill, used in Cornwall and other mining countries, superseded the labour of a great number of young women, who worked very hard in breaking ores with flat hammers, no distress followed. The reason of this appears to have been, that the proprietors of the mines, having one portion of their capital released by the superior cheapness of the process executed by the mills, found it their interest to apply more labour to other operations. The women, disengaged from mere drudgery, were thus profitably employed in dressing the ores, a work which required skill and judgement in the selection.

409. The increased production arising from alterations in the machinery, or from improved modes of using it, appears from the following table. A machine called in the cotton manufacture a ‘stretcher’, worked by one man, produced as follows:

Year; Pounds of cotton spun; Roving wages per score; Rate of earning per week
s. d. s. d.

1810 400 1 31/2 25 10(1*)
1811 600 0 10 25 0
1813 850 0 9 31 101/2
1823 1000 0 71/2 31 3

The same man working at another stretcher, the roving a little finer, produced,

1823 900 0 71/2 28 11/2
1825 1000 0 7 27 6
1827 1200 0 6 30 0
1832 1200 0 6 30 0

In this instance, production has gradually increased until, at the end of twenty-two years, three times as much work is done as at the commencement, although the manual labour employed remains the same. The weekly earnings of the workmen have not fluctuated very much, and appear, on the whole, to have advanced: but it would be imprudent to push too far reasonings founded upon a single instance.

410. The produce of 480 spindles of ‘mule yarn spinning’, at different periods, was as follows:

Year; Hanks about 40 to the pound; Wages per thousand (s. d.)

1806; 6668; 9 2
1823; 8000; 6 3
1832; 10,000; 3 8

411. The subjoined view of the state of weaving by hand- and by power-looms, at Stockport, in the years 1822 and 1832, is taken from an enumeration of the machines contained in 65 factories, and was collected for the purpose of being given in evidence before a Committee of the House of Commons.

In 1822 In 1832
Hand-loom weavers 2800 800 2000 decrease Persons using power-looms 657 3059 2402 increase Persons to dress the warp 98 388 290 increase Total persons employed 3555 4247 692 increase Power-looms 1970 9177 8207 increase

During this period, the number of hand-looms in employment has diminished to less than one-third, whilst that of power-looms has increased to more than five times its former amount. The total number of workmen has increased about one-third; but the amount of manufactured goods (supposing each power-loom to do only the work of three hand-looms) is three and a half times as large as it was before.

412. In considering this increase of employment, it must be admitted, that the two thousand persons thrown out of work are not exactly of the same class as those called into employment by the power-looms. A hand-weaver must possess bodily strength, which is not essential for a person attending a power-loom; consequently, women and young persons of both sexes, from fifteen to seventeen years of age, find employment in power-loom factories. This, however, would be a very limited view of the employment arising from the introduction of power-looms: the skill called into action in building the new factories, in constructing the new machinery, in making the steam-engines to drive it, and in devising improvements in the structure of the looms, as well as in regulating the economy of the establishment, is of a much higher order than that which it had assisted in superseding; and if we possessed any means of measuring this, it would probably be found larger in amount. Nor, in this view of the subject, must we omit the fact, that although hand-looms would have increased in number if those moved by steam had not been invented, yet it is the cheapness of the article manufactured by power-looms which has caused this great extension of their employment, and that by diminishing the price of one article of commerce, we always call into additional activity the energy of those who produce others. It appears that the number of hand-looms in use in England and Scotland in 1830, was about 240,000; nearly the same number existed in the year 1820: whereas the number of power-looms which, in 1830, was 55,000, had, in 1820, been 14,000. When it is considered that each of these powerlooms did as much work as three worked by hand, the increased producing power was equal to that of 123,000 hand-looms. During the whole of this period the wages and employment of hand-loom weavers have been very precarious.

413. Increased intelligence amongst the working classes, may enable them to foresee some of those improvements which are likely for a time to affect the value of their labour; and the assistance of savings banks and friendly societies, (the advantages of which can never be too frequently, or too strongly, pressed upon their attention), may be of some avail in remedying the evil: but it may be useful also to suggest to them, that a diversity of employments amongst the members of one family will tend, in some measure, to mitigate the privations which arise from fluctuation in the value of labour.

NOTES:

1. In 1810, the workman’s wages were guaranteed not to be less than 26s.

Chapter 33

On the Effect of Taxes and of Legal Restrictions upon Manufactures

414. As soon as a tax is put upon any article, the ingenuity of those who make, and of those who use it, is directed to the means of evading as large a part of the tax as they can; and this may often be accomplished in ways which are perfectly fair and legal. An excise duty exists at present of 3d.(1*) per pound upon all writing paper. The effect of this impost is, that much of the paper which is employed, is made extremely thin, in order that the weight of a given number of sheets may be as small as possible. Soon after the first imposition of the tax upon windows, which depended upon their number, and not upon their size, new-built houses began to have fewer windows and those of larger dimensions than before. Staircases were lighted by extremely long windows, illuminating three or four flights of stairs. When the tax was increased, and the size of windows charged as single was limited, then still greater care was taken to have as few windows as possible, and internal lights became frequent. These internal lights in their turn became the subject of taxation; but it was easy to evade the discovery of them, and in the last Act of Parliament reducing the assessed taxes, they ceased to be chargeable. From the changes thus successively introduced in the number the forms, and the positions of the windows, a tolerable conjecture might, in some instances, be formed of the age of a house.

415. A tax on windows is exposed to objection on the double ground of its excluding air and light, and it is on both accounts injurious to health. The importance of light to the enjoyment of health is not perhaps sufficiently appreciated: in the cold and more variable climates, it is of still greater importance than in warmer countries.

416. The effects of regulations of excise upon our home manufactures are often productive of great inconvenience; and check, materially, the natural progress of improvement. It is frequently necessary, for the purposes of revenue, to oblige manufacturers to take out a license, and to compel them to work according to certain rules, and to make certain stated quantities at each operation. When these quantities are large, as in general they are, they deter manufacturers from making experiments, and thus impede improvements both in the mode of conducting the processes and in the introduction of new materials. Difficulties of this nature have occurred in experimenting upon glass for optical purposes; but in this case, permission has been obtained by fit persons to make experiments, without the interference of the excise. It ought, however, to be remembered, that such permission, if frequently or indiscriminately granted, might be abused: the greatest protection against such an abuse will be found, in bringing the force of public opinion to bear upon scientific men and thus enabling the proper authorities, although themselves but moderately conversant with science, to judge of the propriety of the permission, from the public character of the applicant.

417. From the evidence given, in 1808, before the Committee of the House of Commons, On Distillation from Sugar and Molasses, it appeared that, by a different mode of working from that prescribed by the Excise, the spirits from a given weight of corn, which then produced eighteen gallons, might easily have been increased to twenty gallons. Nothing more is required for this purpose, than to make what is called the wash weaker, the consequence of which is, that fermentation goes on to a greater extent. It was stated, however, that such a deviation would render the collection of the duty liable to great difficulties; and that it would not benefit the distiller much, since his price was enhanced to the customer by any increase of expense in the fabrication. Here then is a case in which a quantity, amounting to one-ninth of the total produce, is actually lost to the country. A similar effect arises in the coal trade, from the effect of a duty, for, according to the evidence before the House of Commons, it appears that a considerable quantity of the very best coal is actually wasted. The extent of this waste is very various in different mines; but in some cases it amounts to one-third.

418. The effects of duties upon the import of foreign manufactures are equally curious. A singular instance occurred in the United States, where bar-iron was, on its introduction. liable to a duty of 140 per cent ad valorem, whilst hardware was charged at 25 per cent only. In consequence of this tax, large quantities of malleable iron rails for railroads were imported into America under the denomination of hardware; the difference of 115 per cent in duty more than counter balancing the expense of fashioning the iron into rails prior to its importation.

419. Duties, drawbacks, and bounties, when considerable in amount, are all liable to objections of a very serious nature, from the frauds to which they give rise. It has been stated before Committees of the House of Commons, that calicoes made up in the form, and with the appearance of linen, have frequently been exported for the purpose of obtaining the bounty, for calico made up in this way sells only at 1s. 4d. per yard, whereas linen of equal fineness is worth from 2s. 8d. to 2s. 10d. per yard. It appeared from the evidence, that one house in six months sold five hundred such pieces of calico.

In almost all cases heavy duties, or prohibitions, are ineffective as well as injurious; for unless the articles excluded are of very large dimensions, there constantly arises a price at which they will be clandestinely imported by the smuggler. The extent, therefore, to which smuggling can be carried, should always be considered in the imposition of new duties, or in the alteration of old ones. Unfortunately it has been pushed so far, and is so systematically conducted between this country and France, that the price per cent at which most contraband articles can be procured is perfectly well known. From the evidence of Mr Galloway, it appears that, from 30 to 40 per cent was the rate of insurance on exporting prohibited machinery from England, and that the larger the quantity the less was the percentage demanded. From evidence given in the Report of the Watch and Clock-makers’ Committee, in 1817, it appears that persons were constantly in the habit of receiving in France watches, lace, silks, and other articles of value easily portable, and delivering them in England at ten per cent on their estimated worth, in which sum the cost of transport and the risk of smuggling were included.

420. The process employed in manufacturing often depends upon the mode in which a tax is levied on the materials, or on the article produced. W atch glasses are made in England by workmen who purchase from the glass house globes of five or six inches in diameter, out of which, by means of a piece of red-hot tobacco pipe, guided round a pattern watch glass placed on the globe, they crack five others: these are afterwards ground and smoothed on the edges. In the Tyrol the rough watch glasses are supplied at once from the glass house; the workman, applying a thick ring of cold glass to each globe as soon as it is blown, causes a piece, of the size of a watch glass, to be cracked out. The remaining portion of the globe is immediately broken, and returns to the melting pot. This process could not be adopted in England with the same economy, because the whole of the glass taken out of the pot is subject to the excise duty.

421. The objections thus stated as incidental to particular modes of taxation are not raised with a view to the removal of those particular taxes; their fitness or unfitness must be decided by a much wider enquiry, into which it is not the object of this volume to enter. Taxes are essential for the security both of liberty and property, and the evils which have been mentioned may be the least amongst those which might have been chosen. It is, however, important that the various effects of every tax should be studied, and that those should be adopted which, upon the whole, are found to give the least check to the productive industry of the country.

422. In enquiring into the effect produced, or to be apprehended from any particular mode of taxation, it is necessary to examine a little into the interests of the parties who approve of the plan in question, as well as of those who object to it. Instances have occurred where the persons paying a tax into the hands of government have themselves been adverse to any reduction. This happened in the case of one class of calico-printers, whose interest really was injured by a removal of the tax on the printing: they received from the manufacturers, payment for the duty, about two months before they were themselves called on to pay it to government; and the consequence was, that a considerable capital always remained in their hands. The evidence which states this circumstance is well calculated to promote a reasonable circumspection in such enquiries.

Question. Do you happen to know anything of an opposition from calicoprinters to the repeal of the tax on printed calicoes?

Answer. I have certainly heard of such an opposition, and am not surprised at it. There are very few individuals who are, in fact, interested in the nonrepeal of the tax; there are two classes of calico-printers; one, who print their own cloth, send their goods into the market, and sell them on their own account; they frequently advance the duty to government, and pay it in cash before their goods are sold, but generally before the goods are paid for, being most commonly sold on a credit of six months: they are of course interested on that account, as well as on others that have been stated, in the repeal of the tax. The other class of calico-printers print the cloth of other people; they print for hire, and on re-delivery of the cloth when printed, they receive the amount of the duty, which they are not called upon to pay to government sooner, on an average, than nine weeks from the stamping of the goods. Where the business is carried on upon a large scale, the arrears of duty due to government often amount to eight, or even ten thousand pounds, and furnish a capital with which these gentlemen carry on their business; it is not, therefore, to be wondered at that they should be opposed to the prayer of our petition.

423. The policy of giving bounties upon home productions, and of enforcing restrictions against those which can be produced more cheaply in other countries, is of a very questionable nature: and, except for the purpose of introducing a new manufacture, in a country where there is not much commercial or manufacturing spirit, is scarcely to be defended. All incidental modes of taxing one class of the community, the consumers, to an unknown extent, for the sake of supporting another class, the manufacturers, who would otherwise abandon that mode of employing their capital, are highly objectionable. One part of the price of any article produced under such circumstances, consists of the expenditure, together with the ordinary profits of capital: the other part of its price may be looked upon as charity, given to induce the manufacturer to continue an unprofitable use of his capital, in order to give employment to his workmen. If the sum of what the consumers are thus forced to pay, merely on account of these artificial restrictions, where generally known, its amount would astonish even those who advocate them; and it would be evident to both parties, that the employment of capital in those branches of trade ought to be abandoned.

424. The restriction of articles produced in a manufactory to certain sizes, is attended with some good effect in an economical view, arising chiefly from the smaller number of different tools required in making them, as well as from less frequent change in the adjustment of those tools. A similar source of economy is employed in the Navy: by having ships divided into a certain number of classes, each of which comprises vessels of the same dimensions, the rigging made for one vessel will fit any other of its class; a circumstance which renders the supply of distant stations more easy.

425. The effects of the removal of a monopoly are often very important, and they were perhaps never more remarkable than in the bobbin net trade, in the years 1824 and 1825. These effects were, however, considerably enhanced by the general rage for speculation which was so prevalent during that singular period. One of the patents of Mr Heathcote for a bobbin net machine had just then expired, whilst another, for an improvement in a particular part of such machines, called a turn again, had yet a few years to run. Many licenses had been granted to use the former patent, which were charged at the rate of about five pounds per annum for each quarter of a yard in width, so that what is termed a six-quarter frame (which makes bobbin net a yard and a half wide) paid thirty pounds a year. The second patent was ultimately abandoned in August, 1823, infringements of it having taken place.

It was not surprising that, on the removal of the monopoly arising from this patent, a multitude of persons became desirous of embarking in a trade which had hitherto yielded a very large profit. The bobbin net machine occupies little space; and is, from that circumstance, well adapted for a domestic manufacture. The machines which already existed, were principally in the hands of the manufacturers; but, a kind of mania for obtaining them seized on persons of all descriptions, who could raise a small capital; and, under its influence, butchers, bakers, small farmers, publicans, gentlemen’s servants, and, in some cases, even clergymen, became anxious to possess bobbin net machines.

Some few machines were rented; but, in most of these cases, the workman purchased the machine he employed, by instalments of from L3 to L6 weekly, for a six quarter machine; and many individuals, unacquainted with the mode of using the machines so purchased, paid others of more experience for instructing them in their use; L50 or L60 being sometimes given for this instruction. The success of the first speculators induced others to follow the example; and the machine-makers were almost overwhelmed with orders for lace frames. Such was the desire to procure them, that many persons deposited a large part, or the whole, of the price, in the hands of the frame-makers, in order to insure their having the earliest supply. This, as might naturally be expected, raised the price of wages amongst the workmen employed in machine-making; and the effect was felt at a considerable distance from Nottingham, which was the centre of this mania. Smiths not used to flat filing, coming from distant parts, earned from 30s. to 42s. per week. Finishing smiths, accustomed to the work, gained from L3 to L4 per week..The forging smith, if accustomed to his work, gained from L5 to L6 per week, and some few earned L10 per week. In making what are technically called insides, those who were best paid, were generally clock- and watchmakers, from all the districts round, who received from L3 to L4 per week. The setters-up–persons who put the parts of the machine together–charged L20 for their assistance; and, a six quarter machine, could be put together in a fortnight or three weeks.

426. Good workmen, being thus induced to desert less profitable branches of their business, in order to supply this extraordinary demand, the masters, in other trades, soon found their men leaving them, without being aware of the immediate reason: some of the more intelligent, however, ascertained the cause. They went from Birmingham to Nottingham, in order to examine into the circumstances which had seduced almost all the journeymen clockmakers from their own workshops; and it was soon apparent, that the men who had been working as clockmakers in Birmingham, at the rate of 25s. a week, could earn L2 by working at lace frame-making in Nottingham.

On examining the nature of this profitable work, the master clockmakers perceived that one part of the bobbin net machines, that which held the bobbins, could easily be made in their own workshops. They therefore contracted with the machine-makers, who had already more work ordered than they could execute, to supply the bobbin carriers, at a price which enabled them, on their return home, to give such increased wages as were sufficient to retain their own workmen, as well as yield themselves a good profit. Thus an additional facility was afforded for the construction of these bobbin net machines: and the conclusion was not difficult to be foreseen. The immense supply of bobbin net thus poured into the market, speedily reduced its price; this reduction in price, rendered the machines by which the net was made, less valuable; some few of the earliest producers, for a short time, carried on a profitable trade; but multitudes were disappointed, and many ruined. The low price at which the fabric sold, together with its lightness and beauty, combined to extend the sale; and ultimately, new improvements in the machines, rendered the older ones still less valuable.

427. The bobbin net trade is, at present, both extensive and increasing; and, as it may, probably, claim a larger portion of public attention at some future time, it will be interesting to describe briefly its actual state.

A lace frame on the most improved principle, at the present day, manufacturing a piece of net two yards wide, when worked night and day, will produce six hundred and twenty racks per week. A rack is two hundred and forty holes; and as in the machine to which we refer, three racks are equal in length to one yard, it will produce 21,493 square yards of bobbin net annually. Three men keep this machine constantly working; and, they were paid (by piece-work) about 25s. each per week, in 1830. Two boys, working only in the day-time, can prepare the bobbins for this machine, and are paid from 2s. to 4s. per week, according to their skill. Forty-six square yards of this net weigh two pounds three ounces; so that each square yard weighs a little more than three-quarters of an ounce.

428. For a condensed and general view of the present state of this trade, we shall avail ourselves of a statement by Mr William Felkin, of Nottingham, dated September, 1831, and entitled Facts and Calculations illustrative of the Present State of the Bobbin Net Trade. It appears to have been collected with care, and contains, in a single sheet of paper, a body of facts of the greatest importance. *

429. The total capital employed in the factories, for preparing the cotton, in those for weaving the bobbin net, and in various processes to which it is subject, is estimated at above L2,000,000, and the number of persons who receive wages, at above two hundred thousand.

Comparison of the value of the raw material imported, with the value of the goods manufactured therefrom

Amount of Sea Island cotton annually used 1,600,000 lbs., value L120,000; this is manufactured into yarn, weighing 1,000,000 lbs., value L500,000.

There is also used 25,000 lbs. of raw silk, which costs L30,000, and is doubled into 10,000 lbs. thrown, worth L40,000.

Raw Material; Manufacture; Square yards produced; Value per sq. yd.(s. d.); Total value (L)

Cotton 1,600,000; lbs; Power Net; 6,750,000; 1 3; 421,875 Hand ditto; 15,750,000; 1 9; 1,378,125 Fancy ditto; 150,000; 3 6; 26,250 Silk, 25,000 lbs; Silk Goods; 750,000; 1 9; 65,625

23,400,000; 1,891,875

* I cannot omit the opportunity of expressing my hope that this example will be followed in other trades. We should thus obtain a body ofinformation equally important to the workman, the capitalist, the philosopher, and the statesman.

The brown nets which are sold in the Nottingham market are in part disposed of by the agents of twelve or fifteen of the larger makers, i.e. to the amount of about L250,000 a year. The principal part of the remainder, i.e. about L1,050,000 a year, is sold by about two hundred agents, who take the goods from one warehouse to another for sale.

Of this production, about half is exported in the unembroidered state. The exports of bobbin net are in great part to Hamburgh, for sale at home and at Leipzic and Frankfort fairs. Antwerp, and the rest of Belgium; to France, by contraband; to Italy, and North and South America. Though a very suitable article, yet the quantity sent eastward of the Cape of Good Hope, has hitherto been too trifling for notice. Three-eighths of the whole production are sold unembroidered at home. The remaining one-eighth is embroidered in this country, and increases the ultimate value as under, viz.

Embroidery Increases value Ultimate worth L L
On power net 131,840 553,715 On hand net 1,205,860 2,583.985
On fancy net 78,750 105,000 On silk net 109,375 175,000

Total embroidery, wages and profits 1,525,825 Ultimate total value 3,417,700

From this it appears, that in the operations of this trade, which had no existence twenty years ago, L120,000 original cost of cotton becomes, when manufactured, of the ultimate value of L3,242,700 sterling.

As to weekly wages paid, I hazard the following as the judgement of those conversant with the respective branches, viz.

In fine spinning and doubling, adults 25s.; children 7s.: work twelve hours per day.

In bobbin net making; men working machines, 18s.; apprentices, youths of fifteen or more, 10s.; by power, fifteen hours; by hand, eight to twelve hours, according to width.

In mending; children 4s.; women 8s.; work nine to fourteen hours ad libitum.

In winding, threading, etc., children and young women, 5s.: irregular work, according to the progress of machines.

In embroidery; children seven years old and upwards, 1s. to 3s.; work ten to twelve hours; women, if regularly at work, 5s. to 7s. 6d.; twelve to fourteen hours.

As an example of the effect of the wages of lace embroidery, etc., it may be observed, it is often the case that a stocking weaver in a country village will earn only 7s. a week, and his wife and children 7s. to 14s. more at the embroidery frame.

430. The principal part of the hand-machines employed in the bobbin net manufacture are worked in shops, forming part of, or attached to, private houses. The subjoined list will show the kinds of machinery employed, and classes of persons to whom it belongs.

Bobbin net machinery now at work in the Kingdom

Hand levers 6 quarter 500 Hand circulars 6 quarter 100 7 quarter 200 7 quarter 300 8 quarter 300 8 quarter 400 10 quarter 300 9 quarter 100 12 quarter 30 10 quarter 300 16 quarter 20 12 quarter 100 20 quarter 1 Hand transverse, pusher, Hand rotary 10 quarter 50 straight bolt, etc. averaging 5 quarters 750
12 quarter 50
2050 1451

Total hand machines 3501

Power 6 quarter 100
7 quarter 40
8 quarter 350
10 quarter 270
12 quarter 220
16 quarter 20
Total power machines 1000

Total number of machines 4501

700 persons own 1 machine, 700 machines. 226 2 452
181 3 543
96 4 384
40 5 200
21 6 126
17 7 119
19 8 152
17 9 153
12 10 120
8 11 88
6 12 72
5 13 65
5 14 70
4 16 64
25 own respectively 18,
19, 20, 21,
23, 24, 25,
26, 27, 28,
29, 30, 32,
33, 35, 36,
37, 50, 60,
68, 70, 75,
95, 105, 206
1192

Number of owners of machines–1382 Holding together 4500 machines.

The hand workmen consist of the above-named owners 1000 And of journeymen and apprentices 4000 5000

These machines are distributed as follows Nottingham 1240
New Radford 140
Old Radford and Bloomsgrove 240
Ison Green 160
Beeston and Chilwell 130
New and Old Snenton 180
Derby and its vicinity 185
Loughborough and its vicinity 385
Leicester 95
Mansfield 85
Tiverton 220
Barnstable l80
Chard 190
Isle of Wight 80
In sundry other places 990

4500

Of the above owners, one thousand work in their own machines, and enter into the class of journeymen as well as that of masters in operating on the rate of wages. If they reduce the price of their goods in the market, they reduce their own wages first; and, of course, eventually the rate of wages throughout the trade. It is a very lamentable fact, that one-half, or more, of the one thousand one hundred persons specified in the list as owning one, two, and three machines, have been compelled to mortgage their machines for more than their worth in the market, and are in many cases totally insolvent. Their machines are principally narrow and making short pieces, while the absurd system of bleaching at so much a piece goods of all lengths and widths, and dressing at so much all widths, has caused the new machines to be all wide, and capable of producing long pieces; of course to the serious disadvantage, if not utter ruin, of the small owner of narrow machines.

It has been observed above, that wages have been reduced, say 25 per cent in the last two years, or from 24s. to 18s. a week. Machines have increased in the same time one-eighth in number, or from four thousand to four thousand five hundred, and one-sixth in capacity of production. It is deserving the serious notice of all proprietors of existing machines, that machines are now introducing into the trade of such power of production as must still more than ever depreciate (in the absence of an immensely increased demand) the value of their property.

431. From this abstract, we may form some judgement of the importance of the bobbin net trade. But the extent to which it bids fair to be carried in future, when the eastern markets shall be more open to our industry, may be conjectured from the fact which Mr Felkin subsequently states that ‘We can export a durable and elegant article in cotton bobbin net, at 4d. per square yard, proper for certain useful and ornamental purposes, as curtains, etc.; and another article used for many purposes in female dress at 6d. the square yard.’

432. Of patents. In order to encourage the invention, the improvement, or the importation of machines, and of discoveries relating to manufactures, it has been the practice in many countries, to grant to the inventors or first introducers, an exclusive privilege for a term of years. Such monopolies are termed patents; and they are granted, on the payment of certain fees, for different periods, from five to twenty years.

The following table, compiled from the Report of the Committee of the House of Commons on Patents, 1829, shows the expense and duration of patents in various countries:

Countries; Expense (L s. d.); Term of years; Number granted in six years, ending in 1826.(Rep. p. 243.)

England; 120 0 0; 14; 914
Ireland; 125 0 0; 14;
Scotland; 100 0 0; 14;
America; 6 15 0; 14;
France; 12 0 0; 5;
32 0 0; 10;
60 0 0; 15; 1091
Netherlands; L6 to L30; 5, 10. 15
Austria; 42 10 0; 15; 1099
Spain(3*) Inventor; 20 9 4; 15;
Improver; 12 5 7; 10;
Importer; 10 4 8; 6;

433. It is clearly of importance to preserve to each inventor the sole use of his invention, until he shall have been amply repaid for the risk and expense to which he has been exposed, as well as for the talent he has exerted in completing it. But, the degrees of merit are so various, and the difficulties of legislating upon the subject so great, that it has been found almost impossible to frame a law which shall not, practically, be open to the most serious objections.

The difficulty of defending an English patent in any judicial trial, is very great; and the number of instances on record in which the defence has succeeded, are comparatively few. This circumstance has induced some manufacturers, no longer to regard a patent as a privilege by which a monopoly price may be secured: but they sell the patent article at such a price, as will merely produce the ordinary profits of capital; and thus secure to themselves the fabrication of it, because no competitors can derive a profit from invading a patent so exercised.

434. The law of copyright, is, in some measure, allied to that of patents; and it is curious to observe, that those species of property which require the highest talent, and the greatest cultivation–which are, more than any other, the pure creations of mind–should have been the latest to be recognized by the State. Fortunately, the means of deciding on an infringement of property in regard to a literary production, are not verv difficult; but the present laws are, in some cases, productive of considerable hardship, as well as of impediment to the advancement of knowledge.

435. Whilst discussing the general expediency of limitations and restrictions, it may be desirable to point out one which seems to promise advantage, though by no means free from grave objections. The question of permitting by law, the existence of partnerships in which the responsibility of one or more of the partners is limited in amount, is peculiarly important in a manufacturing, as well as a commercial point of view. In the former light, it appears calculated to aid that division of labour, which we have already proved to be as advantageous in mental as it is in bodily operations; and it might possibly give rise to a more advantageous distribution of talent, and its combinations, than at present exists. There are in this country, many persons possessed of moderate capital, who do not themselves enjoy the power of invention in the mechanical and chemical arts, but who are tolerable judges of such inventions, and excellent judges of human character. Such persons might, with great success, employ themselves in finding out inventive workmen, whose want of capital prevents them from realizing their projects. If they could enter into a limited partnership with persons so circumstanced, they might restrain within proper bounds the imagination of the inventor, and by supplying capital to judicious schemes, render a service to the country, and secure a profit for themselves.

436. Amongst the restrictions intended for the general benefit of our manufacturers, there existed a few years ago one by which workmen were forbidden to go out of the country. A law so completely at variance with everv principle of liberty, ought never to have been enacted. It was not, however, until experience had convinced the legislature of its inefficiency, that it was repealed. * When, after the last war, the renewed intercourse between England and the Continent became extensive, it was soon found that it was impossible to discover the various disguises which the workmen could assume; and the effect of the law was rather, by the fear of punishment, to deter those who had left the country from returning, than to check their disposition to migrate.

436. (4*) The principle, that government Ought to interfere as little as possible between workmen and their employers, is so well established, that it is important to guard against its misapplication. It is not inconsistent with this principle to insist on the workmen being paid in money–for this is merely to protect them from being deceived; and still less is it a deviation from it to limit the number of hours during which children shall work in factories, or the age at which they shall commence that species of labour–for they are not free agents, nor are they capable of judging, if they were; and both policy and humanity concur in demanding for them some legislative protection. In both cases it is as right and politic to protect the weaker party from fraud or force, as it would be impolitic and unjust to interfere with the amount of the wages of either.

NOTES:

1. Twenty eight shillings per cwt for the finer, twenty one shillings per cwt for the coarser papers.

2. I cannot omit the opportunity of expressing my hope that this example will be followed in other trades. We should thus obtain a body of information equally important to the workman, the capitalist, the philosopher, and the stateman.

3. The expense of a patent in Spain is stated in the report to be respecitivly 2000, 1200 and 1000 reals. If these are reals of vellon, in which accounts are usually kept at Madrid, the above sums are correct; but if they are reals of plate, the above sums ought to be nearly doubled.

4. In the year 1824 the law against workmen going abroad, as well as the laws preventing them from combining, were repealed, after the fullest enquiry by a Committee of the House of Commons. In 1825 an attempt to re-enact some of the most objectionable was made, but it failed.

Chapter 34

On the Exportation of Machinery

437. A few years only have elapsed, since our workmen were not merely prohibited by Act of Parliament from transporting themselves to countries in which their industry would produce for them higher wages, but were forbidden to export the greater part of the machinery which they were employed to manufacture at home. The reason assigned for this prohibition was, the apprehension that foreigners might av ail themselves of our improved machinery, and thus compete with our manufacturers. It was, in fact, a sacrifice of the interests of one class of persons, the makers of machinery, for the imagined benefit of another class, those who use it. Now, independently of the impolicy of interfering, without necessity, between these two classes, it may be observed, that the first class, or the makers of machinery, are, as a body, far more intelligent than those who only use it; and though, at present, they are not nearly so numerous, yet, when the removal of the prohibition which cramps their ingenuity shall have had time to operate, there appears good reason to believe, that their number will be greatly increased, and may, in time, even surpass that of those who use machinery.

438. The advocates of these prohibitions in England seem to rely greatly upon the possibility of preventing the knowledge of new contrivances from being conveyed to other countries; and they take much too limited a view of the possible, and even probable, improvements in mechanics.

439. For the purpose of examining this question, let us consider the case of two manufacturers of the same article, one situated in a country in which labour is very cheap, the machinery bad, and the modes of transport slow and expensive; the other engaged in manufacturing in a country in which the price of labour is very high, the machinery excellent, and the means of transport expeditious and economical. Let them both send their produce to the same market, and let each receive such a price as shall give to him the profit ordinarily produced by capital in his own country. It is almost certain that in such circumstances the first improvement in machinery will occur in the country which is most advanced in civilization; because, even admitting that the ingenuity to contrive were the same in the two countries, the means of execution are very different. The effect of improved machinery in the rich country will be perceived in the common market, by a small fall in the price of the manufactured article. This will be the first intimation to the manufacturer of the poor country, who will endeavour to meet the diminution in the selling price of his article by increased industry and economy in his factory, but he will soon find that this remedy is temporary, and that the market-price continues to fall. He will thus be induced to examine the rival fabric, in order to detect, from its structure, any improved mode of making it. If, as would most usually happen, he should be unsuccessful in this attempt, he must endeavour to contrive improvements in his own machinery, or to acquire information respecting those which have been made in the factories of the richer country. Perhaps after an ineffectual attempt to obtain by letters the information he requires, he sets out to visit in person the factories of his competitors. To a foreigner and rival manufacturer such establishments are not easily accessible, and the more recent the improvements, the less likely he will be to gain access to them. His next step, therefore, will be to obtain the knowledge he is in search of from the workmen employed in using or making the machines. Without drawings, or an examination of the machines themselves, this process will be slow and tedious; and he will be liable, after all, to be deceived by artful and designing workmen, and be exposed to many chances of failure. But suppose he returns to his own country with perfect drawings and instructions, he must then begin to construct his improved machines: and these he cannot execute either so cheaply or so well as his rivals in the richer countries. But after the lapse of some time, we shall suppose the machines thus laboriously improved, to be at last completed, and in working order.

440. Let us now consider what will have occurred to the manufacturer in the rich country. He will, in the first instance, have realized a profit by supplying the home market, at the usual price, with an article which it costs him less to produce; he will then reduce the price both in the home and foreign market, in order to produce a more extended sale. It is in this stage that the manufacturer in the poor country first feels the effect of the competition; and if we suppose only two or three years to elapse between the first application of the new improvement in the rich country, and the commencement of its employment in the poor country, yet will the manufacturer who contrived the improvement (even supposing that during the whole of this time he has made only one step) have realized so large a portion of the outlay which it required, that he can afford to make a much greater reduction in the price of his produce, and thus to render the gains of his rivals quite inferior to his own.

441. It is contended that by admitting the exportation of machinery, foreign manufacturers will be supplied with machines equal to our own. The first answer which presents itself to this argument is supplied by almost the whole of the present volume; That in order to succeed in a manufacture, it is necessary not merely to possess good machinery, but that the domestic economy of the factory should be most carefully regulated.

The truth, as well as the importance of this principle, is so well established in the Report of a Committee of the House of Commons ‘On the Export of Tools and Machinery’, that I shall avail myself of the opinions and evidence there stated, before I offer any observations of my own:

Supposing, indeed, that the same machinery which is used in England could be obtained on the Continent, it is the opinion of some of the most intelligent of the witnesses that a want of arrangement in foreign manufactories, of division of labour in their work, of skill and perseverance in their workmen, and of enterprise in the masters, together with the comparatively low estimation in which the master manufacturers are held on the Continent, and with the comparative want of capital, and of many other advantageous circumstances detailed in the evidence, would prevent foreigners from interfering in any great degree by competition with our principal manufacturers; on which subject the Committee submit the following evidence as worthy the attention of the House:

I would ask whether, upon the whole, you consider any danger likely to arise to our manufactures from competition, even if the French were supplied with machinery equally good and cheap as our own? They will always be behind us until their general habits approximate to ours; and they must be behind us for many reasons that I have before given.

Why must they be behind us? One other reason is, that a cotton manufacturer who left Manchester seven years ago, would be driven out of the market by the men who are now living in it, provided his knowledge had not kept pace with those who have been during that time constantly profiting by the progressive improvements that have taken place in that period: this progressive knowledge and experience is our great power and advantage.

It should also be observed, that the constant, nay, almost daily, improvements which take place in our machinery itself, as well as in the mode of its application, require that all those means and advantages alluded to above should be in constant operation: and that, in the opinion of several of the witnesses, although Europe were possessed of every tool now used in the United Kingdom, along with the assistance of English artisans, which she may have in any number, yet, from the natural and acquired advantages possessed by this country, the manufacturers of the United Kingdom would for ages continue to retain the superiority they now enjoy. It is indeed the opinion of many, that if the exportation of machinery were permitted, the exportation would often consist of those tools and machines, which, although already superseded by new inventions, still continue to be employed, from want of opportunity to get rid of them: to the detriment, in many instances, of the trade and manufactures of the country: and it is matter worthy of consideration, and fully borne out by the evidence, that by such increased foreign demand for machinery, the ingenuity and skill of our workmen would have greater scope; and that, important as the improvements in machinery have lately been, they might, under such circumstances, be fairly expected to increase to a degree beyond all precedent.

The many important facilities for the construction of machines and the manufacturing of commodities which we possess, are enjoyed by no other country; nor is it likely that any country can enjoy them to an equal extent for an indefinite period. It is admitted by everyone, that our skill is unrivalled; the industry and power of our people unequalled; their ingenuity, as displayed in the continuol improvement in machinery, and production of commodities, without parallel; and apparently, without limit. The freedom which, under our government, every man has, to use his capital, his labour, and his talents, in the manner most conducive to his interests, is an inestimable advantage; canals are cut, and railroads constructed, by the voluntary association of persons whose local knowledge enables them to place them in the most desirable situations; and these great advantages cannot exist under less free governments. These circumstances, when taken together, give such a decided superiority to our people, that no injurious rivalry, either in the construction of machinery or the manufacture of commodities, can reasonably be anticipated.

442. But, even if it were desirable to prevent the exportation of a certain class of machinery, it is abdundantly evident, that, whilst the exportation of other classes is allowed, it is impossible to prevent the forbidden one from being smuggled out; and that, in point of fact, the additional risk has been well calculated by the smuggler.

443. It would appear, also, from various circumstances, that the immediate exportation of improved machinery is not quite so certain as has been assumed; and that the powerful principle of self-interest will urge the makers of it, rather to push the sale in a different direction. When a great maker of machinery has contrived a new machine for any particular process, or has made some great improvement upon those in common use, to whom will he naturally apply for the purpose of selling his new machines? Undoubtedly, in by far the majority of cases, to his nearest and best customers, those to whom he has immediate and personal access, and whose capability to fulfil any contract is best known to him. With these, he will communicate and offer to take their orders for the new machine; nor will he think of writing to foreign customers, so long as he finds the home demand sufficient to employ the whole force of his establishment. Thus, therefore, the machine-maker is himself interested in giving the first advantage of any new improvement to his own countrymen.

444. In point of fact, the machine-makers in London greatly prefer home orders, and do usually charge an additional price to their foreign customers. Even the measure of this preference may be found in the evidence before the Committee on the Export of Machinery. It is differently estimated by various engineers; but appears to vary from five up to twenty-five per cent on the amount of the order. The reasons are: 1. If the machinery be complicated, one of the best workmen, well accustomed to the mode of work in the factory, must be sent out to put it up; and there is always a considerable chance of his having offers that will induce him to remain abroad. 2. If the work be of a more simple kind, and can be put up without the help of an English workman, yet for the credit of the house which supplies it, and to prevent the accidents likely to occur from the want of sufficient instruction in those who use it, the parts are frequently made stronger, and examined more attentively, than they would be for an English purchaser. Any defect or accident also would be attended with more expense to repair, if it occurred abroad, than in England.

445. The class of workmen who make machinery, possess much more skill, and are paid much more highly than that class who merely use it; and, if a free exportation were allowed, the more valuable class would, undoubtedly, be greatly increased; for, notwithstanding the high rate of wages, there is no country in whichit can at this moment be made, either so well or so cheaply as in England. We might, therefore, supply the whole world with machinery, at an evident advantage, both to ourselves and our customers. In Manchester, and the surrounding district, many thousand men are wholly occupied in making the machinery, which gives employment to many hundred thousands who use it; but the period is not very remote, when the whole number of those who used machines, was not greater than the number of those who at present manufacture them. Hence, then, if England should ever become a great exporter of machinery, she would necessarily contain a large class of workmen, to whom skill would be indispensable, and, consequently, to whom high wages would be paid; and although her manufacturers might probably be comparatively fewer in number, yet they would undoubtedly have the advantage of being the first to derive profit from improvement. Under such circumstances, any diminution in the demand for machinery, would, in the first instance, be felt by a class much better able to meet it, than that which now suffers upon every check in the consumption of manufactured goods; and the resulting misery would therefore assume a mitigated character.

446. It has been feared, that when other countries have purchased our machines, they will cease to demand new ones: but the statement which has been given of the usual progress in the improvement of the machinery employed in any manufacture, and of the average time which elapses before it is superseded by such improvements, is a complete reply to this objection. If our customers abroad did not adopt the new machinery contrived by us as soon as they could procure it, then our manufacturers would extend their establishments, and undersell their rivals in their own markets.

447. It may also be urged, that in each kind of machinery a maximum of perfection may be imagined, beyond which it is impossible to advance; and certainly the last advances are usually the smallest when compared with those which precede them: but it should be observed, that these advances are generally made when the number of machines in employment is already large; and when, consequently, their effects on the power of producing are very considerable. But though it should be admitted that any one species of machinery may, after a long period, arrive at a degree of perfection which would render further improvement nearly hopeless, yet it is impossible to suppose that this can be the case with respect to all kinds of mechanism. In fact the limit of improvement is rarely approached, except in extensive branches of national manufactures; and the number of such branches is, even at present, very small.

448. Another argument in favour of the exportation of machinery, is, that it would facilitate the transfer of capital to any more advantageous mode of employment which might present itself. If the exportation of machinery were permitted, there would doubtless arise a new and increased demand; and, supposing any particular branch of our manufactures to cease to produce the average rate of profit, the loss to the capitalist would be much less, if a market were open for the sale of his machinery to customers more favourably circumstanced for its employment. If, on the other hand, new improvements in machinery should be imagined, the manufacturer would be more readily enabled to carry them into effect, by having the foreign market opened where he could sell his old machines. The fact, that England can, notwithstanding her taxation and her high rate of wages, actually undersell other nations, seems to be well established: and it appears to depend on the superior goodness and cheapness of those raw materials of machinery the metals–on the excellence of the tools–and on the admirable arrangements of the domestic economy of our factories.

449. The different degrees of facility with which capital can be transferred from one mode of employment to another, has an important effect on the rate of profits in different trades and in different countries. Supposing all the other causes which influence the rate of profit at any period, to act equally on capital employed in different occupations, yet the real rates of profit would soon alter, on account of the different degrees of loss incurred by removing the capital from one mode of investment to another, or of any variation in the action of those causes.

450. This principle will appear more clearly by taking an example. Let two capitalists have embarked L10,000 each, in two trades: A in supplying a district with water, by means of a steam-engine and iron pipes; B in manufacturing bobbin net. The capital of A will be expended in building a house and erecting a steam-engine, which costs, we shall suppose, L3000; and in laying down iron pipes to supply his customers, costing L7000. The greatest part of this latter expense is payment for labour, and if the pipes were to be taken up, the damage arising from that operation would render them of little value, except as old metal; whilst the expense of their removal would be considerable. Let us, therefore, suppose, that if A were obliged to give up his trade, he could realize only L4000 by the sale of his stock. Let us suppose again that B, by the sale of his bobbin net factory and machinery, could realize L8000 and let the usual profit on the capital employed by each party be the same, say 20 per cent: then we have

Capital invested; Money which would arise from sale of machinery; Annual rate of profit per cent; Income

L L L L
Water works 10,000 4000 20 2000 Bobbin net Factory 10,000 8000 20 2000

Now, if, from competition, or any other cause, the rate of profit arising from water-works should fall to 20 per cent, that circumstance would not cause a transfer of capital from the water-works to bobbin net making; because the reduced income from the water-works, L1000 per annum, would still be greater than that produced by investing L4000, (the whole sum arising from the sale of the materials of the water-works), in a bobbin net factory, which sum, at 20 per cent, would yield only L800 per annum. In fact, the rate of profit, arising from the water-works, must fall to less than 8 per cent before the proprietor could increase his income by removing his capital into the bobbin net trade.

451. In any enquiry into the probability of the injury arising to our manufacturers from the competition of foreign countries, particular regard should be had to the facilities of transport, and to the existence in our own country of a mass of capital in roads, canals, machinery, etc., the greater portion of which may fairly be considered as having repaid the expense of its outlay, and also to the cheap rate at which the abundance of our fuel enables us to produce iron, the basis of almost all machinery. It has been justly remarked by M. de Villefosse, in the memoir before alluded to, that Ce que l’on nomme en France, la question du prix des fers, est, a proprement parler, la question du prix des bois, et la question, des moyens de communications interieures par les routes, fleuves, rivieres et canaux.

The price of iron in various countries in Europe has been stated in section 215 of the present volume; and it appears, that in England it is produced at the least expense, and in France at the greatest. The length of the roads which cover England and Wales may be estimated roughly at twenty thousand miles of turnpike, and one hundred thousand miles of road not turnpike. The internal water communication of England and France, as far as I have been able to collect information on the subject, may be stated as follows:

In France

Miles in length

Navigable rivers 4668 Navigable canals 915.5
Navigable canals in progress of execution (1824) 1388

6971.5 (1*)

But, if we reduce these numbers in the proportion of 3.7 to 1, which is the relative area of France as compared with England and Wales, then we shall have the following comparison:

Portion of France equal in size to England and Wales

England(2*)
Miles Miles

Navigable rivers 1275.5 1261.6 Tidal navigation(3*) 545.9
Canals, direct 2023.5
Canals, branch 150.6

2174.1 2174.1 247.4 Canals commenced — 375.1

Total 3995.5 1884.1

Population in 1831 13,894,500 8,608,500

This comparison, between the internal communications of the two countries, is not offered as complete; nor is it a fair view, to contrast the wealthiest portion of one country with the whole of the other: but it is inserted with the hope of inducing those who possess more extensive information on the subject, to supply the facts on which a better comparison may be instituted. The information to be added, would consist of the number of miles in each country, of seacoast, of public roads, of railroads, of railroads on which locomotive engines are used.

452. One point of view, in which rapid modes of conveyance increase the power of a country, deserves attention. On the Manchester Railroad, for example, above half a million of persons travel annually; and supposing each person to save only one hour in the time of transit, between Manchester and Liverpool, a saving of five hundred thousand hours, or of fifty thousand working days, of ten hours each, is effected. Now this is equivalent to an addition to the actual power of the country of one hundred and sixty-seven men, without increasing the quantity of food consumed; and it should also be remarked, that the time of the class of men thus supplied, is far more valuable than that of mere labourers.

NOTES:

1. This table is extracted and reduced from one of Ravinet, Dictionnaire Hydrographique. 2 vols. 8vo. Paris. 1824.

2. I am indebted to F. Page. Esq. of Speen, for that portion of this table which relates to the internal navigation of England. Those only who have themselves collected statistical details can be aware of the expense of time and labour, of which the few lines it contains are the result.

3. The tidal navigation includes: the Thames, from the mouth of the Medway; the Severn, from the Holmes: the Trent, from Trent Falls in the Humber; the Mersey from Runcorn Gap.

Chapter 35

On the Future Prospects of Manufactures, as Connected with Science

453. In reviewing the various processes offered as illustrations of those general principles which it has been the main object of the present volume to support and establish, it is impossible not to perceive that the arts and manufactures of the country are intimately connected with the progress of the severer sciences; and that, as we advance in the career of improvement, every step requires, for its success, that this connection should be rendered more intimate.

The applied sciences derive their facts from experiment; but the reasonings, on which their chief utility depends, are the province of what is called abstract science. It has been shown, that the division of labour is no less applicable to mental productions than to those in which material bodies are concerned; and it follows, that the efforts for the improvement of its manufactures which any country can make with the greatest probability of success, must arise from the combined exertions of all those most skilled in the theory, as well as in the practice of the arts; each labouring in that department for which his natural capacity and acquired habits have rendered him most fit.

454. The profit arising from the successful application to practice of theoretical principles, will, in most cases, amply reward, in a pecuniary sense, those by whom they are first employed; yet even here, what has been stated with respect to patents, will prove that there is room for considerable amendment in our legislative enactments: but the discovery of the great principles of nature demands a mind almost exclusively devoted to such investigations; and these, in the present state of science, frequently require costly apparatus, and exact an expense of time quite incompatible with professional avocations. It becomes, therefore, a fit subject for consideration, whether it would not be politic in the State to compensate for some of those privations, to which the cultivators of the higher departments of science are exposed; and the best mode of effecting this compensation, is a question which interests both the philosopher and the statesman. Such considerations appear to have had their just influence in other countries, where the pursuit of science is regarded as a profession, and where those who are successful in its cultivation are not shut out from almost every object of honourable ambition to which their fellow countrymen may aspire. Having, however, already expressed some opinion upon these subjects in another publication,(1*) I shall here content myself with referring to that work.

455. There was, indeed, in our own country, one single position to which science, when concurring with independent fortune, might aspire, as conferring rank and station, an office deriving, in the estimation of the public, more than half its value from the commanding knowledge of its possessor; and it is extraordinary, that even that solitary dignity–that barony by tenure in the world of British science–the chair of the Royal Society, should have been coveted for adventitious rank. It is more extraordinary, that a Prince, distinguished by the liberal views he has invariably taken of public affairs–and eminent for his patronage of every institution calculated to alleviate those miseries from which, by his rank, he is himself exempted–who is stated by his friends to be the warm admirer of knowledge, and most anxious for its advancement, should have been so imperfectly informed by those friends, as to have wrested from the head of science, the only civic wreath which could adorn its brow.(2*)

In the meanwhile the President may learn, through the only medium by which his elevated station admits approach, that those evils which were anticipated from his election, have not proved to be imaginary, and that the advantages by some expected to result from it, have not yet become apparent. It may be right also to state, that whilst many of the inconveniences, which have been experienced by the President of the Royal Society, have resulted from the conduct of his own supporters, those who were compelled to differ from him, have subsequently offered no vexatious opposition: they wait in patience, convinced that the force of truth must ultimately work its certain, though silent course; not doubting that when His Royal Highness is correctly informed, he will himself be amongst the first to be influenced by its power.

456. But younger institutions have arisen to supply the deficiencies of the old; and very recently a new combination, differing entirely from the older societies, promises to give additional steadiness to the future march of science. The British Association for the Advancement of Science, which held its first meeting at York(3*) in the year 1831, would have acted as a powerful ally, even if the Royal Society were all that it might be: but in the present state of that body such an association is almost necessary for the purposes of science. The periodical assemblage of persons, pursuing the same or different branches of knowledge, always produces an excitement which is favourable to the development of new ideas; whilst the long period of repose which succeeds, is advantageous for the prosecution of the reasonings or the experiments then suggested; and the recurrence of the meeting in the succeeding year, will stimulate the activity of the enquirer, by the hope of being then enabled to produce the successful result of his labours. Another advantage is, that such meetings bring together a much larger number of persons actively engaged in science, or placed in positions in which they can contribute to it, than can ever be found at the ordinary meetings of other institutions, even in the most populous capitals; and combined effort towards any particular object can thus be more easily arranged.

457. But perhaps the greatest benefit which will accrue from these assemblies, is the intercourse which they cannot fail to promote between the different classes of society. The man of science will derive practical information from the great manufacturers the chemist will be indebted to the same source for substances which exist in such minute quantity, as only to become visible in most extensive operations–and persons of wealth and property, resident in each neighbourhood visited by these migratory assemblies, will derive greater advantages than either of those classes, from the real instruction they may procure respecting the produce and manufactures of their country, and the enlightened gratification which is ever attendant on the acquisition of knowledge.(4*)

458. Thus it may be hoped that public opinion shall be brought to bear upon the world of science; and that by this intercourse light will be thrown upon the characters of men, and the pretender and the charlatan be driven into merited obscurity. Without the action of public opinion, any administration, however anxious to countenance the pursuits of science, and however ready toreward, by wealth or honours, those whom they might think most eminent, would run the risk of acting like the blind man recently couched, who, having no mode of estimating degrees of distance, mistook the nearest and most insignificant for the largest objects in nature: it becomes, therefore, doubly important, that the man of science should mix with the world.

459. It is highly probable that in the next generation, the race of scientific men in England will spring from a class of persons altogether different from that which has hitherto scantily supplied them. Requiring, for the success of their pursuits, previous education, leisure, and fortune, few are so likely to unite these essentials as the sons of our wealthy manufacturers, who, having been enriched by their own exertions, in a field connected with science, will be ambitious of having their children distinguished in its ranks. It must, however, be admitted, that this desire in the parents would acquire great additional intensity, if worldly honours occasionally followed successful efforts; and that the country would thus gain for science, talents which are frequently rendered useless by the unsuitable situations in which they are placed.

460. The discoverers of iodine and bromine, two substances hitherto undecompounded, were both amongst the class of manufacturers, one being a maker of saltpetre at Paris, the other a manufacturing chemist at Marseilles; and the inventor of balloons filled with rarefied air, was a paper manufacturer near Lyons. The descendants of Mongolfier, the first aerial traveller, still carry onthe establishment of their progenitor, and combine great scientific knowledge with skill in various departments of the arts, to which the different branches of the family have applied themselves.

461. Chemical science may, in many instances, be of great importance to the manufacturer, as well as to the merchant. The quantity of Peruvian bark which is imported into Europe is very considerable; but chemistry has recently proved that a large portion of the bark itself is useless. The alkali Quinia which has been extracted from it, possesses all the properties for which the bark is valuable, and only forty ounces of this substance, when in combination with sulphuric acid, can be extracted from a hundred pounds of the bark. In this instance then, with every ton of useful matter, thirty-nine tons of rubbish are transported across the Atlantic.

The greatest part of the sulphate of quinia now used in this country is imported from France, where the low price of the alcohol, by which it is extracted from the bark, renders the process cheap; but it cannot be doubted, that when more settled forms of government shall have given security to capital, and when advancing civilization shall have spread itself over the states of Southern America, the alkaline medicine will be extracted from the woody matter by which its efficacy is impaired, and that it will be exported in its most condensed form.

462. The aid of chemistry, in extracting and in concentrating substances used for human food, is of great use in distant voyages, where the space occupied by the stores must be economized with the greatest care. Thus the essential oils supply the voyager with flavour; the concentrated and crystallized vegetable acids preserve his health; and alcohol, when sufficiently diluted, supplies the spirit necessary for his daily consumption.

463. When we reflect on the very small number of species of plants, compared with the multitude that are known to exist, which have hitherto been cultivated, and rendered useful to man; and when we apply the same observation to the animal world, and even to the mineral kingdom, the field that natural science opens to our view seems to be indeed unlimited. These productions of nature, varied and innumerable as they are, may each, in some future day, become the basis of extensive manufactures, and give life, employment, and wealth, to millions of human beings. But the crude treasures perpetually exposed before our eyes, contain within them other and more valuable principles. All these, likewise, in their numberless combinations, which ages of labour and research can never exhaust, may be destined to furnish, in perpetual succession, new sources of our wealth and of our happiness. Science and knowledge are subject, in their extension and increase, to laws quite opposite to those which regulate the material world. Unlike the forces of molecular attraction, which cease at sensible distances; or that of gravity, which decreases rapidly with the increasing distance from the point of its origin; the further we advance from the origin of our knowledge, the larger it becomes, and the greater power it bestows upon its cultivators, to add new fields to its dominions. Yet, does this continually and rapidly increasing power, instead of giving us any reason to anticipate the exhaustion of so fertile a field, place us at each advance, on some higher eminence, from which the mind contemplates the past, and feels irresistibly convinced, that the whole, already gained, bears a constantly diminishing ratio to that which is contained within the still more rapidly expanding horizon of our knowledge.

464. But, if the knowledge of the chemical and physical properties of the bodies which surround us, as well as our imperfect acquaintance with the less tangible elements, light, electricity, and heat, which mysteriously modify or change their combinations, concur to convince us of the same fact; we must remember that another and a higher science, itself still more boundless, is also advancing with a giant’s stride, and having grasped the mightier masses of the universe, and reduced their wanderings to laws, has given to us in its own condensed language, expressions, which are to the past as history, to the future as prophecy. It is the same science which is now preparing its fetters for the minutest atoms that nature has created: already it has nearly chained the ethereal fluid, and bound in one harmonious system all the intricate and splendid phenomena of light. It is the science of calculation–which becomes continually more necessary at each step of our progress, and which must ultimately govern the whole of the applications of science to the arts of life.

465. But perhaps a doubt may arise in the mind, whilst contemplating the continually increasing field of human knowledge, that the weak arm of man may want the physical force required to render that knowledge available. The experience of the past, has stamped with the indelible character of truth, the maxim, that knowledge is power. It not merely gives to its votaries control over the mental faculties of their species, but is itself the generator of physical force. The discovery of the expansive power of steam, its condensation, and the doctrine of latent heat, has already added to the population of this small island, millions of hands. But the source of this power is not without limit, and the coal-mines of the world may ultimately be exhausted. Without adverting to the theory, that new deposits of that mineral are not accumulating under the sea, at the estuaries of some of our larger rivers; without anticipating the application of other fluids requiring a less supply of caloric than water–we may remark that the sea itself offers a perennial source of power hitherto almost unapplied. The tides, twice in each day, raise a vast mass of water, which might be made available for driving machinery. But supposing heat still to remain necessary, when the exhausted state of our coal fields renders it expensive: long before that period arrives, other methods will probably have been invented for producing it. In some districts, there are springs of hot water, which have flowed for centuries unchanged in temperature. In many parts of the island of Ischia, by deepening the sources of the hot springs only a few feet, the water boils; and there can be little doubt that, by boring a short distance, steam of high pressure would issue from the orifice.(5*)

In Iceland, the sources of heat are still more plentiful; and their proximity to large masses of ice, seems almost to point out the future destiny of that island. The ice of its glaciers may enable its inhabitants to liquefy the gases with the least expenditure of mechanical force; and the heat of its volcanoes may supply the power necessary for their condensation. Thus, in a future age, power may become the staple commodity of the Icelanders, and of the inhabitants of other volcanic districts;(6*) and possibly the very process by which they will procure this article of exchange for the luxuries of happier climates may, in some measure, tame the tremendous element which occasionally devastates their provinces.

466. Perhaps to the sober eye of inductive philosophy, these anticipations of the future may appear too faintly connected with the history of the past. When time shall have revealed the future progress of our race, those laws which are now obscurely indicated, will then become distinctly apparent; and it may possibly be found that the dominion of mind over the material world advances with an everaccelerating force.

Even now, the imprisoned winds which the earliest poet made the Grecian warrior bear for the protection of his fragile bark; or those which, in more modern times, the Lapland wizards sold to the deluded sailors–these, the unreal creations of fancy or of fraud, called at the command of science, from their shadowy existence, obey a holier spell: and the unruly masters of the poet and the seer become the obedient slaves of civilized man.

Nor have the wild imaginings of the satirist been quite unrivalled by the realities of after years: as if in mockery of the College of Laputa, light almost solar has been extracted from the refuse of fish; fire has been sifted by the lamp of Davy, and machinery has been taught arithmetic instead of poetry.

467. In whatever light we examine the triumphs and achievements of our species over the creation submitted to its power, we explore new sources of wonder. But if science has called into real existence the visions of the poet–if the accumulating knowledge of ages has blunted the sharpest and distanced the loftiest of the shafts of the satirist, the philosopher has conferred on the moralist an obligation of surpassing weight. In unveiling to him the living miracles which teem in rich exuberance around the minutest atom, as well as throughout the largest masses of ever-active matter, he has placed before him resistless evidence of immeasurable design. Surrounded by every form of animate and inanimate existence, the sun of science has yet penetrated but through the outer fold of nature’s majestic robe; but if the philosopher were required to separate, from amongst those countless evidences of creative power, one being, the masterpiece of its skill; and from that being to select one gift, the choicest of all the attributes of life; turning within his own breast, and conscious of those powers which have subjugated to his race the external world, and of those higher powers by which he has subjugated to himself that creative faculty which aids his faltering conceptions of a deity, the humble worshipper at the altar of truth would pronounce that being, man; that endowment, human reason.

But however large the interval that separates the lowest from the highest of those sentient beings which inhabit our planet, all the results of observation, enlightened by all the reasonings of the philosopher, combine to render it probable that, in the vast extent of creation, the proudest attribute of our race is but, perchance, the lowest step in the gradation of intellectual existence. For, since every portion of our own material globe, and every animated being it supports, afford, on more scrutinizing enquiry, more perfect evidence of design, it would indeed be most unphilosophical to believe that those sister spheres, obedient to the same law, and glowing with light and heat radiant from the same central source–and that the members of those kindred systems, almost lost in the remoteness of space, and perceptible only from the countless multitude of their congregated globes should each be no more than a floating chaos of unformed matter; or, being all the work of the same Almighty Architect, that no living eye should be gladdened by their forms of beauty, that no intellectual being should expand its faculties in decyphering their laws.

NOTES:

1. Reflections on the Decline of Science in England, and on some of its Causes. 8vo. 1830. Fellowes.

2. The Duke of Sussex was proposed as President of the Royal Society in opposition to the wish of the Council in opposition to the public declaration of a body of Fellows, comprising the largest portion of those by whose labours the character of English science had been maintained The aristocracy of rank and of power, aided by such allies as it can always command, set itself in array against the prouder aristocracy of science. Out of about seven hundred members, only two hundred and thirty balloted; and the Duke of Sussex had a majority of eight. Under such circumstances, it was indeed extraordinary, that His Royal Highness should have condescended to accept the fruits of that doubtful and inauspicious victory.

The circumstances preceding and attending this singular contest have been most ably detailed in a pamphlet entitled A Statement of the Circumstances connected with the late Election for the, Presidency of the Royal Society, 1831, printed by R. Taylor, Red Lion Court, Fleet Street. The whole tone of the tract is strikingly contrasted with that of the productions of some of those persons by whom it was His Royal Highness’s misfortune to be supported.

3. The second meeting took place at Oxford in June, 1932, and surpassed even the sanguine anticipations of its friends. The third annual meeting will take place at Cambridge in June 1833.

4 The advantages likely to arise from such an association, have been so clearly stated in the address delivered by the Rev. Mr Vernon Harcourt, at its first meeting, that I would strongly recommend its perusal by all those who feel interested in the success of English science. Vide First Report of the British Association for the Advancement of Science, York. 1832.

5 In 1828, the author of these pages visited Ischia, with a committee of the Royal Academy of Naples, deputed to examine the temperature and chrmical constitution of the springs in that island. During the few first days, several springs which had been represented in the instructions as under the boiling temperature, were found, on deepening the excavations, to rise to the boiling point.

6 See section 351.

THE END.