Full Text Archive logoFull Text Archive — Books, poems, drama…

Scientific American Supplement, No. 286 by Various

Part 1 out of 2

Adobe PDF icon
Download this document as a .pdf
File size: 0.2 MB
What's this? light bulb idea Many people prefer to read off-line or to print out text and read from the real printed page. Others want to carry documents around with them on their mobile phones and read while they are on the move. We have created .pdf files of all out documents to accommodate all these groups of people. We recommend that you download .pdfs onto your mobile phone when it is connected to a WiFi connection for reading off-line.

Produced by Olaf Voss, Don Kretz, Juliet Sutherland,
Charles Franks and the Online Distributed Proofreading Team.



NEW YORK, JUNE 25, 1881

Scientific American Supplement. Vol. XI, No. 286.

Scientific American established 1845

Scientific American Supplement, $5 a year.

Scientific American and Supplement, $7 a year.

* * * * *


I. ENGINEERING AND MECHANICS.--One Thousand Horse Power Corliss Engine.
5 figures, to scale, illustrating the construction of the new one
thousand horse power Corliss engine, by Hitch, Hargreaves & Co.

Opening of the New Workshop of the Stevens Institute of Technology.
Speech of Prof. R.W. Raymond, speech of Mr. Horatio Allen.

Light Steam Engine for Aeronautical Purposes. Constructed for Capt.
Mojoisky, of the Russian Navy.

Complete Prevention of Incrustation in Boilers. Arrangement for
purifying boiler water with lime and carbonate of soda.--The
purification of the water.--Examination of the purified
water.--Results of water purification.

Eddystone Lighthouse. Progress of the work.

Rolling Mill for Making Corrugated Iron. 1 figure. The new mill of
Schultz, Knaudt & Co., of Essen, Germany.

Railway Turntable in the Time of Louis XIV. 1 figure. Pleasure car.
Railway and turntable at Mary-le-Roy Chateau, France, in 1714.

New Signal Wire Compensator. Communication from A. Lyle, describing
compensators in use on the Nizam State Railway, East India.

Tangye's Hydraulic Hoist. 2 figures.

Power Loom for Delicate Fabrics. 1 figure.

How Veneering is Made.

II. TECHNOLOGY AND CHEMISTRY.--The Constituent Parts of Leather. The
composition of different leathers exhibited at the Paris
Exhibition.--Amount of leather produced by different tonnages of 100
pounds of hides.--Percentage of tannin absorbed under different
methods of tanning.--Amounts of gelatine and tannin in leather of
different tonnages, etc.

Progress in American Pottery.

Photographic Notes.--Mr. Waruerke's New Discovery.--Method of
converting negatives directly into positives.--Experiments of Capt.
Bing on the sensitiveness of coal oil--Bitumen plates.--Method of
topographic engraving. By Commandant DE LA NOE.--Succinate of Iron
Developer.--Method of making friable hydro-cellulose.

Photo-Tracings in Black and Color.

Dyeing Reds with Artificial Alizarin. By M. MAURICE PRUD'HOMME.


Physical Science in Our Common Schools.--An exceptionally strong
argument for the teaching of physical science by the experimental
method in elementary schools, with an outline of the method and the
results of such teaching.

On the Law of Avogadro and Ampere. By E. VOGEL.

IV. GEOGRAPHY, GEOLOGY, ETC.--Petroleum and Coal in Venezuela.

Geographical Society of the Pacific.

The Behring's Straits Currents.--Proofs of their existence.

Experimental Geology.--Artificial production of calcareous pisolites
and oolites.--On crystals of anhydrous lime.--4 figures.

V. NATURAL HISTORY, ETC.--Coccidae. By Dr. H. BEHR.--An important paper
read before the California Academy of Sciences.--The marvelous
fecundity of scale bugs.--Their uses.--Their ravages.--Methods of
destroying them.

Agricultural Items.

Timber Trees.

Blood Rains.

VI. MEDICINE AND HYGIENE.--Medical Uses of Figs.

Topical Medication in Phthisis.

VII. ARCHITECTURE, ETC.--Suggestions in Architecture.--Large
illustration.--The New High School for Girls, Oxford, England.

* * * * *


MR. E. H. PLUMACHER, U. S. Consul at Maracaibo, sends to the State
Department the following information touching the wealth of coal and
petroleum probable in Venezuela:

The asphalt mines and petroleum fountains are most abundant in that part
of the country lying between the River Zulia and the River Catatumbo,
and the Cordilleras. The wonderful sand-bank is about seven kilometers
from the confluence of the Rivers Tara and Sardinarte. It is ten meters
high and thirty meters long. On its surface can be seen several round
holes, out of which rises the petroleum and water with a noise like that
made by steam vessels when blowing off steam, and above there ascends a
column of vapor. There is a dense forest around this sand-bank, and the
place has been called "El Inferno." Dr. Edward McGregor visited the
sand-bank, and reported to the Government that by experiment he had
ascertained that one of the fountains spurted petroleum and water at the
rate of 240 gallons per hour. Mr. Plumacher says that the petroleum is
of very good quality, its density being that which the British market
requires in petroleum imported from the United States. The river, up to
the junction of the Tara and Sardinarte, is navigable during the entire
year for flat-bottomed craft of forty or fifty tons.

Mr. Plumacher has been unable to discover that there are any deposits
of asphalt or petroleum in the upper part of the Department of Colon,
beyond the Zulia, but he has been told that the valleys of Cucuta and
the territories of the State of Tachira abound in coal mines. There are
coal mines near San Antonia, in a ravine called "La Carbonera," and
these supply coal for the smiths' forges in that place. Coal and asphalt
are also found in large quantities in the Department of Sucre. Mr.
Plumacher has seen, while residing in the State of Zulia, but one true
specimen of "lignite," which was given to him by a rich land-owner,
who is a Spanish subject. In the section where it was found there are
several fountains of a peculiar substance. It is a black liquid, of
little density, strongly impregnated with carbonic acid which it
transmits to the water which invariably accompanies it. Deposits of this
substance are found at the foot of the spurs of the Cordilleras, and are
believed to indicate the presence of great deposits of anthracite.

There are many petroleum wells of inferior quality between Escuque and
Bettijoque, in the town of Columbia. Laborers gather the petroleum in
handkerchiefs. After these become saturated, the oil is pressed out by
wringing. It is burned in the houses of the poor. The people thought, in
1824, that it was a substance unknown elsewhere, and they called it
the "oil of Columbia." At that time they hoped to establish a valuable
industry by working it, and they sent to England, France, and this
country samples which attracted much attention. But in those days no
method of refining the crude oil had been discovered, and therefore
these efforts to introduce petroleum to the world soon failed.

The plains of Ceniza abound in asphalt and petroleum. There is a large
lake of these substances about twelve kilometers east of St. Timoteo,
and from it some asphalt is taken to Maracaibo. Many deposits of asphalt
are found between these plains and the River Mene. The largest is that
of Cienega de Mene, which is shallow. At the bottom lies a compact
bed of asphalt, which is not used at present, except for painting
the bottoms of vessels to keep off the barnacles. There are wells of
petroleum in the State of Falcon.

Mr. Plumacher says that all the samples of coal submitted to him in
Venezuela for examination, with the exception of the "lignite" before
mentioned, were, in his opinion, asphalt in various degrees of
condensation. The sample which came from Tule he ranks with the coals
of the best quality. He believes that the innumerable fountains and
deposits of petroleum, bitumen, and asphalt that are apparent on the
surface of the region around Lake Maracaibo are proof of the existence
below of immense deposits of coal. These deposits have not been
uncovered because the territory remains for the most part as wild as it
was at the conquest.

* * * * *


[Illustration: FIG. 1.

STROKE = 10 ft.
REVS = 41

FIG. 2.]

We illustrate one of the largest Corliss engines ever constructed. It is
of the single cylinder, horizontal, condensing type, with one cylinder
40 inches diameter, and 10 feet stroke, and makes forty-five revolutions
per minute, corresponding to a piston speed of 900 feet per minute. At
mid stroke the velocity of the piston is 1,402 feet per minute nearly,
and its energy in foot pounds amounts to about 8.6 times its weight.
The cylinder is steam jacketed on the body and ends, and is fitted with
Corliss valves and Inglis & Spencer's automatic Corliss valve expansion
gear. Referring to the general drawing of the engine, it will be seen
that the cylinder is bolted directly to the end of the massive cast iron
frame, and the piston coupled direct to the crank by the steel piston
rod and crosshead and the connecting rod. The connecting rod is 28
feet long center to center, and 12 inches diameter at the middle. The
crankshaft is made of forged Bolton steel, and is 21 inches diameter at
the part where the fly-wheel is carried. The fly driving wheel is 35
feet in diameter, and grooved for twenty-seven ropes, which transmit the
power direct to the various line shafts in the mill. The rope grooves
are made on Hick, Hargreaves & Co.'s standard pattern of deep groove,
and the wheel, which is built up, is constructed on their improved plan
with separate arms and boss, and twelve segments in the rim with joints
planed to the true angle by a special machine designed and made by
themselves. The weight of the fly-wheel is about 60 tons. The condensing
apparatus is arranged below, so that there is complete drainage from the
cylinder to the condenser. The air pump, which is 36 inches diameter and
2 feet 6 inches stroke, is a vertical pump worked by wrought iron
plate levers and two side links, shown by dotted lines, from the main
crosshead. The engine is fenced off by neat railing, and a platform with
access from one side is fitted round the top of the cylinder for getting
conveniently to the valve spindles and lubricators. The above engraving,
which is a side elevation of the cylinder, shows the valve gear
complete. There are two central disk plates worked by separate
eccentrics, which give separate motion to the steam and exhaust valves.
The eccentrics are mounted on a small cross shaft, which is driven by a
line shaft and gear wheels. The piston rod passes out at the back end of
the cylinder and is carried by a shoe slide and guide bar, as shown more
fully in the detailed sectional elevation through the cylinder, showing
also the covers and jackets in section. The cylinder, made in four
pieces, is built up on Mr. W. Inglis's patent arrangement, with separate
liner and steam jacket casing and separate end valve chambers. This
arrangement simplifies the castings and secures good and sound ones. The
liner has face joints, which are carefully scraped up to bed truly to
the end valve chambers. The crosshead slides are each 3 feet 3 inches
long and I foot 3 inches wide. The engine was started last year, and
has worked beautifully from the first, without heating of bearings or
trouble of any kind, and it gives most uniform and steady turning. It is
worked now at forty-one revolutions per minute, or only 820 feet piston
speed, but will be worked regularly at the intended 900 feet piston
speed per minute when the spinning machinery is adapted for the increase
which the four extra revolutions per minute of the engine will give; the
load driven is over 1,000 horsepower, the steam pressure being 50 lb.
to 55 lb., which, however, will be increased when the existing boilers,
which are old, come to be replaced by new. Indicator diagrams from the
engines are given on page 309. The engine is very economical in steam
consumption, but no special trials or tests have been made with it. An
exactly similar engine, but of smaller size, with a cylinder 30 inches
diameter and 8 feet stroke, working at forty-five revolutions per
minute, made by Messrs. Hick, Hargreaves & Co. for Sir Titus Salt,
Sons & Co.'s mill at Saltaire, was tested about two years ago by Mr.
Fletcher, chief engineer of the Manchester Steam Users' Association, and
the results which are given below pretty fairly represent the results
obtained from this class of engine. Messrs. Hick, Hargreaves & Co. are
now constructing a single engine of the same type for 1,800 indicated
horse-power for a cotton mill at Bolton; and they have an order for a
pair of horizontal compound Corliss engines intended to indicate 3,000
horse-power. These engines will be the largest cotton mill engines in
the world.--_The Engineer_.


_Result of Trials with Saltaire Horizontal Engine on February 14th and
15th, 1878. Trials made by Mr. L.E. Fletcher, Chief Engineer Steam
Users' Association, Manchester._

Engine single-cylinder, with Corliss valves. Inglis and Spencer's valve
gear. Diameter of cylinder. 30in.; stroke, 8ft.; 45 revolutions per

No. of trials
Total 1.H.P.
[MB] Mean boiler pressure.
[MP] Mean pressure on piston at beginning of stroke.
[ML] Mean loss between boiler pressure and cylinder.
[MA] Mean average pressure on piston.
[W] Water Per I.H.P. per hour.
[C] Coal per I.H.P. per hour.

No. of trials Total MB MP ML MA W C
I.H.P. lb lb lb lb lb lb
Trial No. 1. 301.89 46.6 44.11 2.53 21.23 18.373 2.699
Trial No. 2. 309.66 47.63 44.45 3.18 21.67 17.599 2.561
Means. 305.775 47.115 44.28 2.855 21.45 17.986 2.630

& CO.] [Illustration: 1000 HORSE POWER CORLISS ENGINE.--BY HICK,

* * * * *


In our SUPPLEMENT No. 283 we gave reports of some of the addresses of
the distinguished speakers, and we now present the remarks of Prof.
Raymond and Horatio Allen, Esq.:


A few years ago, at one of the meetings of our Society of Civil
Engineers we spent a day or so in discussing the proper mode of
educating young men so as to fit them for that profession. It is a
question that is reopened for us as soon as we arrive at the age when
we begin to consider what career to lay out for our sons. When we were
young, the only question with parents in the better walks of life was,
whether their sons should be lawyers, physicians, or ministers. Anything
less than a professional career was looked upon as a loss of caste, a
lowering in the social scale. These things have changed, now that we
engineers are beginning to hold up our heads, as we have every reason to
do; for the prosperity and well-being of the great nations of the world
are attributable, perhaps, more to our efforts than to those of any
other class. When, in the past, the man of letters, the poet, the
orator, succeeded, by some fit expression, by some winged word, to
engage the attention of the world concerning some subject he had at
heart, the highest praise his fellow man could bestow was to cry out
to him, "Well said, well said!" But now, when, by our achievements,
commerce and industry are increased to gigantic proportions, when the
remotest peoples are brought in ever closer communication with us, when
the progress of the human race has become a mighty torrent, rushing
onward with ever accelerating speed, we glory in the yet higher praise,
"Well done, well done!" Under these circumstances, the question how a
young man is best fitted for our profession has become one of increasing
importance, and three methods have been proposed for its solution.
Formerly the only point in debate was whether the candidate should go
first to the schools and then to the workshop, or first to the shop and
then to the schools. It was difficult to arrive at any decision; for of
the many who had risen to eminence as engineers, some had adopted
one order and some the other. There remained a third course, that of
combining the school and the shop and of pursuing simultaneously the
study of theory and the exercise of practical manipulation. Unforeseen
difficulties arose, however, in the attempt to carry out this, the most
promising method. The maintenance of the shop proved a heavy expense,
which it was found could not be lessened by the manufacture of salable
articles, because the work of students could not compete with that of
expert mechanics. It would require more time than could be allotted,
moreover, to convert students into skilled workmen. Various
modifications of this combination of theory and practice, including more
or less of the Russian system of instruction in shop-work, have been
tried in different schools of engineering, but never under so favorable
conditions as the present. With characteristic caution and good
judgment, President Morton has studied the operation of the scheme
of instruction adopted in the Stevens Institute, and, noting its
deficiencies, has now supplied them with munificent liberality, giving
to it a completeness that leaves seemingly nothing that could be
improved upon, even in a prayer or a dream. Still, no one will be more
ready to admit than he who has done all this, that it is not enough to
fit up a machine shop, be it never so complete, and light it with an
electric lamp. The decision as to its efficiency must come from the
students that are so fortunate as to be admitted to it. If such young
men, earnest, enthusiastic, with every incentive to exertion and every
advantage for improvement, here, where they can feel the throbbing of
the great heart of enterprise, within sight of bridges upon which their
services will be needed, within hearing of the whistles of a score of
railroads, and the bells of countless manufactories which will want
them; if such as these, trained under such instructors and amid such
surroundings, prove to be not fitted for the positions waiting for them
to fill, it will have been definitely demonstrated that the perfect
scheme is yet unknown.


Impressed with the very great step in advance which has been inaugurated
here this evening, I feel crowding upon me so many thoughts that I
cannot make sure that, in selecting from them, I may not leave unsaid
much that I should say, and say some things that I had better omit. Some
years ago, when asked by a wealthy gentleman to what machine-shop he had
best send his son, who was to become a mechanical engineer, I advised
him not to send him to any, but to fit up a shop for him where he could
go and work at what he pleased without the drudgery of apprenticeship,
to put him in the way of receiving such information as he needed, and
especially to let him go where he could see things break. Great, indeed,
are the advantages of those who have the opportunity of seeing things
break, of witnessing failures and profiting by them. When men have
enumerated the achievements of those most eminent in our profession the
thought has often struck me, "Ah! if we could only see that man's scrap

There are many who are able to construct a machine for a given purpose
so that it will work, but to do this so that it will not cost too much
is an entirely different problem. To know what to omit is a rare talent.
I once found a young man who could tell students what to store up in
their minds for immediate use, and what to skim over or omit; but I
could not keep him long, for more lucrative positions are always waiting
for such men.

The advice I gave my wealthy friend was given before the Stevens
Institute had developed in the direction it has now. The foundation of
this advice, namely, to combine a certain amount of judicious practice
with theory, is now in a fair way to be carried out, and although
things will probably not be permitted to break here, the students will
doubtless have opportunities for looking around them and supplementing
their systematic instruction here by observation abroad.

* * * * *


We here illustrate one of a couple of compound engines designed and
constructed by Messrs. Ahrbecker, Son & Hamkens, of Stamford Street,
S.E., for Captain Mojaisky, of the Russian Imperial Navy, who intends
to use them for aeronautical purposes. The larger of these engines has
cylinders 33/4 in. and 71/2 in. in diameter and 5 in. stroke, and when
making 300 revolutions per minute it develops 20 actual horse
power, while its weight is but 105 lbs. The smaller engine--the one
illustrated--has cylinders 21/2 in. and 5 in. in diameter, and 31/2 in.
stroke, and weighs 63 lbs., while when making 450 revolutions it
develops 10 actual horse power.

The two engines are identical in design, and are constructed of forged
steel with the exception of the bearings, connecting-rods, crossheads,
slide valves and pumps, which are of phosphor-bronze. The cylinders,
with the steam passages, etc., are shaped out of the solid. The
standards, as will be seen, are of very light T steel, the crankshafts
and pins are hollow, as are also the crosshead bolts and piston rods.
The small engine drives a single-acting air pump of the ordinary type by
a crank, not shown in the drawing. The condenser is formed of a series
of hollow gratings.


Steam is supplied to the two engines by one boiler of the Herreshoff
steam generator type, with certain modifications, introduced by the
designers, to insure the utmost certainty in working. It is of steel,
the outside dimensions being 22 in. in diameter, 25 in. high, and weighs
142 lb. The fuel used is petroleum, and the working pressure 190 lb. per
square inch.

The constructors consider the power developed by these engines very
moderate, on account of the low piston speed specified in this
particular case. In some small and light engines by the same makers
the piston speed is as high as 1000 ft. per minute. The engines now
illustrated form an interesting example of special designing, and
Messrs. Ahrbecker, Son, and Hamkens deserve much credit for the manner
in which the work has been turned out, the construction of such light
engines involving many practical difficulties,--_Engineering._

* * * * *

Mount Baker, Washington Territory, has shown slight symptoms of volcanic
activity for several years. An unmistakable eruption is now in progress.

* * * * *


The chemical factory, Eisenbuettel, near Braunschweig, distributes the
following circular: "The principal generators of incrustation in boilers
are gypsum and the so-called bicarbonates of calcium and magnesium. If
these can be taken put of the water, before it enters the boiler, the
formation of incrustation is made impossible; all disturbances and
troubles, derived from these incrustations, are done away with, and
besides this, a considerable saving of fuel is possible, as clear iron
will conduct heat quicker than that which is covered with incrustation."

J. Kolb, according to _Dingler's Polyt. Journal_, says: "A boiler with
clear sides yielded with 1 kil. coal 7.5 kil. steam, after two months
only 6.4 kil. steam, or a decrease of 17 per cent. At the same time the
boiler had suffered by continual working."

Suppose a boiler free from inside crust would yield a saving of only
5 per cent. in fuel (and this figure is taken very low compared with
practical experiments) it would be at the same time a saving of 3c. per
cubic meter water. If the cleaning of one cubic meter water therefore
costs less than 3c., this alone would be an advantage.

Already, for a long time, efforts have been made to find some means for
this purpose, and we have reached good results with lime and chloride of
barium, as well as with magnesia preparations. But these preparations
have many disadvantages. Corrosion of the boiler-iron and muriatic acid
gas have been detected. (Accounts of the Magdeburg Association for
boiler management.)

Chloride of calcium, which is formed by using chloride of barium,
increases the boiling point considerably, and diminishes the elasticity
of steam; while the sulphate of soda, resulting from the use of
carbonate of soda, is completely ineffectual against the boiler iron.
It increases the boiling point of water less than all other salts, and
diminishes likewise the elasticity of steam (Wullner).

In using magnesia preparation, the precipitation is only very slowly and
incompletely effected--one part of the magnesia will be covered by the
mire and the formed carbonate of magnesia in such a way, that it can no
more dissolve in water and have any effect (_Dingler's Polyt. Journal_,

The use of carbonate of soda is also cheaper than all other above
mentioned substances.

One milligramme equivalent sulphate of lime, in 1 liter, = 68 grammes
sulphate of lime in 1 cubic meter, requiring for decomposition:

120 gr. (86-88 per cent.) chloride of barium of commerce--at $5.00 =

Or, 50 gr. magnesia preparation--at $10.00 = 0.5c.

Or, 55 gr. (96-98 per cent.) carbonate of soda--at $7.50 = 0.41c.

The proportions of cost by using chloride of barium, magnesia
preparation, carbonate of soda, will be 6 : 5 : 4.


We need for carrying out these manipulations, according to the size
of the establishment, one or more reservoirs for precipitating the
impurities of the water, and one pure water reservoir, to take up the
purified water; from the latter reservoir the boilers are fed. The most
practical idea would be to arrange the precipitating reservoir in such
manner that the purified water can flow directly into the feeding

The water in the precipitating reservoir is heated either by adding
boiling water or letting in steam up to 60 deg. C. at least. The
precipitating reservoirs (square iron vessels or horizontal
cylinders--old boilers) of no more than 4 or 41/2 feet, having a faucet 6
inches above the bottom, through which the purified water is drawn off,
and another one at the bottom of the vessel, to let the precipitate off
and allow of a perfect cleaning. In a factory with six or seven boilers
of the usual size, making together 400 square meters heating surface,
two precipitating reservoirs, of ten cubic meters each, and one pure
water reservoir of ten or fifteen cubic meter capacity, are used.

In twenty-four hours about 240 cubic meters of water are evaporated; we
have, therefore, to purify twenty-four precipitating reservoirs at ten
cubic meters each day, or ten cubic meters each hour.

It is profitable to surround the reservoirs with inferior conductors of
heat, to avoid losses.

The contents of the precipitating reservoirs have to be stirred up very
well, and for this purpose we can either arrange a mechanical stirrer
or do it by hand, or the best would be a "Korting steam stirring and
blowing apparatus." In using the latter we only have to open the valve,
whereby in a very short time the air driven through the water stirs this
up and mixes it thoroughly with the precipitating ingredients. In a
factory where boilers of only 15 to 100 square meters heating surface
are, one precipitating reservoir of two to ten cubic meters and one pure
water reservoir of three to ten cubic meters capacity are required. For
locomobiles, two wooden tubs or barrels are sufficient.


After the required quantity of lime and carbonate of soda which is
necessary for a total precipitation has been figured out from the
analysis of the water, respectively verified by practical experiments
in the laboratory, the heated water in the reservoir is mixed with the
lime, in form of thin milk of lime, and stirred up; we have to add so
much lime, that slightly reddened litmus paper gives, after 1/4 minute's
contact with this mixture, an alkaline reaction, i.e., turns blue; now
the solution of carbonate of soda is added and again stirred well.

After twenty or thirty minutes (the hotter the water, the quicker the
precipitation) the precipitate has settled in large flocks at the
bottom, and the clear water is drawn off into the pure water reservoir.
The precipitating and settling of the impurities can also take place in
cold water; it will require, however, a pretty long time.

In order to avoid the weighing and slaking of the lime, which is
necessary for each precipitation, we use an open barrel, in which a
known quantity of slaked lime is mixed with three and a half or four
times its weight of water, and then diluted to a thin paste, so that one
kilogramme slaked lime is diluted to twenty-five liters milk of lime.

Example.--If we use for ten cubic meters water, one kilogramme lime,
or in one day (in twenty-four hours), 240 cubic meters 24 kg. lime, a
vessel four or five feet high and about 700 liters capacity, in which
daily 24 kg. lime with about 100 liters water are slaked and then
diluted to the mark 600, constantly stirring, 25 liters of this mixture
contain exactly 1 kg. slaked lime.

Before using, this milk of lime has to be stirred up and allowed to
settle for a few seconds; and then we draw off the required quantity of
milk of lime (in our case 25 liters) through a faucet about 8 inches
above the bottom, or we can dip it off with a pail. For the first
precipitate we always need the exact amount of milk of lime, which we
have figured out, or rather some more, but for the next precipitates we
do not want the whole quantity, but always less, as that part of the
lime, which does not settle with the precipitate, will be good for use
in further precipitations. It is therefore important to control the
addition of milk of lime by the use of litmus paper. If we do not add
enough lime, it prevents the formation of the flocky precipitate, and,
besides, more carbonate of soda is used. By adding too much lime, we
also use more carbonate of soda in order to precipitate the excess of
lime. We can therefore add so much lime, that there is only a very small
excess of hydrous lime in the water, and that after well stirring, a red
litmus paper being placed in the water for twenty seconds, appears only
slightly blue. After a short time of practice, an attentive person can
always get the exact amount of lime which ought to be added. On adding
the milk of lime, we have to dissolve the required amount of pure
carbonate of soda in an iron kettle, in about six or eight parts hot
water with the assistance of steam; add this to the other liquid in the
precipitating reservoirs and stir up well. The water will get clear
after twenty-five or thirty minutes, and is then drawn off into the pure
water reservoir.


In order to be convinced that the purification of the water has been
properly conducted, we try the water in the following manner. Take a
sample of the purified water into a small tumbler, and add a few
drops of a solution of oxalate of ammonia; this addition must neither
immediately nor after some minutes cause a milky appearance of the
water, but remain bright and clear. A white precipitate would indicate
that not enough carbonate of soda had been added. A new sample is taken
of the purified water and a solution of chloride of calcium added; a
milky appearance, especially after heating, would show that too much
carbonate of soda had been added.


1. The boilers do not need to be cleaned during a whole season, as they
remain entirely free from incrustation; it is only required to avoid a
collection of soluble salts in the boiler, and therefore it is partly
drawn off twice a week.

2. The iron is not touched by this purified water. The water does not
froth and does not stop up valves. The fillings in the joints of pipes,
etc., do not suffer so much, and therefore keep longer.

3. The steam is entirely free from sour gases.

4. The production of steam is easier and better.

5. A considerable saving of fuel can soon be perceived.

6. The cost of cleaning boilers from incrustation, and loss of time
caused by cleaning, is entirely done with. Old incrustations, which
could not be cleaned out before, get decomposed and break off in soft

7. The cost of this purification is covered sufficiently by the above
advantages, and besides this, the method is cheaper and surer than any

The chemical factory, Eisenbuettel, furnishes pure carbonate of soda in
single packages, which exactly correspond with the quantity, stated by
the analysis, of ten cubic meters of a certain water. The determination
of the quantities of lime and carbonate of soda necessary for a certain
kind of water, after sending in a sample, will be done without extra
charge.--_Neue Zeitung fur Ruebenzucker Industrie_.

* * * * *


The exterior work on the new Eddystone Lighthouse is about two thirds
done. In the latter part of April fifty-three courses of granite
masonry, rising to the height of seventy feet above high water, had been
laid, and thirty-six courses remained to be set. The old lighthouse had
been already overtopped. As the work advances toward completion the
question arises: What shall be done with John Smeaton's famous tower,
which has done such admirable service for 120 years? One proposition is
to take it down to the level of the top of the solid portion, and
leave the rest as a perpetual memorial of the great work which Smeaton
accomplished in the face of obstacles vastly greater than those which
confront the modern architect. The London _News_ says: "Were Smeaton's
beautiful tower to be literally consigned to the waves, we should regard
the act as a national calamity, not to say scandal; and, if public funds
are not available for its conservation, we trust that private zeal and
munificence may be relied on to save from destruction so interesting
a relic. It certainly could not cost much to convey the building in
sections to the mainland, and there, on some suitable spot, to re-erect
it as a national tribute to the genius of its great architect." When
the present lighthouse was built one of the chief difficulties was in
getting the building materials to the spot. They were conveyed from
Millbay in small sailing vessels, which often beat about for days before
they could effect a landing at the Eddystone rocks, so that each arrival
called out the special gratitude of Smeaton.

* * * * *


MESSRS. SCHULZ, KNAUDT & Co., of Essen, who are making an application
of corrugated iron in the construction of the interior flues of steam
boilers, have devised a new mill for the manufacture of this form of
iron plates, and which is represented in the accompanying cut, taken
from the _Deutsche Industrie Zeitung_. The supports of the two accessory
cylinders, F F, rest on two slides, G G, which move along the oblique
guides, H H. As a consequence of this arrangement, when the cylinders, F
F, are caused to approach the cylinder, D, both are raised at the same

When the cylinders, F, occupy the position represented in the engraving
by unbroken lines, the flat plate, O, is simply submitted to pressure
between the cylinders, D and P, the cylinders, F F, then merely acting
as guides. But when, while the plate is being thus flattened between the
principal cylinders, the accessory cylinders are caused to rise, the
plate is curved as shown by the dotted lines, O' O'. To obtain a
uniformity in the position of the two cylinders, F F, the following
mechanism is employed: Each cylinder has an axle, to which is affixed a
crank, Q, connected by means of a rod, R, with the slide, G. These axles
are also provided with toothed sectors, L L, which gear with two screws,
L L, whose threads run in opposite directions. These screws are mounted
on a shaft, N, which may be revolved by any suitable arrangement.


* * * * *


The small engraving which we reproduce herewith from _La Nature_ is
deposited at the Archives at Paris. It is catalogued in the documents
relating to Old Marly, 1714, under number 11,339, Vol. 1. The design
represents a diversion called the _Jeu de la Roulette_ which was
indulged in by the royal family at the sumptuous and magnificent chateau
of Mary-le-Roi.


According to Alex. Guillaumot the apparatus consisted of a sort of
railway on which the car was moved by manual labor. In the car, which
was decorated with the royal colors, are seen seated the ladies and
children of the king's household, while the king himself stands in the
rear and seems to be directing operations. The remarkable peculiarity to
which we would direct the attention of the reader is that this document
shows that the car ran on rails very nearly like those used on the
railways of the present time, and that a turn-table served for changing
the direction to a right angle in order to place the car under the
shelter of a small building. The picture which we reproduce, and the
authenticity of which is certain, proves then that in the time of
Louis XIV. our present railway turn-tables had been thought of and
constructed--which is a historic fact worthy of being noted. It is well
known that the use of railways in mines is of very ancient date, but we
do not believe that there are on record any documents as precise as that
of the _Jeu de la Roulette_ as to the existence of turn-tables in former

* * * * *


_To the Editor of the Scientific American_:

I send you a plate of my new railway signal wire compensator. Here
in India signal wires give more trouble, perhaps, than in America or
elsewhere, by expansion and contraction. What makes the difficulty more
here is the ignorance and indolence of the point and signalmen, who
are all natives. There have been numerous collisions, owing to signals
falling off by contraction. Many devices and systems have been tried,
but none have given the desired result. You will observe the signal wire
marked D is entirely separated and independent of the wire, E, leading
to lever. On the Great Indian and Peninsula Railway I work one of these
compensators, 1,160 yards from signal, which stands on a summit the
grade of which is 1 in 150; and on the Nizam State Railway I have one
working on a signal 800 yards. This signal had previously given so much
trouble that it was decided to do away with it altogether. It stands on
top of a high cutting and on a 1,600 foot curve.

[Illustration: Railway Signal Wire Comensator]

I have noted on the compensator fixed at 1,160 yards, 131/4 inches
contraction and expansion. The compensator is very simple and not at all
likely to get out of order. On new wire, when I fix my compensator, I
usually have an adjusting screw on the lead to lever. This I remove
when the wire has been stretched to its full tension. I have everything
removed from lever, so there can be no meddling or altering. When
once the wire is stretched so that no slack remains between lever and
trigger, no further adjustment is necessary.


Chief Maintenance Inspector, Permanent Way,

H.H. Nizam State Railway, E. India.

Secunderabad, India, 1881.



The great merits of hydraulic hoists generally as regards safety and
readiness of control are too well known to need pointing out here.
We may, therefore, at once proceed to introduce to our readers the
apparatus of this class illustrated in the above engravings. This is
a hoist (Cherry's patent) manufactured by Messrs. Tangye Brothers, of
London and Birmingham, and which experience has proved to be a most
useful adjunct in warehouses, railway stations, hotels, and the like.
Fig. 1 of our engraving shows a perspective view of the hoist, Fig. 2
being a longitudinal section. It will be seen that this apparatus is of
very simple construction, the motion of the piston being transmitted
directly to the winding-drum shaft by means of a flexible steel rack.
Referring to Fig. 2, F is a piston working in the cylinder, G; E is
the flexible steel rack connected to the piston, F, and gearing with a
toothed wheel, B, which is inclosed in a watertight casing having cover,
D, for convenient access. The wheel, B, is keyed on a steel shaft, C,
which passes through stuffing-boxes in the casing, and has the winding
barrel, A, keyed on it outside the casing. H is a rectangular tube,
which guides the free end of the flexible steel rack, E. The hoist is
fitted with a stopping and starting valve, by means of which water
under pressure from any convenient source of supply may be admitted or
exhausted from the cylinder. The action in lifting is as follows: The
water pressure forces the piston toward the end of the cylinder. The
piston, by means of the flexible steel rack, causes the toothed wheel
to revolve. The winding barrel, being keyed on the same shaft as the
toothed wheel, also revolves, and winds up the weight by means of the
lifting chain. Two special advantages are obtained by this simple method
of construction. In the first place, twice the length of stroke can be
obtained in the same space as compared with the older types of hydraulic
hoist; and, from the directness of the action, the friction is reduced
to a minimum. This simple method of construction renders the hoist very
compact and easily fixed; and, from the directness with which the power
is conveyed from the piston to the winding drum, and the frictionless
nature of the mechanism, a smaller piston suffices than in the ordinary
hydraulic hoists, and a smaller quantity of water is required to work

* * * * *


The force with which the shuttle is thrown in an ordinary power
loom moving with a certain speed is always considerable, and, as a
consequence of the strain exerted on the thread, it is frequently
necessary to use a woof stronger than is desirable, in order that it may
have sufficient resistance. On another hand, when the woof must be very
fine and delicate the fabric is often advantageously woven on a hand
loom. In order to facilitate the manufacture of like tissues on the
power loom the celebrated Swiss manufacturer, Hanneger, has invented an
apparatus in which the shuttle is not thrown, but passed from one side
to the other by means of hooks, by a process analogous to weaving silk
by hand. A loom built on this principle was shown at work weaving silk
at the Paris Exhibition of 1878. This apparatus, represented in
the annexed figure, contains some arrangements which are new and
interesting. On each side of the woof in the heddle there is a carrier,
B. These carriers are provided with hooks, A A', having appendages,
_a a'_, which are fitted in the shuttle, O. The latter is of peculiar
construction. The upper ends of the hooks have fingers, _d d'_, which
holds the shuttle in position as long as the action of the springs, _e
e'_, continues. The distance that the shuttle has to travel includes the
breadth of the heddle, the length of the shuttle, and about four inches
in addition. The motion of the two carriers, which approach each other
and recede simultaneously, is effected by the levers, C, D, E, and C',
D', E'. The levers, E, E', are actuated by a piece, F, which receives
its motion from the main shaft, H, through the intervention of a
crank and a connecting rod, G, and makes a little more than a quarter
revolution. The levers, E, E', are articulated in such a way that
the motion transmitted by them is slackened toward the outer end and
quickened toward the middle of the loom. While the carriers, B B', are
receiving their alternate backward and forward motion, the shaft, I
(which revolves only half as fast as the main shaft), causes a lever, F
F', to swing, through the aid of a crank, J, and rod, K. Upon the two
carriers, B B', are firmly attached two hooks, M M', which move with
them. When the hook, M, approaches the extremity of the lever, F, the
latter raises it, pushes against the spring, E, and sets free the
shuttle, which, at the same moment, meets the opposite hook, _a'_, and,
being caught by it, is carried over to the other side. The same thing
happens when the carrier, B', is on its return travel, and the hook, M',
mounts the lever, F', which is then raised.


As will be seen from this description, the woof does not undergo the
least strain, and may be drawn very gently from the shuttle. Neither
does this latter exert any friction on the chain, since it does not move
on it as in ordinary looms. In this apparatus, therefore, there may be
employed for the chain very delicate threads, which, in other looms,
would be injured by the shuttle passing over them. Looms constructed on
this plan have for some time been in very successful use in Switzerland.

* * * * *


The process of manufacture is very interesting. The logs are delivered
in the mill yard in any suitable lengths as for ordinary lumber. A steam
drag saw cuts them into such lengths as may be required by the order
in hand; those being cut at the time of our visit were four feet long.
After cutting, the logs are placed in a large steam box, 15 feet wide,
22 feet long, and six feet high, built separate from the main building.
This box is divided into two compartments. When one is filled entirely
full, the doors are closed, and the steam, supplied by the engine in the
main building, is turned on. The logs remain in this box from three to
four hours, when they are ready for use. This steaming not only removes
the bark, but moistens and softens the entire log. From the steam box
the log goes to the veneer lathe. It is here raised, grasped at each end
by the lathe centers, and firmly held in position, beginning to slowly
revolve. Every turn brings it in contact with the knife, which is gauged
to a required thickness. As the log revolves the inequalities of its
surface of course first come in contact with the keen-edged knife, and
disappear in the shape of waste veneer, which is passed to the engine
room to be used as fuel. Soon, however, the unevenness of the log
disappears, and the now perfect veneer comes from beneath the knife in
a continuous sheet, and is received and passed on to the cutting table.
This continues until the log is reduced to about a seven inch core,
which is useless for the purpose. The veneer as it comes rolling off the
log presents all the diversity of colors and the beautiful grain and
rich marking that have perhaps for centuries been growing to perfection
in the silent depths of our great forests.

From the lathe, the veneer is passed to the cutting table, where it is
cut to lengths and widths as desired. It is then conveyed to the second
story, where it is placed in large dry rooms, air tight, except as the
air reaches them through the proper channels. The veneer is here placed
in crates, each piece separate and standing on edge. The hot air is then
turned on. This comes from the sheet iron furnace attached to the boiler
in the engine room below, and is conveyed through large pipes regulated
by dampers for putting on or taking off the heat. There is also a blower
attached which keeps the hot air in the dry rooms in constant motion,
the air as it cools passing off through an escape pipe in the roof,
while the freshly heated air takes its place from below. These rooms
are also provided with a net-work of hot air pipes near the floor. The
temperature is kept at about 165 deg., and so rapid is the drying process
that in the short space of four hours the green log from the steam box
is shaved, cut, dried, packed, and ready for shipment.

After leaving the dry rooms it is assorted, counted, and put up in
packages of one hundred each, and tied with cords like lath, when it is
ready for shipment. Bird's-eye maple veneer is much more valuable and
requires more care than almost any other, and this is packed in cases
instead of tied in bundles. The drying process is usually a slow one,
and conducted in open sheds simply exposed to the air. Mr. Densmore's
invention will revolutionize this process, and already gives his mill a
most decided advantage.

The mill will cut about 30,000 feet of veneer in a day, and this cut can
be increased to 40,000 if necessary. Mr. Densmore has already received
several large orders, and the rapidly increasing demand for this
material is likely to give the mill all the work it can do. The timber
used is principally curled and bird's-eye maple, beech, birch, cherry,
ash, and oak. These all grow in abundance in this vicinity, and the
beautifully marked and grained timber of our forests will find fitting
places in the ornamental uses these veneers will be put to.

* * * * *


The constituent parts of leather seem to be but little understood. The
opinions of those engaged in the manufacture of leather differ widely on
this question.

Some think that tannin assimilates itself with the hide and becomes
fixed there by reason of a special affinity. Others regard the hide as
a chemical combination of gelatine and tannin. We know that the hide
contains some matters which are not ineradicable, but only need a slight
washing to detach them.

We deem it advisable, in order to examine the hide properly so-called,
to dispense with those eradicable substances which may be regarded, to
some extent, as not germain to it, and confine our attention to the raw
stock, freed from these imperfections.

It is well known that a large number of vegetable substances are
employed as tanning agents. Our researches have been directed to leather
tanned by means of the most important of these agents.

Many questions present themselves in the course of such an examination.
Among others, that most important one, from a practical point of view,
of the weight the tanning agent gives to the hide, that is to say, the
result in leather of weight given to the raw material. The degree of
tannage is also to be considered; the length of time during which the
tanning agent is to be left with the hide; in short, the influence upon
the leather of the substances used in its production. That is why we
have made the completest possible analysis of different leathers.

Besides ordinary oak bark there are used at present very different
substances, such as laurel, chestnut, hemlock, quebracho and pine bark,
sumac, etc.

Water is an element that exists in all hides, and it is necessary to
take it into consideration in the analysis. It is present in perceptible
quantity even in dry hides. This water cannot be entirely eradicated
without injuring the leather, which will lose in suppleness and
appearance. Water should then be considered as one of the elements of
leather, but it must be understood that if it exceeds certain limits,
say 12 to 14 per cent., it becomes useless and even injurious. Moreover,
if there is any excess over the normal quantity, it becomes deceptive
and dishonest, as in such a case one sells for hides that which is
nothing but water. Supposing that a hide, instead of only 14 per cent.,
contained 18 per cent. of water, it is evident that in buying 100 pounds
of such a hide one would pay for four pounds of water at the rate for
which he purchased the hide.

There are, also, some matters soluble in air, which are formed to a
large extent from fat arising as much from the hide as from tanning
substances. The air dissolves at the same time a certain amount of
organic acid and resinous products which the hide has absorbed. After
treating with air, alcohol is used, which dissolves principally the
coloring matters, tannin which has not become assimilated, bodies
analogous to resin, and some extractive substances.

That which remains after these methods have been pursued ought to be
regarded as the hide proper, that is to say, as the animal tissue
saturated with tannic acid. In this remainder one is able to estimate
with close precision that which belongs to the hide. The hide being an
elementary tissue of unchangeable form, it is easy, in determining the
elementary portion, to find the amount of real hide remaining in the
product. With these elements one can arrive at a solution of some of the
questions we are discussing.

We give below, according to this method, a table showing the composition
of the different leathers exhibited at the Paris Exposition of 1878.
They are the results of careful research, and we have based our work
upon them:

Matter Soluble Fixed
in Air Tannin
| |
| Matter Solu- |
| ble in Alcohol |
| | |
Moisture | | Gelatine |
--+-- --+-- --+-- --+-- --+--
Steer hide, hemlock tanned (heavy leather) 10.95 4.15 19.77 39.1 26.03
Sheepskins, sumac " (Hungarian) 10.8 10.3 12.1 40.3 26.5
Finished calf, pine bark tanned (Hungarian) 11.2 1.7 7.4 41.6 38.1
Steer hide, quebracho tanned (heavy leather) 11.7 1.6 11.2 43.1 32.4
" " chestnut " " " 13.5 0.29 1.99 45.46 38.76
Finished calfskins,
oak tanned (Chateau Renault) 12.4 0.33 3.59 46.74 36.94
Steer hide, laurel tanned (heavy leather) 12.4 1.05 7.95 47.47 31.13
" " oak tanned after three years in
the vats (heavy leather) 11.45 0.37 3.31 49.85 35.02

The following table shows the amount of leather produced by different
tannages of 100 pounds of hides:

Hemlock 255.7
Sumac 248.1
Pine 240.3
Quebracho 232
Chestnut 219.9
Oak 213.9
Laurel 210.6
Oak, lasting three years 206

It is important to mention here the large proportion of resinous matter
hemlock-tanned leather contains. This resin is a very beautiful red
substance, which communicates its peculiar color to the leather.

We should mention here that in these calculations we assume that the
hide is in a perfectly dry state, water being a changeable element which
does not allow one to arrive at a precise result.

These figures show the enormous differences resulting from diverse
methods of tanning. Hemlock, which threatens to flood the markets of
Europe, distinguishes itself above all. The high results attributable to
the large proportion of resin that the hide assimilates, explain in part
the lowness of its price, which renders it so formidable a competitor.
One is also surprised at the large return from sumac-tanned hides when
it is remembered in how short a time the tanning was accomplished,
which, in the present case, only occupied half an hour.

The figures show us that the greatest return is obtained by means of
those tanning substances which are richest in resin. In short, hemlock,
sumac, and pine, which give the greatest return, are those containing
the largest amount of resin. Thus, hemlock bark gives 10.58 per cent.
of it, and sumac leaves 22.7 per cent., besides the tannin which they
contain. We know also that pine bark is very rich in resin. There is,
then, advantage to the tanner, so far as the question of result is
concerned, in using these materials. There is, however, another side to
the question, as the leather thus surcharged with resin is of inferior
quality, generally has a lower commercial value, and is often of a color
but little esteemed.

The percentage of tannin absorbed by the different methods of tannages
appears in the following table:

Hemlock 64.2
Sumac 61.4
Pine 90.8
Quebracho 75.3
Chestnut 85.2
Oak 76.9
Laurel 64.8
Oak, three years in the vat 70.2

The subjoined is a statement of the gelatine and tannin in leather of
different tannages, and also shows the amount of azote or elementary
matter contained in each:

Gelatine. Tannin. Azote.
Hemlock 60.4 39.6 10.88
Sumac 60.4 39.6 11
Pine bark 52.5 47.5 9.56
Quebracho 57.1 42.9 10.4
Chestnut 53.97 46.03 9.79
Oak 55.87 44.13 10.24
Laurel 60.4 39.6 10.94
Oak, 3 years in vat 58.75 41.25 10.65

It is not pretended that these figures are absolutely correct, as they
often vary in certain limits even for similar products. They form,
however, a fair basis of calculation.

As to whether leather is a veritable combination, it seems to us that
this question should be answered affirmatively. In fact, the resistance
of leather properly so-called to neutral dissolvents, argues in favor of
this opinion.

Furthermore, the perceptible proportion of tannin remaining absorbed by
a like amount of hide is another powerful argument. It remains for us to
say here that the differences observable in the quantity of fixed tannin
ought to arise chiefly from the different natures of these tannins,
which have properties differing as do those of one plant from another,
and which really have but one property in common, that of assimilating
themselves with animal tissues and rendering them imputrescible.

In conclusion, these researches determine the functions of resinous
matters which frequently accompany tannin; they show a very simple
method for estimating the results of one's work, as well as the degree
of tannage.--_Muntz & Schoen, in La Halle aux Cuirs_.--_Shoe & Leather

* * * * *


The new High School for Girls at Oxford, built by Mr. T.G. Jackson, for
the Girls' Public Day School Company, Limited, was opened September 23,
1880, when the school was transferred from the temporary premises it had
occupied in St. Giles's. The new building stands in St. Giles's road,
East, to the north of Oxford, on land leased from University College,
and contains accommodation for about 270 pupils in 11 class-rooms, some
of which communicate by sliding doors, besides a residence for the
mistress, an office and waiting-room, a room for the teachers, cloak
rooms, kitchens, and other necessary offices, and a large hall, 50 ft.
by 30 ft., for the general assembling of the school together and for use
on speech-days and other public occasions. The principal front faces St.
Giles's road, and is shown in the accompanying illustration. The great
hall occupies the whole of the upper story of the front building, with
the office and cloak-rooms below it, and the principal entrance in the
center. The class-rooms are all placed in the rear of the building, to
secure quiet, and open on each floor into a corridor surrounding the
main staircase which occupies the center of the building. The walls
are built of Headington stone in rubble work, with dressings of brick,
between which the walling is plastered, and the front is enriched with
cornices and pilasters, and a hood over the entrance door, all of terra
cotta. The hinder part of the building is kept studiously simple and
plain on account of expense. Behind the school is a large playground,
which is provided with an asphalt tennis-court, and is picturesquely
shaded with apple-trees, the survivors of an old orchard. The builders
were Messrs. Symm & Co., of Oxford; and the terra cotta was made by
Messrs. Doulton, of Lambeth. Mr. E. Long was clerk of works.--_Building


* * * * *


No advance in any industry has been more sure than in that of pottery
and chinaware, under the American tariff, or more rapid in the past
four or five years. It took Europe three centuries and the jealous
precautions of royal pottery proprietors to build up the great
protectorates that made their distinctive trade-marks of such value.
The earlier lusters of the Italian faience were guild privacies
or individual secrets, as was almost all the craft of the earlier
art-worker. Royal patronage in England was equivalent to a protective
tariff for Josiah Wedgwood; and everywhere the importance of guarding
the china nurseries has been understood. We have in this country
broadcast and in abundance every type of material needed for the
finest china ware, and for the finer glasses and enamels. The royal
manufactories in Europe were hard put to it sometimes for want of
discovering kaolin beds in their dominions, but the resources of the
United States in these particulars needed something more than to be
brought to light. The manipulation and washing of the clays to render
them immediately useful to the potteries depends entirely upon the
reliance of these establishments upon home materials. The Missouri
potteries have their supplies near home, but these supplies must be put
upon the market for other cities in condition to compete with the clays
of Europe. There are fine kaolin beds in Chester and Delaware counties
in this State; there are clay beds in New Jersey, and the recent needs
of Ohio potteries have uncovered fine clay in that State. This shows
that not only for the manufacture itself, but for the development of
material here, everything depends upon the stimulus that protection

Ohio china and Cincinnati pottery are known all over the country. The
Chelsea Works, near Boston, however, are as distinguished for their
clays and faience, and for lustrous tiles especially (to be used in
household decoration) can rival the rich show that the Doulton ware made
at the Centennial. Other New England potteries are eminent for terra
cotta and granite wares. On Long Island and in New York city there are
porcelain and terra cotta factories of established fame, and the first
porcelain work to succeed in home markets was made at the still busy
factories of Greenpoint. New Jersey potteries take the broad ground of
the useful, first of all, in their manufacture of excellent granite
and cream-colored ware for domestic use, but every year turn out more
beautiful forms and more artistic work. The Etruria Company especially
have succeeded in giving the warm flesh tints to the "Parian" for busts
and statuettes, now to be seen in many shop windows. These goods ought
always to be labeled and known as American--it adds to their value with
any true connoisseur. Some of these establishments, more than others,
have the enterprise to experiment in native clays, for which the whole
trade owes their acknowledgments.

The demand all through the country by skillful decorators for the
pottery forms to work upon, points to still greater extensions in this
business of making our own china, and to the employment and good pay of
more thousands than are now employed in it. A collection of American
china, terra cotta, etc., begun at this time and added to from year to
year, will soon be a most interesting cabinet. Both in the eastern
and western manufactories ingenious workers are rediscovering and
experimenting in pastes and glazes and colors, simply because there is a
large demand for all such, and they can be supplied at prices within the
reach of most buyers. It needs only to point out this flourishing state
of things, through the "let-alone" principle, which protection insures
to this industry, to exhibit the threatened damage of the attempt, under
cover of earthenware duties, to get a little free trade through at this
session.--_Philadelphia Public Ledger_.

* * * * *


_Mr. Warnerke's New Discovery_.--Very happily for our art, we are at the
present moment entering upon a stage of improvement which shows that
photography is advancing with vast strides toward a position that has
the possibility of a marvelous future. In England, especially, great
advances are being made. The recent experiments of our accomplished
colleague, Mr. Warnerke, on gelatine rendered insoluble by light, after
it has been sensitized by silver bromide and developed by pyrogallic
acid, have revealed to us a number of new facts whose valuable results
it is impossible at present to foretell. It seems, however, certain that
we shall thus be able to accomplish very nearly the same effects as
those obtained by bichromatized gelatine, but with the additional
advantage of a much greater rapidity in all the operations. In my own
experiments with the new process of phototypie, I hit upon the plan of
plunging the carbon image, from which all soluble gelatine had been
removed, into a bath of pyrogallic acid, in order to still further
render impermeable the substance forming the printing surface. I also
conceived the idea of afterward saturating this carbon image with a
solution of nitrate of silver, and of subsequently treating it with
pyrogallic acid, in order to still further render impermeable the
substance forming the printing surface. But the process described by Mr.
Warnerke is quite different; by means of it we shall be able to fix
the image taken in the camera, in the same way as we develop carbon
pictures, and afterward to employ them in any manner that may be
desirable. Thus the positive process of carbon printing would be
modified in such a manner that the mixtures containing the permanent
pigment should be sensitized with silver bromide in place of potassium
bichromate. In this way impressions could be very rapidly taken of
positive proofs, and enlargements made, which might be developed in hot
water, just as in the ordinary carbon process, and at least we should
have permanent images. Mr. Warnerke's highly interesting experiments
will no doubt open the way to many valuable applications, and will
realize a marked progress in the art of photography.

_Method for Converting Negatives Directly into Positives_.--Captain
Bing, who is employed in the topographic studios of the Ministry of
War, has devised a process for the direct conversion of negatives into
positives. The idea is not a new one; but several experimenters, and
notably the late Thomas Sutton, have pointed out the means of effecting
this conversion; it has never, however, so far as I know, been
introduced into actual practice, as is now the case. The process which
I am about to describe is now worked in the studios of the Topographic
Service. The negative image is developed in the ordinary way, but the
development is carried much further than if it were to be used as an
ordinary negative. After developing and thoroughly washing, the negative
is placed on a black cloth with the collodion side downward, and exposed
to diffuse light for a time, which varies from a few seconds to two or
three minutes, according to the intensity of the plate. Afterward the
conversion is effected by moistening the plate afresh, and then plunging
it into a bath which is thus composed:

Water 700 cub. cents.
Potassium bichromate 30 grams.
Pure nitric acid 300 cub. cents.

In a few minutes this solution will dissolve all the reduced silver
forming the negative; the negative image is therefore entirely
destroyed; but it has served to impress on the sensitive film beneath
it a positive image, which is still in a latent condition. It must,
therefore, be developed, and to do this, the film is treated with a
solution of--

Water 1,000 grams
Pyrogallic acid 25 "
Citric acid 20 "
Alcohol of 36 deg. 50 cub. cents.

The process is carried on exactly as if developing an ordinary negative;
but the action of the developer is stopped at the precise moment when
the positive has acquired intensity sufficient for the purpose for which
it is to be used. Fixing, varnishing, etc., are then carried on the
usual way. The great advantage of this process consists in the fact of
its rendering positives of much greater delicacy than those that are
taken by contact; and, on the other hand, by means of it we are able to
avoid two distinct operations, when for certain kinds of work we require
positive plates where a negative would be of no service. M. V. Rau,
the assistant who has carried out this process under the direction of
Captain Bing, has described it in a work which has just been published
by M. Gauthier-Villars.

_Experiments of Captain Bing on the Sensitiveness of Coal Oil_.--The
same Captain of Engineers has undertaken a series of very interesting
experiments on the sensitiveness to light of one or two substances to
which bitumen probably owes its sensitiveness, but which, contrary to
what takes place with bitumen, are capable of rendering very beautiful
half tones, both on polished zinc and on albumenized paper. These
sensitive substances are extracted by dissolving marine glue or coal-tar
in benzine. By exposure to light, both marine-glue and coal-tar turn of
a sepia color, and, in a printing-frame, they render a visible image,
which is not the case with bitumen; their solvents are in the order of
their energy; chloroform, ether, benzine, turpentine, petroleum spirit,
and alcohol. Of these solvents, benzine is the best adapted for reducing
the substances to a fluid state, so as to enable them to flow over the
zinc. The images obtained, which are permanent, and which are very much
like those of the Daguerreotype, are fixed by means of the turpentine
and petroleum spirit. They are washed with water, and then carefully
dried. It is possible to obtain prints with half-tones in fatty ink by
means of plates of zinc coated with marine-glue. Some attempts in this
direction were shown to me, which promised very well in this respect. We
are, therefore, in the right road, not only for economically producing
permanent prints on paper, but also for making zinc plates in which the
phototype film of bichromatized gelatine is replaced by a solution of
marine-glue and benzine. The substance known in commerce under the name
of pitch or coal-tar will produce the same results.

_Bitumen Plates_.--A new method of making bitumen plates by contact has
also been introduced into the topographical studios. The plan, or the
original drawing, is placed against a glass plate, coated with a mixture
of bitumen and of marine-glue dissolved in benzine. The marine-glue
gives the bitumen greater pliancy, and prevents it from scaling off when
rubbed, particularly when the plate is retouched with a dry point.
These bitumen plates are so thoroughly opaque to the penetration of the
actinic rays, that the printing-frame may be left for any time in full
sunlight without any fear of fog being produced on the zinc plate from
which the prints are to be taken.

_Method for Topographic Engraving by Commandant de la Noe_.--Before
leaving the interesting studios of which I have been speaking, I ought
to mention a very ingenious application which has been made of a process
called _topogravure_, invented by Commandant de la Noe, who is the
director of this important department. A plate of polished zinc is
coated with bitumen in the usual way, and then exposed directly to the
light under an original drawing, or even under a printed plan. So soon
as the light has sufficiently acted, which may be seen by means of
photometric bands equally transparent at the plate, all the bitumen not
acted upon is dissolved. As it is a positive which has acted as matrix,
the uncovered zinc indicates the design, and the ground remains coated
with insoluble bitumen. The plate is then etched with a weak solution
of nitric acid in water, and the lines of the design are thus slightly
engraved; the surface is then re-coated with another layer of bitumen,
which fills up all the hollows, and is then rubbed down with charcoal.
All the surface is thus cleaned off, and the only bitumen which remains
is that in the lines, which, though not deep, are sufficiently so to
protect the substance from the rubbing of the charcoal. When this
is done we have an engraved plate which can be printed from, like a
lithographic stone; it is gummed and wetted in the usual way, and it
gives prints of much greater delicacy and purity than those taken
directly from the bitumen. The ink is retained by the slight projection
of the surface beyond the line, so that it cannot spread, and a kind of
copper plate engraving is taken by lithographic printing. Besides, in
arriving at this result, there is the advantage of being able to use
directly the original plans and drawings, without being obliged to have
recourse to a plate taken in the camera; the latter is indispensable
for printing in the usual way on bitumen where the impression on the
sensitive film is obtained by means of a negative. It will be seen that
this process is exceedingly ingenious, and not only is its application
very easy, but all its details are essentially practical.

_Succinate of Iron Developer_.--I have received a letter from M.
Borlinetto, in which he states that he has been induced by the analogy
which exists between oxalic and succinic acids to try whether succinate
of iron can be substituted for oxalate of iron as a developer. To prove
this he prepared some proto-succinate of iron from the succinate of
potassium and proto-sulphate of iron, following the method given by Dr.
Eder for the preparation of his ferrous oxalate developer. He carried
out the development in the same way as is done by the oxalate, and
he found that the succinate of iron is even more energetic than the
oxalate. The plate develops regularly with much delicacy, and gives a
peculiar tone. It is necessary to take some fresh solution at every
operation, on account of the proto-succinate of iron being rapidly
converted into per-succinate by contact with the air.

_Method of Making Friable Hydro-Cellulose_.--At the meeting of the
Photographic Society of France, M. Girard showed his method of preparing
cellulose in a state of powder, specially adapted for the production of
pyroxyline for making collodion. Carded cotton-wool is placed in water,
acidulated with 3 per cent. of sulphuric or nitric acid, and is left
there from five to fifteen seconds; it is then taken out and laid on a
linen cloth, which is then wrung so as to extract most of the liquid. In
this condition there still remains from 30 to 40 per cent. of acidulated
water; the cotton is divided into parcels and allowed to dry in the open
air until it feels dry to the touch, though in this condition it still
contains 20 per cent. of water. It is next inclosed in a covered jar,
which is heated to a temperature of 65 deg. C.; the desiccation therefore
takes place in the closed space, and the conversion of the material
is completed in about two or three hours. In this way a very perfect
hydro-cellulose is obtained, and in the best form for producing
excellent pyroxyline.--_Corresp. Photo Mews_.

* * * * *


Two new processes for taking photo tracings in black and color have
recently been published--"Nigrography" and "Anthrakotype"--both of which
represent a real advance in photographic art. By these two processes we
are enabled for the first time to accomplish the rapid production of
positive copies in black of plans and other line drawings. Each of
these new methods has its own sphere of action; both, therefore, should
deserve equally descriptive notices.

For large plans, drawn with lines of even breadth, and showing no
gradated lines, or such as shade into gray, the process styled
"nigrography," invented by Itterbeim, of Vienna, and patented both
in Germany and Austria, will be found best adapted. The base of this
process is a solution of gum, with which large sheets of paper can be
more readily coated than with one of gelatine; it is, therefore, very
suitable for the preparation of tracings of the largest size. The paper
used must be the best drawing paper, thoroughly sized, and on this the
solution, consisting of 25 parts of gum arabic dissolved in 100 parts of
water, to which are added 7 parts of potassium bichromate and I part of
alcohol, is spread with a broad, flat brush. It is then dried, and if
placed in a cool, dark place will keep good for a long time. When used,
it is placed under the plan to be reproduced, and exposed to diffused
light for from five to ten minutes--that is to say, to about 14 deg. of
Vogel's photometer; it is then removed and placed for twenty minutes in
cold water, in order to wash out all the chromated gum which has not
been affected by light. By pressing between two sheets of blotting-paper
the water is then got rid of, and if the exposure has been correctly
judged the drawing will appear as dull lines on a shiny ground. After
the paper has been completely dried it is ready for the black color.
This consists of 5 parts of shellac, 100 parts of alcohol, and 15 parts
of finely-powdered vine-black. A sponge is used to distribute the color
over the paper, and the latter is then laid in a 2 to 3 per cent. bath
of sulphuric acid, where it must remain until the black color can be
easily removed by means of a stiff brush. All the lines of the drawing
will then appear in black on a white ground. These nigrographic tracings
are very fine, but they only appear in complete perfection when the
original drawings are perfectly opaque. Half-tone lines, or the marks
of a red pencil on the original, are not reproduced in the nigrographic

"Anthrakotype" is a kind of dusting-on process. It was invented by Dr.
Sobacchi, in the year 1879, and has been lately more fully described by
Captain Pizzighelli. This process--called also "Photanthrakography"--is
founded on the property of chromated gelatine which has not been acted
on by light to swell up in lukewarm water, and to become tacky, so that
in this condition it can retain powdered color which had been dusted
on it. Wherever, however, the chromated gelatine has been acted on by
light, the surface becomes horny, undergoes no change in warm water, and
loses all sign of tackiness. In this process absolute opacity in
the lines of the original drawing is by no means necessary, for it
reproduces gray, half-tone lines just as well as it does black ones.
Pencil drawings can also be copied, and in this lies one great advantage
of the process over other photo-tracing methods, for, to a certain
extent, even half-tones can be produced.

For the paper for anthrakotype an ordinary strong, well-sized paper must
be selected. This must be coated with a gelatine solution (gelatine 1,
water 30 parts), either by floating the paper on the solution, or by
flowing the solution over the paper. In the latter case the paper is
softened by soaking in water, is then pressed on to a glass plate placed
in a horizontal position, the edges are turned up, and the gelatine
solution is poured into the trough thus formed. To sensitize the
paper, it is dipped for a couple of minutes in a solution of potassium
bichromate (1 in 25), then taken out and dried in the dark.

The paper is now placed beneath the drawing in a copying-frame, and
exposed for several minutes to the light; it is afterward laid in cold
water in order to remove all excess of chromate. A copy of the original
drawing now exists in relief on the swollen gelatine, and, in order to
make this relief sticky, the paper is next dipped for a short time in
water, at a temperature of about 28 deg. or 30 deg. C. It is then laid on a
smooth glass plate, superficially dried by means of blotting-paper, and
lamp-black or soot evenly dusted on over the whole surface by means of
a fine sieve. Although lamp-black is so inexpensive and so easily
obtained, as material it answers the present purpose better than any
other black coloring substance. If now the color be evenly distributed
with a broad brush, the whole surface of the paper will appear to be
thoroughly black. In order to fix the color on the tacky parts of the
gelatine, the paper must next be dried by artificial heat--say, by
placing it near a stove--and this has the advantage of still further
increasing the stickiness of the gelatine in the parts which have not
been acted upon by light, so that the coloring matter adheres even more
firmly to the gelatine. When the paper is thoroughly dry, place it in
water, and let it be played on by a strong jet; this removes all the
color from the parts which have been exposed to the light, and so
develops the picture. By a little gentle friction with a wet sponge, the
development will be materially promoted.

A highly interesting peculiarity of this anthrakotype process is the
fact that a copy, though it may have been incorrectly exposed, can
still be saved. For instance, if the image does not seem to be vigorous
enough, it can be intensified in the simplest way; it is only necessary
to soak the paper afresh, then dust on more color, etc.; in short,
repeat the developing process as above described. In difficult cases the
dusting-on may be repeated five or six times, till at last the desired
intensity is obtained.

By this process, therefore, we get a positive copy of a positive
original in black lines on a white ground. Of course, any other coloring
material in a state of powder may be used instead of soot, and then a
colored drawing on a white ground is obtained. Very pretty variations of
the process may be made by using gold or silver paper, and dusting-on
with different colors; or a picture may be taken in gold bronze powder
on a white ground. In this way colored drawings may be taken on a gold
or a silver ground, and very bright photo tracings will be the result.
Some examples of this kind, that have been sent us from Vienna, are
exceedingly beautiful.

Summing up the respective advantages of the two processes we have above
described, we may say that "nigrography" is best adapted for
copying drawings of a large size; the copies can with difficulty be
distinguished from good autographs, and they do not possess the bad
quality of gelatine papers--the tendency to roll up and crack. Drawings,
however, which have shadow or gradated lines cannot be well produced by
this process; in such cases it is better to adopt "anthrakotype," with
which good results will be obtained.--_Photographic News_.

* * * * *


The researches of M. Gaston Plante on the polarization of voltameters
led to his invention of the secondary cell, composed of two strips of
lead immersed in acidulated water. These cells accumulate, and, so to
speak, store up the electricity passed into them from some outside
generator. When the two electrodes are connected with any source of
electricity the surfaces of the two strips of lead undergo certain
modifications. Thus, the positive pole retains oxygen and becomes
covered with a thin coating of peroxide of lead, while the negative pole
becomes reduced to a clean metallic state.

Now, if the secondary cell is separated from the primary one, we have a
veritable voltaic battery, for the symmetry of the poles is upset, and
one is ready to give up oxygen and the other eager to receive it. When
the poles are connected, an intense electric current is obtained, but
it is of short duration. Such a cell, having half a square meter of
surface, can store up enough electricity to keep a platinum wire 1
millim. in diameter and 8 centims. long, red-hot for ten minutes. M.
Plante has succeeded in increasing the duration of the current by
alternately charging and discharging the cell, so as alternately to
form layers of reduced metal and peroxide of lead on the surface of the
strip. It was seen that this cell would afford an excellent means for
the conveyance of electricity from place to place, the great drawback,
however, being that the storing capacity was not sufficient as compared
with the weight and size of the cell. This difficulty has now been
overcome by M. Faure; the cell as he has improved it is made in the
following manner:

The two strips of lead are separately covered with minium or some other
insoluble oxide of lead, then covered with an envelope of felt, firmly
attached by rivets of lead. These two electrodes are then placed near
each other in water acidulated with sulphuric acid, as in the Plante
cell. The cell is then attached to a battery so as to allow a current
of electricity to pass through it, and the minium is thereby reduced to
metallic spongy lead on the negative pole, and oxidized to peroxide of
lead on the positive pole; when the cell is discharged the reduced lead
becomes oxidized, and the peroxide of lead is reduced until the cell
becomes inert.

The improvement consists, as will be seen, in substituting for strips
of lead masses of spongy lead; for, in the Plante cell, the action is
restricted to the surface, while in Faure's modification the action is
almost unlimited. A battery composed of Faure's cells, and weighing 150
lb., is capable of storing up a quantity of electricity equivalent to
one horsepower during one hour, and calculations based on facts in
thermal chemistry show that this weight could be greatly decreased. A
battery of 24 cells, each weighing 14 lb., will keep a strip of platinum
five-eighths of an inch wide, one-thirty-second of an inch thick, and 9
ft. 10 in. long, red-hot for a long time.

The loss resulting from the charging and discharging of this battery is
not great; for example, if a certain quantity of energy is expended in
charging the cells, 80 per cent. of that energy can be reproduced by the
electricity resulting from the discharge of the cells; moreover, the
battery can be carried from one place to another without injury. A
battery was lately charged in Paris, then taken to Brussels, where it
was used the next day without recharging. The cost is also said to be
very low. A quantity of electricity equal to one horse power during an
hour can be produced, stored, and delivered at any distance within 3
miles of the works for 11/2d. Therefore these batteries may become useful
in producing the electric light in private houses. A 1,250 horsepower
engine, working dynamo-machines giving a continuous current, will in one
hour produce 1,000 horse-power of effective electricity, that is to
say 80 per cent. of the initial force. The cost of the machines,
establishment, and construction will not be more than L40,000, and the
quantity of coal burnt will be 2 lb. per hour per effective horse-power,
which will cost (say) 1/2d. The apparatus necessary to store up the force
of 1,000 horses for twenty-four hours will cost L48,000, and will weigh
1,500 tons. This price and these weights may become much less after a
time. The expense for wages and repairs will be less than 1/4d. per hour
per horse-power, which would be L24 a day, or L8,800 a year; thus the
total cost of one horse-power for an hour stored up at the works is
3/4d. Allowing that the carriage will cost as much as the production and
storing, we have what is stated above, viz., that the total cost within
3 miles of the works is 11/2d. per horse-power per hour. This quantity of
electricity will produce a light, according to the amount of division,
equivalent to from 5 to 30 gas burners, which is much cheaper than
gas.--_Chemical News_.

* * * * *


[Footnote: Read before the State Normal Institute at Winona, Minnesota,
April 28, 1881, by Clarence M. Boutelle, Professor of Mathematics and
Physical Science in the State Normal School.]

Very little, perhaps, which is new can be said regarding the teaching
of physical science by the experimental method. Special schools for
scientific education, with large and costly laboratories, are by no
means few nor poorly attended; scientific books and periodicals are
widely read; scientific lectures are popular. But, while in many schools
of advanced grade, science is taught in a scientific way, in many others
the work is confined to the mere study of books, and in only a few of
our common district schools is it taught at all.

I shall advocate, and I believe with good reason, the use of apparatus
and experiments to supplement the knowledge gained from books in schools
where books are used, the giving of lessons to younger children who do
not use books, and the giving of these lessons to some extent in all
our schools. And the facts which I have gathered together regarding the
teaching of science will be used with all these ends in view.

Physics--using the term in its broadest sense--has been defined as the
science which has for its object the study of the material world, the
phenomena which it presents to us, the laws which govern (or account
for) these phenomena, and the applications which can be made of either
classes of related phenomena, or of laws, to the wants of man. Thus
broadly defined, physics would be one of two great subjects covering the
whole domain of knowledge. The entire world of matter, as distinguished
from the world of mind, would be presented to us in a comprehensive
study of physics.

I shall consider in this discussion only a limited part of this great
subject. Phenomena modified by the action of the vital force, either in
plants or in animals, will be excluded; I shall not, therefore, consider
such subjects as botany or zooelogy. Geology and related branches will
also be omitted by restricting our study to phenomena which take place
in short, definite, measurable periods of time. And lastly, those
subjects in which, as in astronomy, the phenomena take place beyond
the control of student and teacher, and in which their repetition at
pleasure is impossible, will not be considered. Natural philosophy, or
physics, as this term is generally used, and chemistry, will, therefore,
be the subjects which we will consider as sources from which to draw
matter for lessons for the children in our schools.

The child's mind has the receptive side, the sensibility, the most
prominent. His senses are alert. He handles and examines objects about
him. He sees more, and he learns more from the seeing, than he will in
later years unless his perceptive powers are definitely trained and
observation made a habit. His judgment and his will are weak. He reasons
imperfectly. He chooses without appropriate motives. He needs the
building up and development given by educational training. _Nature
points out the method._

Sensibility being the characteristic of his mind, we must appeal to him
through his senses. We must use the concrete; through it we must act
upon his weak will and immature judgment. From his natural curiosity we
must develop attention. His naturally strong perceptive powers must be
made yet stronger; they must be led in proper directions and fixed upon
appropriate objects. He must be led to appreciate the relation between
cause and effects--to associate together related facts--and to state
what he knows in a definite, clear, and forcible manner.

Object lessons, conversational lessons, lessons on animals, lessons
based on pictures and other devices, have been used to meet this demand
of the child's mental make up. Good in many respects, and vastly better
than mere book work, they have faults which I shall point out in
connection with the corresponding advantages of easy lessons in the
elements of science. I shall not quibble over definitions. Object
lessons may, perhaps, properly be said to include lessons such as it
seems to me should be given--lessons drawn from natural philosophy or
chemistry--but I use the term here in the sense in which it is often
used, as meaning lessons based upon some object. A thimble, a knife, a
watch, for instance, each of these being a favorite with a certain class
of object teachers, may be taken.

The objections are:

1. Little new knowledge can be given which is simple and appropriate.
Most children already know the names of such objects as are chosen,
the names of the most prominent parts, the materials of which they are
composed and their uses. Much that is often given should be omitted
altogether if we fairly regard the economy of the child's time and
mental strength. It doesn't pay to teach children that which isn't worth
remembering, and which we don't care to have them remember.

2. Study of the qualities of materials is a prominent part of lessons on
objects. Such study is really the study of physical science, but with
objects such as are usually selected is a very difficult part to give
to young children. Ask the student who has taken a course in chemistry
whether the study of the qualities of metals and their alloys is easy
work. Ask him how much can readily be shown, and how much must be taken
on authority. Have him tell you how much or how little the thing itself
suggests, and how much must he memorized from the mere book statement
and with difficulty. Study of materials is good to a certain extent, but
it is often carried much too far.

Consider a conversational lesson on some animal. Lessons are sometimes
given on cats. As an element in a reading lesson--to arouse interest--to
hold the attention--to secure correct emphasis and inflection--to make
sure of the reading being good: such work is appropriate. But let us see
what the effect upon the pupil is as regards the knowledge he gains
of the cat, and the effect upon his habits of thought and study. The
student gives some statement as to the appearance--the size--or some
act of his cat. It is usually an imperfect statement drawn from the
imperfect memory of an imperfect observation. And the teacher, having
only a _general knowledge_ of the habits of cats, can correct in only
a general way. Thus habits of faulty and incorrect observation and
inaccurate memory are fastened upon the child. It is no less by the
correction of the false than by the presenting of the true, that we
educate properly.

Besides this there is the fact that traits, habits, and peculiarities
of animals are not always manifested when we wish them to be. Suppose
a teacher asks a child to notice the way in which a dog drinks, for
example; the child may have to wait until long after all the associated
facts, the reasons why this thing was to be observed--the lesson as a
whole of which this formed a part--have all grown dim in the memory,
before the chance for the observation occurs.

Pictures are less valuable as educational aids than objects; at best
they are but partially and imperfectly concrete. The study of pictures
tends to cultivate the imagination and taste, but observation and
judgment are but little exercised.

A comparison of the kind of knowledge gained in either of the above ways
with that gained by a study of science as such, will make some of the
advantages of the latter evident. An act of complete knowledge consists
in the identifying of an attribute with a subject. Attributes of
quality--of condition--of relation, may be gained from lessons in which
objects or pictures are used. Attributes of action which are unregulated
by the observer may be learned from the study of animals. But very
little of actions and changes which can be made to take place under
specified conditions, and with uniformity of result, can be learned
until physical science is drawn upon.

And yet consider the importance of such study. Changes around him appeal
most strongly to the child. "Why _does_ this thing _do_ as it _does_?"
is more frequent than "Why _is_ this thing as it _is_?" He sees changes
of place, of form, of size, of composition, taking place; his curiosity
is aroused; and he is ready to study with avidity, and in a systematic
manner, the changes which his teacher may present to him. Consider
the peculiarities belonging to the study of changes of any sort. The
interest is held, for the mind is constantly gaining the new. The
attention cannot be divided--all parts of the change, all phases of the
action, must be known, and to be known must be _observed_; while in
other forms of lessons the attention may be diverted for a moment to
return to the consideration of exactly what was being observed before.
It goes without saying that in one case quick and accurate observation,
a retentive memory, and the association of causes and effects follow,
and that in the other they do not.

I advocate, therefore, the teaching of physical science in our
schools--_in all our schools_. Physical science taught by the
experimental method.

An experiment has been defined as a question put to Nature, a question
asked in _things_ rather than in _words_, and so conditioned that no
uncertain answer can be given. Nature says that all matter gravitates,
not in words, but in the swing of planets around the sun, and in the
leap of the avalanche. And men have devised ingenious machines through
which Nature may tell us the invariable laws of gravitation, and give
some hint as to why it is true.

There are two kinds of experiments, and two corresponding kinds of

I. In original investigation there are the following elements:

1. The careful determination of all the conditions under which the
experiment takes place.

2. The observation of exactly what happens, with a painstaking
elimination of all previous notions as to what ought to happen.

3. The change of conditions, one at a time, with a comparison of the
results obtained with the changes made, in order to determine that each
condition has been given just its appropriate weight in the experiment.

4. The classification and explanation of the result.

5. The extension of the knowledge gained by turning it to investigations
suggested by what has already been learned.

6. The practical application of the knowledge gained.

II. In ordinary experiments for educational purposes the experimenter
follows in a general way in the footsteps of the original investigator.
There are the following elements to be considered:

1. The arrangement of conditions in general imitation of the original
investigator. This arrangement needs only to be general. For example, if
an original investigation were undertaken to determine the composition
of a metallic oxide, the metal and the oxygen would both be carefully
saved to be measured and weighed and fully tested. The ordinary
experiment would be considered successful if oxygen and the metal were
shown to result.

2. The careful consideration of what should happen.

3 The determination that the expected either does or does not happen,
with examination of reasons and elimination of disturbing causes in the
latter case.

4. The accepting as true of the classification and explanation already
given. Theories, explanations, and laws are thus accepted every day by
minds which could never have originated either them or the experiments
from which they were derived.

The method of original investigation, strictly considered, presents
many difficulties. A long course of preliminary training--a thorough
knowledge of what has been done in a given field already--a quick
imagination--a genius for devising forms of apparatus which will enable
him to work well under particular conditions in the most simple and
effective way--the faculty of suspending judgment, and of seeing
what happens, all that happens, and just how it
happens--patience--caution--courage--quick judgment when a completed
experiment presses for an explanation--these are some of the
characteristics which must belong to the original worker.

Were we all capable of doing such work there would be these advantages,
among others, of studying for ourselves:

1. What we find out for ourselves we remember longer and recall more
readily than what we acquire in any other way. This advantage holds true
whether the facts learned are entirely new or only new to us. Almost
every man whose life has been spent in study has a store of facts which
he discovered, and on which he built hopes of future greatness until
he found out later that they were old to the knowledge of the world he
lived in. And these things are among those which will remain longest in
his memory.

2. Associated facts would be learned in studying in this way which would
remain unknown otherwise.

But all the advantages would be associated with disadvantages too. Long
periods of time would have to be given for comparatively small results.
The history of science is full of instances in which years were spent in
the elaboration of some law, or principle, or theory which the school
boy of to-day learns in an hour and recites in a breath. Why does water
rise in a pump? Do all bodies, large and small, fall equally fast? The
principles which answer and explain such questions can be made so clear
and evident to the mind of a pupil that he would almost fancy they must
have been known from the first instead of having waited for the hard,
earnest labor of intellectual giants. And science has gone on, and
for us and for our pupils would still go on, only as accompanied with
numerous mistakes and disappointments.

What method shall we adopt in the teaching of science? It must
differ according to the age and capacity of the pupils. An excellent
modification of the method of original investigation may be arranged as

The children are put in possession of all facts relating to conditions,
the teacher explaining them as much as may be necessary. The experiment
is performed, the pupils being required to observe exactly what takes
place, the experiments selected being of such a nature that any previous
judgment as to what ought to occur is as nearly impossible as may be. We
predict from knowledge, real or supposed, of facts which are associated
in our minds with any new subject under consideration. Children often
know in a general, vague, and indefinite way that which, for the sake of
a full and systematic knowledge, we may desire them to study. What
they know will unconsciously modify their expectations, and their
expectations in turn may modify their observations. We are apt to
believe that happens which we expect will happen. There ought to be no
difficulty, however, in finding simple and appropriate experiments with
which the child is entirely unacquainted, and in which anything beyond
the wildest guess work is, for him, impossible. The principal use which
can be made of this method is in the mere observation of what takes
place. Nothing which the child notices correctly need be rejected,
no matter how far removed from the chief event on the object of the
experiment. Care that the pupil shall see all, and separate the
essential from the accidental, is all that is necessary.

But the original investigator assigns reasons, and with care the
children may be allowed to attempt that. This, however, should not be
carried far; incorrect explanations should be criticised; and the class
should at length be given all the elements of the correct explanation
which they have not determined for themselves. Later, pupils should be
encouraged to name related phenomena, to mention things which they
have seen happen which are due to associated causes, and to suggest
variations for the experiment and tests for its explanation. Good
results may be made to follow this kind of work even with very young
pupils. A child grows in mental strength by using the powers he has, and
mistakes seen to be such are not only steps toward a correct view of the
subject under consideration, but are steps toward that habit of mind
which spontaneously presents correct views at once in study which comes
later in life.

Another method is this: The pupil may know what is expected to happen,
as well as the conditions given, and held responsible for an observation
of what does happen and a comparison of what he really observes with
what he expects to observe. Explanations are usually given a class,
often in books with which they are furnished, instead of being drawn
from them, in whole or in part, by questioning, when physical science is
studied in this way. Indeed, this method is a necessity when text books
are used, unless experiments from some outside source are introduced.

Who shall perform the experiments? With young pupils everywhere, and
in most of our common, and even in many of our graded schools, the
experiments must be performed by the teacher. With young pupils the time
is too limited, and the responsibility and necessary care too great to
permit of any other plan being practical. In many of our schools the
small supply of apparatus renders this necessary even with larger
pupils. Added to the reasons already given is the important one that in
no other way--by no other plan--can the teacher be as readily sure that
his pupils observe and reason fully for themselves. In this normal
school a course in physics, in which the experiments are all performed

Book of the day: