This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
Writer:
Language:
Published:
  • 18/3/1882
Edition:
Buy it on Amazon FREE Audible 30 days

hole was stopped by black soil, but whether from accident or by the animal itself we could not tell.

Some fishes and reptiles are hibernaters. Frogs and toads sleep out the winter at the bottom of ponds or in holes in the ground. Tree toads, if kept in a cage in the winter and provided with soil, will endeavor to cover themselves with it, showing how strong the instinct or habit is. Some fishes are so insensible to heat or cold that when in this condition they can be frozen and carried for a number of days and then be brought back to an active condition. The pond snail passes into a winter sleep as soon as the temperature of the water is below 14 deg. Cent., that is, they will not digest food or grow until the temperature of the water is at least up to 15 deg. Cent. Those who have watched the Harlem River from McComb’s Dam Bridge cannot have failed to notice the curious appearance of the muddy shores of the river and creeks at low tide. If the sun shines brightly, the dismal beach seems to quiver and scintillate in a most beautiful manner, reflecting the light like so many diamonds. If we draw nearer, this shore is seen to be entirely covered in places with little snails, that, left by the tide, are forging through the mud to regain the water, and the sunlight striking on them is reflected by the glass-like secretion with which they are covered, producing the curious effect noticed. This could be seen in the warm months, but now, not a snail of the countless millions can be seen. They have gone down in search of “hard-pan,” there to hibernate until next April. The land snail (_Helix pomatia_) sleeps four months during the year, and does not throw off the calcareous lid that protects it during this time until the day temperature has reached 12 deg. Cent. Prairie dogs feel the effect of temperature as low as this.

In Cuba reptiles hibernate between 7 deg. and 24 deg. Cent., according to the species. In warmer countries, snakes, lizards, frogs, etc., fall into a state called chill coma that precisely resembles winter sleep, but their temperature is far above that at which hibernating animals of the north are still active. The state of hibernation is not the direct result of an extreme of heat or cold, but rather is caused by a departure from the optimum. In the snail its normal temperature is about the same as the water, and being a poor heat producer it is not surprising that when the water grows colder the animal is forced to succumb; but it is a remarkable fact that warm-blooded animals like many of the above-mentioned, whose bodies are maintained by internal processes at a high temperature of 26 deg. to 38 deg., are incapable of resisting the lowering influence of cold. The fall in temperature in some is wonderful; as an example, the high body temperature of warm-blooded animals may be said to oscillate between 36 deg. and 43 deg. Cent. (this includes man). Experiments made with the zizel show that during hibernation this animal’s temperature is only 2 deg. Cent., the lowest known; and a thermometer introduced into the animal indicated the same, showing that warm-blooded animals in hibernating become truly cold blooded animals. If a rabbit’s temperature reaches 15 deg. Cent., it will die. The germs of bryozoa or of the fresh water sponges resist any amount of cold, but the full grown forms die at the first cold turn. Insects are destroyed, but their eggs live, though of the greatest possible delicacy. Salmon eggs have been carried from this State to Australia, and there hatched. In fact, some animals live in the ice, as the glacier flea and several others.

As it is not the direct result of extremes of heat or cold that produces sleep, neither is the awakening from hibernation directly caused by a rise of temperature. In experiments made upon weasels, which are sometimes caught asleep, one came to life in about three hours, during which the temperature of the room remained the same as it had been during the entire hibernation, viz., 10 deg. Cent. In another weasel, during the awakening, the body temperature rose very rapidly–and more so in the second part of the period than in the first. In the first hour and fifty-five minutes of the awakening the body temperature rose 6.6 deg. Cent, and in the following fifty minutes it rose 17 deg. Cent. This remarkable increase took place without any vigorous movements on the part of the weasel. Even its breathing showed no increase in proportion to the rise. These cases show that though, at certain seasons, animals relax as it were and lie dormant, and recover, seemingly at the will of the weather, yet, in point of fact, the rise and fall of temperature has no direct effect upon them. The cause is an internal one, awaiting discovery.–C. F. HOLDER, in _Forest and Stream_.

* * * * *

What is described as the largest steel sailing ship afloat was lately launched at Belfast, Ireland. It registers 2,220 tons, and has been named the Garfield. It will be employed in the Australian and California trade.

* * * * *

THE TIDES.

London _Nature_, in a recent issue, says: From a scientific point of view, the work done by the tides is of unspeakable importance. Whence is this energy derived with which the tides do their work? If the tides are caused by the moon, the energy they possess must also be derived from the moon. This looks plain enough, but unfortunately it is not true. Would it be true to assert that the finger of the rifleman which pulls the trigger supplies the energy with which the rifle bullet is animated? Of course it would not. The energy is derived from the explosion of gunpowder, and the pulling of the trigger is merely the means by which that energy is liberated.

In somewhat similar manner the tidal wave produced by the moon is the means whereby a part of the energy stored in the earth is compelled to expend itself in work. Let me illustrate this by a comparison between the earth rotating on its axis and the fly-wheel of an engine: The fly wheel is a sort of reservoir, into which the engine pours its power at each stroke of the piston. The various machines in the mill merely draw off the power from the store accumulated in the fly-wheel. The earth is like a gigantic fly-wheel detached from the engine, though still connected with the machines in the mill. In that mighty fly-wheel a stupendous quantity of energy is stored up, and a stupendous quantity of energy would be given out before that fly-wheel would come to rest. The earth’s rotation is a reservoir from whence the tides draw the energy they require for doing work. Hence it is that though the tides are caused by the moon, yet whenever they require energy they draw on the supply ready to hand in the rotation of the earth. The earth differs from the fly-wheel of an engine in a very important point. As the energy is withdrawn from the fly-wheel by the machines in the mill, so it is restored thereto by the power of the steam engine, and the fly runs uniformly. But the earth is merely the fly-wheel without the engine. When the work by the tides withdraws energy from the earth, that energy is never restored. It, therefore, follows that the earth’s rotation must be decreasing. This leads to a consequence of the most wonderful importance. It tells us that the speed with which the earth rotates on its axis is diminishing. We can state the result in a manner which has the merits of simplicity and brevity. The tides are increasing the length of the day. At present, no doubt, the effect of the tides in changing the length of the day is very small. A day now is not appreciably longer than a day a hundred years ago. Even in a thousand years the change in the length of the day is only a fraction of a second. But the importance arises from the fact that the change, slow though it is, lies always in one direction. The day is continually increasing. In millions of years the accumulated effect becomes not only appreciable, but even of startling magnitude.

The change in the length of the day must involve a corresponding change in the motion of the moon. If the moon acts on the earth and retards the rotation of the earth, so, conversely, does the earth react upon the moon. The earth is tormented by the moon, so it strives to drive away its persecutor. At present the moon revolves around the earth at a distance of about 240,000 miles. The reaction of the earth tends to increase this distance, and to force the moon to revolve in an orbit which is continually growing larger and larger. As thousands of years roll on, the length of the day increases second by second, and the distance of the moon increases mile by mile. A million years ago the day, probably, contained some minutes less than our present day of twenty-four hours. Our retrospect does not halt here; we at once project our view back to an incredibly remote epoch which was a crisis in the history of our system. It must have been at least 50,000,000 years ago. It may have been very much earlier. This crisis was the interesting occasion when the moon was born. The length of the day was only a very few hours. If we call it three hours we shall not be far from the truth. Purhaps you may think that if we looked back to a still earlier epoch, the day would become still less, and finally disappear altogether. This is, however, not the case. The day can never have been much less than three hours in the present order of things. Everybody knows that the earth is not a sphere, but there is a protuberance at the equator, so that, as our school books tell us, the earth is shaped like an orange. It is well known that this protuberance is due to the rotation of the earth on its axis, by which the equatorial parts bulge out by centrifugal force. The quicker the earth rotates the greater is the protuberance. If, however, the rate of rotation exceeds a certain limit, the equatorial portion of the earth could no longer cling together. The attraction which unites them would be overcome by centrifugal force, and a general break up would occur. It can be shown that the rotation of the earth, when on the point of rupture, corresponds to a length of the day somewhere about the critical value of three hours, which we have already adopted. It is, therefore, impossible for us to suppose a day much shorter than three hours.

Let us leave the earth for a few minutes and examine the past history of the moon. We have seen the moon revolve around the earth in an ever-widening orbit, and consequently the moon must, in ancient times, have been nearer the earth than it is now. No doubt the change is slow. There is not much difference between the orbit of the moon a thousand years ago and the orbit in which the moon is now moving. But when we rise to millions of years, the difference becomes very appreciable. Thirty or forty millions of years ago the moon was much closer to the earth than it is at present; very possibly the moon was then only half its present distance. We must, however, look still earlier, to a certain epoch not less than fifty million of years ago. At that epoch the moon must have been so close to the earth that the two bodies were almost touching. Everybody knows that the moon revolves now around the earth in a period of twenty-seven days. The period depends upon the distance between the earth and the moon. In earlier times the month must have been shorter than our present month. Some millions of years ago the moon completed its journey in a week instead of taking twenty-eight days as at present. Looking back earlier still, we find the month has dwindled down to a day, then down to a few hours, until at that wondrous epoch when the moon was almost touching the earth, the moon spun around the earth once every three hours.

In those ancient times I see our earth to be a noble globe, as it is as present. Yet it is not partly covered with oceans and partly clothed with verdure. The primeval earth seems rather a fiery and half-molten mass, where no organic life can dwell. Instead of the atmosphere which we now have, I see a dense mass of vapors in which perhaps, all the oceans of the earth are suspended as clouds. I see that the sun still rises and sets to give the succession of day and of night, but the day and the night together only amounted to three hours, instead of twenty-four. Almost touching the chaotic mass of the earth is another much smaller and equally chaotic body. Around the earth I see this small body rapidly rotating, the two revolving together, as if they were bound by invisible bands. The smaller body is the moon.

* * * * *

DRILLING GLASS.

The _Revue Industrielle_ gives the following method of drilling holes in glass: First, prepare a saturated solution of gum camphor in oil of turpentine. Then take a lance-shaped drill, heat it to a white heat, and dip it into a bath of mercury, which will render it extremely hard. When sharpened and dipped into the above-named camphor solution, the tool will enter the glass as if the latter were as soft as wood. If care be taken to keep the spot being drilled constantly wet with the solution, the operation will proceed rapidly, and there will rarely be any need of sharpening the tool.

* * * * *

A catalogue, containing brief notices of many important scientific papers heretofore published in the SUPPLEMENT, may be had gratis at this office.

* * * * *

THE SCIENTIFIC AMERICAN SUPPLEMENT.

PUBLISHED WEEKLY.

TERMS OF SUBSCRIPTION, $5 A YEAR.

Sent by mail, postage prepaid, to subscribers in any part of the United States or Canada. Six dollars a year, sent, prepaid, to any foreign country.

All the back numbers of THE SUPPLEMENT, from the commencement, January 1, 1876, can be had. Price, 10 cents each.

All the back volumes of THE SUPPLEMENT can likewise be supplied. Two volumes are issued yearly. Price of each volume, $2.50, stitched in paper, or $3.50, bound in stiff covers.

COMBINED RATES–One copy of SCIENTIFIC AMERICAN and one copy of SCIENTIFIC AMERICAN SUPPLEMENT, one year, postpaid, $7.00.

A liberal discount to booksellers, news agents, and canvassers.

MUNN & CO., PUBLISHERS,

261 BROADWAY, NEW YORK, N. Y.

* * * * *

PATENTS.

In connection with the SCIENTIFIC AMERICAN, Messrs. MUNN & Co. are Solicitors of American and Foreign Patents, have had 35 years’ experience, and now have the largest establishment in the world. Patents are obtained on the best terms.

A special notice is made in the SCIENTIFIC AMERICAN of all Inventions patented through this Agency, with the name and residence of the Patentee. By the immense circulation thus given, public attention is directed to the merits of the new patent, and sales or introduction often easily effected.

Any person who has made a new discovery or invention can ascertain, free of charge, whether a patent can probably be obtained, by writing to MUNN & Co.

We also send free our Hand Book about the Patent Laws, Patents, Caveats. Trade Marks, their costs, and how procured, with hints for procuring advances on inventions. Address

MUNN & CO., 261 BROADWAY, NEW YORK.

Branch Office, cor. F and 7th Sts., Washington, D. C.