This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
Writer:
Language:
Form:
Genre:
Published:
  • 1879
Edition:
Collection:
Tags:
Buy it on Amazon Listen via Audible FREE Audible 30 days

Manchester and the neighbourhood. The great improvements which he introduced in the machine for making weavers’ reeds, led to the formation of the firm of Sharp, Roberts, and Co., of which Mr. Roberts was the acting mechanical partner for many years. Not less important were his improvements in power-looms for weaving fustians, which were extensively adopted. But by far the most famous of his inventions was unquestionably his Self-acting Mule, one of the most elaborate and beautiful pieces of machinery ever contrived. Before its invention, the working of the entire machinery of the cotton-mill, as well as the employment of the piecers, cleaners, and other classes of operatives, depended upon the spinners, who, though receiving the highest rates of pay, were by much the most given to strikes; and they were frequently accustomed to turn out in times when trade was brisk, thereby bringing the whole operations of the manufactories to a standstill, and throwing all the other operatives out of employment. A long-continued strike of this sort took place in 1824, when the idea occurred to the masters that it might be possible to make the spinning-mules run out and in at the proper speed by means of self-acting machinery, and thus render them in some measure independent of the more refractory class of their workmen. It seemed, however, to be so very difficult a problem, that they were by no means sanguine of success in its solution. Some time passed before they could find any mechanic willing so much as to consider the subject. Mr. Ashton of Staley-bridge made every effort with this object, but the answer he got was uniformly the same. The thing was declared to be impracticable and impossible. Mr. Ashton, accompanied by two other leading spinners, called on Sharp, Roberts, and Co., to seek an interview with Mr. Roberts. They introduced the subject to him, but he would scarcely listen to their explanations, cutting them short with the remark that he knew nothing whatever about cotton-spinning. They insisted, nevertheless, on explaining to him what they required, but they went away without being able to obtain from him any promise of assistance in bringing out the required machine.

The strike continued, and the manufacturers again called upon Mr. Roberts, but with no better result. A third time they called and appealed to Mr. Sharp, the capitalist of the firm, who promised to use his best endeavours to induce his mechanical partner to take the matter in hand. But Mr. Roberts, notwithstanding his reticence, had been occupied in carefully pondering the subject since Mr. Ashton’s first interview with him. The very difficulty of the problem to be solved had tempted him boldly to grapple with it, though he would not hold out the slightest expectation to the cotton-spinners of his being able to help them in their emergency until he saw his way perfectly clear. That time had now come; and when Mr. Sharp introduced the subject, he said he had turned the matter over and thought he could construct the required self-acting machinery. It was arranged that he should proceed with it at once, and after a close study of four months he brought out the machine now so extensively known as the self-acting mule. The invention was patented in 1825, and was perfected by subsequent additions, which were also patented.

Like so many other inventions, the idea of the self-acting mule was not new. Thus Mr. William Strutt of Derby, the father of Lord Belper, invented a machine of this sort at an early period; Mr. William Belly, of the New Lanark Mills, invented a second; and various other projectors tried their skill in the same direction; but none of these inventions came into practical use. In such cases it has become generally admitted that the real inventor is not the person who suggests the idea of the invention, but he who first works it out into a practicable process, and so makes it of practical and commercial value. This was accomplished by Mr. Roberts, who, working out the idea after his own independent methods, succeeded in making the first self-acting mule that would really act as such; and he is therefore fairly entitled to be regarded as its inventor.

By means of this beautiful contrivance, spindle-carriages; bearing hundreds of spindles, run themselves out and in by means of automatic machinery, at the proper speed, without a hand touching them; the only labour required being that of a few boys and girls to watch them and mend the broken threads when the carriage recedes from the roller beam, and to stop it when the cop is completely formed, as is indicated by the bell of the counter attached to the working gear. Mr. Baines describes the self-acting mule while at work as “drawing out, twisting, and winding up many thousand threads, with unfailing precision and indefatigable patience and strength–a scene as magical to the eye which is not familiarized with it, as the effects have been marvellous in augmenting the wealth and population of the country.”*
[footnote…
EDWARD BAINES, Esq., M.P., History of the Cotton Manufacture, 212. …]

Mr. Roberts’s great success with the self-acting mule led to his being often appealed to for help in the mechanics of manufacturing. In 1826, the year after his patent was taken out, he was sent for to Mulhouse, in Alsace, to design and arrange the machine establishment of Andre Koechlin and Co.; and in that and the two subsequent years he fairly set the works a-going, instructing the workmen in the manufacture of spinning-machinery, and thus contributing largely to the success of the French cotton manufacture. In 1832 he patented his invention of the Radial Arm for “winding on” in the self-acting mule, now in general use; and in future years he took out sundry patents for roving, slubbing, spinning, and doubling cotton and other fibrous materials; and for weaving, beetling, and mangling fabrics of various sorts.

A considerable branch of business carried on by the firm of Sharp, Roberts, and Co. was the manufacture of iron billiard-tables, which were constructed with almost perfect truth by means of Mr. Roberts’s planing-machine, and became a large article of export. But a much more important and remunerative department was the manufacture of locomotives, which was begun by the firm shortly after the opening of the Liverpool and Manchester Railway had marked this as one of the chief branches of future mechanical engineering. Mr. Roberts adroitly seized the opportunity presented by this new field of invention and enterprise, and devoted himself for a time to the careful study of the locomotive and its powers. As early as the year 1829 we find him presenting to the Manchester Mechanics’ Institute a machine exhibiting the nature of friction upon railroads, in solution of the problem then under discussion in the scientific journals. In the following year he patented an arrangement for communicating power to both driving-wheels of the locomotive, at all times in the exact proportions required when turning to the right or left,–an arrangement which has since been adopted in many road locomotives and agricultural engines. In the same patent will be found embodied his invention of the steam-brake, which was also a favourite idea of George Stephenson, since elaborated by Mr. MacConnell of the London and North-Western Railway. In 1834, Sharp, Roberts, and Co. began the manufacture of locomotives on a large scale; and the compactness of their engines, the excellence of their workmanship, and the numerous original improvements introduced in them, speedily secured for the engines of the Atlas firm a high reputation and a very large demand. Among Mr. Roberts’s improvements may be mentioned his method of manufacturing the crank axle, of welding the rim and tyres of the wheels, and his arrangement and form of the wrought-iron framing and axle-guards. His system of templets and gauges, by means of which every part of an engine or tender corresponded with that of every other engine or tender of the same class, was as great an improvement as Maudslay’s system of uniformity of parts in other descriptions of machinery.

In connection with the subject of railways, we may allude in passing to Mr. Roberts’s invention of the Jacquard punching machine–a self-acting tool of great power, used for punching any required number of holes, of any pitch and to any pattern, with mathematical accuracy, in bridge or boiler plates. The origin of this invention was somewhat similar to that of the self-acting mule. The contractors for the Conway Tubular Bridge while under construction, in 1848, were greatly hampered by combinations amongst the workmen, and they despaired of being able to finish the girders within the time specified in the contract. The punching of the iron plates by hand was a tedious and expensive as well as an inaccurate process; and the work was proceeding so slowly that the contractors found it absolutely necessary to adopt some new method of punching if they were to finish the work in time. In their emergency they appealed to Mr. Roberts, and endeavoured to persuade him to take the matter up. He at length consented to do so, and evolved the machine in question during his evening’s leisure–for the most part while quietly sipping his tea. The machine was produced, the contractors were enabled to proceed with the punching of the plates independent of the refractory men, and the work was executed with a despatch, accuracy, and excellence that would not otherwise have been possible. Only a few years since Mr. Roberts added a useful companion to the Jacquard punching machine, in his combined self-acting machine for shearing iron and punching both webs of angle or T iron simultaneously to any required pitch; though this machine, like others which have proceeded from his fertile brain, is ahead even of this fast-manufacturing age, and has not yet come into general use, but is certain to do so before many years have elapsed.

These inventions were surely enough for one man to have accomplished; but we have not yet done. The mere enumeration of his other inventions would occupy several pages. We shall merely allude to a few of them. One was his Turret Clock, for which he obtained the medal at the Great Exhibition of 1851. Another was his Prize Electro-Magnet of 1845. When this subject was first mentioned to him, he said he did not know anything of the theory or practice of electro-magnetism, but he would try and find out. The result of his trying was that he won the prize for the most powerful electro-magnet: one is placed in the museum at Peel Park, Manchester, and another with the Scottish Society of Arts, Edinburgh. In 1846 he perfected an American invention for making cigars by machinery; enabling a boy, working one of his cigar-engines, to make as many as 5000 in a day. In 1852 he patented improvements in the construction, propelling, and equipment of steamships, which have, we believe, been adopted to a certain extent by the Admiralty; and a few years later, in 1855, we find him presenting the Secretary of War with plans of elongated rifle projectiles to be used in smooth-bore ordnance with a view to utilize the old-pattern gun. His head, like many inventors of the time, being full of the mechanics of war, he went so far as to wait upon Louis Napoleon, and laid before him a plan by which Sebastopol was to be blown down. In short, upon whatever subject he turned his mind, he left the impress of his inventive faculty. If it was imperfect, he improved it; if incapable of improvement, and impracticable, he invented something entirely new, superseding it altogether. But with all his inventive genius, in the exercise of which Mr. Roberts has so largely added to the productive power of the country, we regret to say that he is not gifted with the commercial faculty. He has helped others in their difficulties, but forgotten himself. Many have profited by his inventions, without even acknowledging the obligations which they owed to him. They have used his brains and copied his tools, and the “sucked orange” is all but forgotten. There may have been a want of worldly wisdom on his part, but it is lamentable to think that one of the most prolific and useful inventors of his time should in his old age be left to fight with poverty.

Mr. Whitworth is another of the first-class tool-makers of Manchester who has turned to excellent account his training in the workshops of Maudslay and Clement. He has carried fully out the system of uniformity in Screw Threads which they initiated; and he has still further improved the mechanism of the planing machine, enabling it to work both backwards and forwards by means of a screw and roller motion. His “Jim Crow Machine,” so called from its peculiar motion in reversing itself and working both ways, is an extremely beautiful tool, adapted alike for horizontal, vertical, or angular motions. The minute accuracy of Mr. Whitworth’s machines is not the least of their merits; and nothing will satisfy him short of perfect truth. At the meeting of the Institute of Mechanical Engineers at Glasgow in 1856 he read a paper on the essential importance of possessing a true plane as a standard of reference in mechanical constructions, and he described elaborately the true method of securing it,–namely, by scraping, instead of by the ordinary process of grinding. At the same meeting he exhibited a machine of his invention by which he stated that a difference of the millionth part of an inch in length could at once be detected. He also there urged his favourite idea of uniformity, and proper gradations of size of parts, in all the various branches of the mechanical arts, as a chief means towards economy of production–a principle, as he showed, capable of very extensive application. To show the progress of tools and machinery in his own time, Mr. Whitworth cited the fact that thirty years since the cost of labour for making a surface of cast-iron true–one of the most important operations in mechanics–by chipping and filing by the hand, was 12s. a square foot; whereas it is now done by the planing machine at a cost for labour of less than a penny. Then in machinery, pieces of 74 reed printing-cotton cloth of 29 yards each could not be produced at less cost than 30s. 6d. per piece; whereas the same description is now sold for 3s. 9d. Mr. Whitworth has been among the most effective workers in this field of improvement, his tools taking the first place in point of speed, accuracy, and finish of work, in which respects they challenge competition with the world. Mr. Whitworth has of late years been applying himself with his accustomed ardour to the development of the powers of rifled guns and projectiles,–a branch of mechanical science in which he confessedly holds a foremost place, and in perfecting which he is still occupied.

CHAPTER XV.

JAMES NASMYTH.

“By Hammer and Hand
All Arts doth stand.”
Hammermen’s Motto.

The founder Of the Scotch family of Naesmyth is said to have derived his name from the following circumstance. In the course of the feuds which raged for some time between the Scotch kings and their powerful subjects the Earls of Douglas, a rencontre took place one day on the outskirts of a Border village, when the king’s adherents were worsted. One of them took refuge in the village smithy, where, hastily disguising himself, and donning a spare leathern apron, he pretended to be engaged in assisting the smith with his work, when a party of the Douglas followers rushed in. They glanced at the pretended workman at the anvil, and observed him deliver a blow upon it so unskilfully that the hammer-shaft broke in his hand. On this one of the Douglas men rushed at him, calling out, “Ye’re nae smyth!” The assailed man seized his sword, which lay conveniently at hand, and defended himself so vigorously that he shortly killed his assailant, while the smith brained another with his hammer; and, a party of the king’s men having come to their help, the rest were speedily overpowered. The royal forces then rallied, and their temporary defeat was converted into a victory. The king bestowed a grant of land on his follower “Nae Smyth,” who assumed for his arms a sword between two hammers with broken shafts, and the motto “Non arte sed Marte,” as if to disclaim the art of the Smith, in which he had failed, and to emphasize the superiority of the warrior. Such is said to be the traditional origin of the family of Naesmyth of Posso in Peeblesshire, who continue to bear the same name and arms.

It is remarkable that the inventor of the steam-hammer should have so effectually contradicted the name he bears and reversed the motto of his family; for so far from being “Nae Smyth,” he may not inappropriately be designated the very Vulcan of the nineteenth century. His hammer is a tool of immense power and pliancy, but for which we must have stopped short in many of those gigantic engineering works which are among the marvels of the age we live in. It possesses so much precision and delicacy that it will chip the end of an egg resting in a glass on the anvil without breaking it, while it delivers a blow of ten tons with such a force as to be felt shaking the parish. It is therefore with a high degree of appropriateness that Mr. Nasmyth has discarded the feckless hammer with the broken shaft, and assumed for his emblem his own magnificent steam-hammer, at the same time reversing the family motto, which he has converted into “Non Marte sed Arte.”

James Nasmyth belongs to a family whose genius in art has long been recognised. His father, Alexander Nasmyth of Edinburgh, was a landscape-painter of great eminence, whose works are sometimes confounded with those of his son Patrick, called the English Hobbema, though his own merits are peculiar and distinctive. The elder Nasmyth was also an admirable portrait painter, as his head of Burns–the best ever painted of the poet–bears ample witness. His daughters, the Misses Nasmyth, were highly skilled painters of landscape, and their works are well known and much prized. James, the youngest of the family, inherits the same love of art, though his name is more extensively known as a worker and inventor in iron. He was born at Edinburgh, on the 19th of August, 1808; and his attention was early directed to mechanics by the circumstance of this being one of his father’s hobbies. Besides being an excellent painter, Mr. Nasmyth had a good general knowledge of architecture and civil engineering, and could work at the lathe and handle tools with the dexterity of a mechanic. He employed nearly the whole of his spare time in a little workshop which adjoined his studio, where he encouraged his youngest son to work with him in all sorts of materials. Among his visitors at the studio were Professor Leslie, Patrick Miller of Dalswinton, and other men of distinction. He assisted Mr. Miller in his early experiments with paddle-boats, which eventually led to the invention of the steamboat. It was a great advantage for the boy to be trained by a father who so loved excellence in all its forms, and could minister to his love of mechanics by his own instruction and practice. James used to drink in with pleasure and profit the conversation which passed between his father and his visitors on scientific and mechanical subjects; and as he became older, the resolve grew stronger in him every day that he would be a mechanical engineer, and nothing else. At a proper age, he was sent to the High School, then as now celebrated for the excellence of its instruction, and there he laid the foundations of a sound and liberal education. But he has himself told the simple story of his early life in such graphic terms that we feel we cannot do better than quote his own words: -*
[footnote…
Originally prepared for John Hick, Esq., C.E., of Bolton, and embodied by him in his lectures on “Self Help,” delivered before the Holy Trinity Working Men’s Association of that town, on the 18th and 20th March, 1862; the account having been kindly corrected by Mr. Nasmyth for the present publication.
…]

“I had the good luck,” he says, “to have for a school companion the son of an iron founder. Every spare hour that I could command was devoted to visits to his father’s iron foundry, where I delighted to watch the various processes of moulding, iron-melting, casting, forging, pattern-making, and other smith and metal work; and although I was only about twelve years old at the time, I used to lend a hand, in which hearty zeal did a good deal to make up for want of strength. I look back to the Saturday afternoons spent in the workshops of that small foundry, as an important part of my education. I did not trust to reading about such and such things; I saw and handled them; and all the ideas in connection with them became permanent in my mind. I also obtained there–what was of much value to me in after life– a considerable acquaintance with the nature and characters of workmen. By the time I was fifteen, I could work and turn out really respectable jobs in wood, brass, iron, and steel: indeed, in the working of the latter inestimable material, I had at a very early age (eleven or twelve) acquired considerable proficiency. As that was the pre-lucifer match period, the possession of a steel and tinder box was quite a patent of nobility among boys. So I used to forge old files into ‘steels’ in my father’s little workshop, and harden them and produce such first-rate, neat little articles in that line, that I became quite famous amongst my school companions; and many a task have I had excused me by bribing the monitor, whose grim sense of duty never could withstand the glimpse of a steel.

“My first essay at making a steam engine was when I was fifteen. I then made a real working; steam-engine, 1 3/4 diameter cylinder, and 8 in. stroke, which not only could act, but really did some useful work; for I made it grind the oil colours which my father required for his painting. Steam engine models, now so common, were exceedingly scarce in those days, and very difficult to be had; and as the demand for them arose, I found it both delightful and profitable to make them; as well as sectional models of steam engines, which I introduced for the purpose of exhibiting the movements of all the parts, both exterior and interior. With the results of the sale of such models I was enabled to pay the price of tickets of admission to the lectures on natural philosophy and chemistry delivered in the University of Edinburgh. About the same time (1826) I was so happy as to be employed by Professor Leslie in making models and portions of apparatus required by him for his lectures and philosophical investigations, and I had also the inestimable good fortune to secure his friendship. His admirably clear manner of communicating a knowledge of the fundamental principles of mechanical science rendered my intercourse with him of the utmost importance to myself. A hearty, cheerful, earnest desire to toil in his service, caused him to take pleasure in instructing me by occasional explanations of what might otherwise have remained obscure.

“About the years 1827 and 1828, the subject of steam-carriages for common roads occupied much of the attention of the public. Many tried to solve the problem. I made a working model of an engine which performed so well that some friends determined to give me the means of making one on a larger scale. This I did; and I shall never forget the pleasure and the downright hard work I had in producing, in the autumn of 1828, at an outlay of 60L., a complete steam-carriage, that ran many a mile with eight persons on it. After keeping it in action two months, to the satisfaction of all who were interested in it, my friends allowed me to dispose of it, and I sold it a great bargain, after which the engine was used in driving a small factory. I may mention that in that engine I employed the waste steam to cause an increased draught by its discharge up the chimney. This important use of the waste steam had been introduced by George Stephenson some years before, though entirely unknown to me.

“The earnest desire which I cherished of getting forward in the real business of life induced me to turn my attention to obtaining employment in some of the great engineering establishments of the day, at the head of which, in my fancy as well as in reality, stood that of Henry Maudslay, of London. It was the summit of my ambition to get work in that establishment; but as my father had not the means of paying a premium, I determined to try what I could do towards attaining my object by submitting to Mr. Maudslay actual specimens of my capability as a young workman and draughtsman. To this end I set to work and made a small steam-engine, every part of which was the result of my own handiwork, including the casting and the forging of the several parts. This I turned out in such a style as I should even now be proud of. My sample drawings were, I may say, highly respectable. Armed with such means of obtaining the good opinion of the great Henry Maudslay, on the l9th of May, 1829, I sailed for London in a Leith smack, and after an eight days’ voyage saw the metropolis for the first time. I made bold to call on Mr. Maudslay, and told him my simple tale. He desired me to bring my models for him to look at. I did so, and when he came to me I could see by the expression of his cheerful, well-remembered countenance, that I had attained my object. He then and there appointed me to be his own private workman, to assist him in his little paradise of a workshop, furnished with the models of improved machinery and engineering tools of which he has been the great originator. He left me to arrange as to wages with his chief cashier, Mr. Robert Young, and on the first Saturday evening I accordingly went to the counting-house to enquire of him about my pay. He asked me what would satisfy me. Knowing the value of the situation I had obtained, and having a very modest notion of my worthiness to occupy it, I said, that if he would not consider l0s. a week too much, I thought I could do very well with that. I suppose he concluded that I had some means of my own to live on besides the l0s. a week which I asked. He little knew that I had determined not to cost my father another farthing when I left-home to begin the world on my own account. My proposal was at once acceded to. And well do I remember the pride and delight I felt when I carried to my three shillings a week lodging that night my first wages. Ample they were in my idea; for I knew how little I could live on, and was persuaded that by strict economy I could easily contrive to make the money support me. To help me in this object, I contrived a small cooking apparatus, which I forthwith got made by a tinsmith in Lambeth, at a cost of 6s., and by its aid I managed to keep the eating and drinking part of my private account within 3s. 6d. per week, or 4s. at the outside. I had three meat dinners a week, and generally four rice and milk dinners, all of which were cooked by my little apparatus, which I set in action after breakfast. The oil cost not quite a halfpenny per day. The meat dinners consisted of a stew of from a half to three quarters of a lb. of leg of beef, the meat costing 3 1/2d. per lb., which, with sliced potatoes and a little onion, and as much water as just covered all, with a sprinkle of salt and black pepper, by the time I returned to dinner at half-past six furnished a repast in every respect as good as my appetite. For breakfast I had coffee and a due proportion of quartern loaf. After the first year of my employment under Mr. Maudslay, my wages were raised to 15s. a week, and I then, but not till then, indulged in the luxury of butter to my bread. I am the more particular in all this, to show you that I was a thrifty housekeeper, although only a lodger in a 3s. room. I have the old apparatus by me yet, and I shall have another dinner out of it ere I am a year older, out of regard to days that were full of the real romance of life.

“On the death of Henry Maudslay in 1831, I passed over to the service of his worthy partner, Mr. Joshua Field, and acted as his draughtsman, much to my advantage, until the end of that year, when I returned to Edinburgh, to construct a small stock of engineering tools for the purpose of enabling me to start in business on my own account. This occupied me until the spring of l833, and during the interval I was accustomed to take in jobs to execute in my little workshop in Edinburgh, so as to obtain the means of completing my stock of tools.*
[footnote…
Most of the tools with which he began business in Manchester were made by his own hands in his father’s little workshop at Edinburgh, He was on one occasion ” hard up” for brass with which to make a wheel for his planing machine. There was a row of old-fashioned brass candlesticks standing in bright array on the kitchen mantelpiece which he greatly coveted for the purpose. His father was reluctant to give them up; “for,” said he, “I have had many a crack with Burns when these candlesticks were on the table. But his mother at length yielded; when the candlesticks were at once recast, and made into the wheel of the planing machine, which is still at work in Manchester. …]
In June, 1834, I went to Manchester, and took a flat of an old mill in Dale Street, where I began business. In two years my stock had so increased as to overload the floor of the old building to such an extent that the land lord, Mr. Wrenn, became alarmed, especially as the tenant below me–a glass-cutter–had a visit from the end of a 20-horse engine beam one morning among his cut tumblers. To set their anxiety at rest, I went out that evening to Patricroft and took a look at a rather choice bit of land bounded on one side by the canal, and on the other by the Liverpool and Manchester Railway. By the end of the week I had secured a lease of the site for 999 years; by the end of the month my wood sheds were erected; the ring of the hammer on the smith’s anvil was soon heard all over the place; and the Bridgewater Foundry was fairly under way. There I toiled right heartily until December 31st, 1856, when I retired to enjoy in active leisure the reward of a laborious life, during which, with the blessing of God, I enjoyed much true happiness through the hearty love which I always had for my profession; and I trust I may be allowed to say, without undue vanity, that I have left behind me some useful results of my labours in those inventions with which my name is identified, which have had no small share in the accomplishment of some of the greatest mechanical works of our age.” If Mr. Nasmyth had accomplished nothing more than the invention of his steam-hammer, it would have been enough to found a reputation. Professor Tomlinson describes it as “one of the most perfect of artificial machines and noblest triumphs of mind over matter that modern English engineers have yet developed.”*
[footnote…
Cyclopaedia of Useful Arts, ii. 739. …]
The hand-hammer has always been an important tool, and, in the form of the stone celt, it was perhaps the first invented. When the hammer of iron superseded that of stone, it was found practicable in the hands of a “cunning” workman to execute by its means metal work of great beauty and even delicacy. But since the invention of cast-iron, and the manufacture of wrought-iron in large masses, the art of hammer-working has almost become lost; and great artists, such as Matsys of Antwerp and Rukers of Nuremberg were,* [footnote…
Matsys’ beautiful wrought-iron well cover, still standing in front of the cathedral at Antwerp, and Rukers’s steel or iron chair exhibited at South Kensington in 1862, are examples of the beautiful hammer work turned out by the artisans of the middle ages. The railings of the tombs of Henry VII. and Queen Eleanor in Westminster Abbey, the hinges and iron work of Lincoln Cathedral, of St. George’s Chapel at Windsor, and of some of the Oxford colleges, afford equally striking illustrations of the skill of our English blacksmiths several centuries ago.
…]
no longer think it worth their while to expend time and skill in working on so humble a material as wrought-iron. It is evident from the marks of care and elaborate design which many of these early works exhibit, that the workman’s heart was in his work, and that his object was not merely to get it out of hand, but to execute it in first-rate artistic style.

When the use of iron extended and larger ironwork came to be forged, for cannon, tools, and machinery, the ordinary hand-hammer was found insufficient, and the helve or forge-hammer was invented. This was usually driven by a water-wheel, or by oxen or horses. The tilt-hammer was another form in which it was used, the smaller kinds being worked by the foot. Among Watt’s various inventions, was a tilt-hammer of considerable power, which he at first worked by means of a water-wheel, and afterwards by a steam engine regulated by a fly-wheel. His first hammer of this kind was 120 lbs. in weight; it was raised eight inches before making each blow. Watt afterwards made a tilt-hammer for Mr. Wilkinson of Bradley Forge, of 7 1/2 cwt., and it made 300 blows a minute . Other improvements were made in the hammer from time to time, but no material alteration was made in the power by which it was worked until Mr. Nasmyth took it in hand, and applying to it the force of steam, at once provided the worker in iron with the most formidable of machine-tools. This important invention originated as follows:

In the early part of 1837, the directors of the Great Western Steam-Ship Company sent Mr. Francis Humphries, their engineer, to consult Mr. Nasmyth as to some engineering tools of unusual size and power, which were required for the construction of the engines of the “Great Britain” steamship. They had determined to construct those engines on the vertical trunk-engine principle, in accordance with Mr. Humphries’ designs; and very complete works were erected by them at their Bristol dockyard for the execution of the requisite machinery, the most important of the tools being supplied by Nasmyth and Gaskell. The engines were in hand, when a difficulty arose with respect to the enormous paddle-shaft of the vessel, which was of such a size of forging as had never before been executed. Mr. Humphries applied to the largest engineering firms throughout the country for tenders of the price at which they would execute this part of the work, but to his surprise and dismay he found that not one of the firms he applied to would undertake so large a forging. In this dilemma he wrote to Mr. Nasmyth on the 24th November,1838, informing him of this unlooked-for difficulty. “I find,” said he, “there is not a forge-hammer in England or Scotland powerful enough to forge the paddle-shaft of the engines for the ‘Great Britain!’ What am I to do? Do you think I might dare to use cast-iron?”

This letter immediately set Mr. Nasmyth a-thinking. How was it that existing hammers were incapable of forging a wrought-iron shaft of thirty inches diameter? Simply because of their want of compass, or range and fall, as well as power of blow. A few moments’ rapid thought satisfied him that it was by rigidly adhering to the old traditional form of hand-hammer–of which the tilt, though driven by steam, was but a modification–that the difficulty had arisen. When even the largest hammer was tilted up to its full height, its range was so small, that when a piece of work of considerable size was placed on the anvil, the hammer became “gagged,” and, on such an occasion, where the forging required the most powerful blow, it received next to no blow at all,–the clear space for fall being almost entirely occupied by the work on the anvil.

The obvious remedy was to invent some method, by which a block of iron should be lifted to a sufficient height above the object on which it was desired to strike a blow, and let the block fall down upon the work,–guiding it in its descent by such simple means as should give the required precision in the percussive action of the falling mass. Following out this idea, Mr. Nasmyth at once sketched on paper his steam-hammer, having it clearly before him in his mind’s eye a few minutes after receiving Mr. Humphries’ letter narrating his unlooked-for difficulty. The hammer, as thus sketched, consisted of, first an anvil on which to rest the work; second, a block of iron constituting the hammer or blow-giving part; third, an inverted steam-cylinder to whose piston-rod the block was attached. All that was then required to produce by such means a most effective hammer, was simply to admit steam in the cylinder so as to act on the under side of the piston, and so raise the block attached to the piston-rod, and by a simple contrivance to let the steam escape and so permit the block rapidly to descend by its own gravity upon the work then on the anvil. Such, in a few words, is the rationale of the steam-hammer.

By the same day’s post, Mr. Nasmyth wrote to Mr. Humphries, inclosing a sketch of the invention by which he proposed to forge the “Great Britain” paddle-shaft. Mr. Humphries showed it to Mr. Brunel, the engineer-inchief of the company, to Mr. Guppy, the managing director, and to others interested in the undertaking, by all of whom it was heartily approved. Mr. Nasmyth gave permission to communicate his plans to such forge proprietors as might feel disposed to erect such a hammer to execute the proposed work,–the only condition which he made being, that in the event of his hammer being adopted, he was to be allowed to supply it according to his own design.

The paddle-shaft of the “Great Britain” was, however, never forged. About that time, the substitution of the Screw for the Paddle-wheel as a means of propulsion of steam-vessels was attracting much attention; and the performances of the “Archimedes” were so successful as to induce Mr. Brunel to recommend his Directors to adopt the new power. They yielded to his entreaty. The great engines which Mr. Humphries had designed were accordingly set aside; and he was required to produce fresh designs of engines suited for screw propulsion. The result was fatal to Mr. Humphries. The labour, the anxiety, and perhaps the disappointment, proved too much for him, and a brain-fever carried him off; so that neither his great paddle-shaft nor Mr. Nasmyth’s steam-hammer to forge it was any longer needed.

The hammer was left to bide its time. No forge-master would take it up. The inventor wrote to all the great firms, urging its superiority to every other tool for working malleable iron into all kinds of forge work. Thus he wrote and sent illustrative sketches of his hammer to Accramans and Morgan of Bristol, to the late Benjamin Hick and Rushton and Eckersley of Bolton, to Howard and Ravenhill of Rotherhithe, and other firms; but unhappily bad times for the iron trade had set in; and although all to whom he communicated his design were much struck with its simplicity and obvious advantages, the answer usually given was–“We have not orders enough to keep in work the forge-hammers we already have, and we do not desire at present to add any new ones, however improved.” At that time no patent had been taken out for the invention. Mr. Nasmyth had not yet saved money enough to enable him to do so on his own account; and his partner declined to spend money upon a tool that no engineer would give the firm an order for. No secret was made of the invention, and, excepting to its owner, it did not seem to be worth one farthing.

Such was the unpromising state of affairs, when M. Schneider, of the Creusot Iron Works in France, called at the Patricroft works together with his practical mechanic M. Bourdon, for the purpose of ordering some tools of the firm. Mr. Nasmyth was absent on a journey at the time, but his partner, Mr. Gaskell, as an act of courtesy to the strangers, took the opportunity of showing them all that was new and interesting in regard to mechanism about the works. And among other things, Mr. Gaskell brought out his partner’s sketch or “Scheme book,” which lay in a drawer in the office, and showed them the design of the Steam Hammer, which no English firm would adopt. They were much struck with its simplicity and practical utility; and M. Bourdon took careful note of its arrangements. Mr. Nasmyth on his return was informed of the visit of MM. Schneider and Bourdon, but the circumstance of their having inspected the design of his steam-hammer seems to have been regarded by his partner as too trivial a matter to be repeated to him; and he knew nothing of the circumstance until his visit to France in April, 1840. When passing through the works at Creusot with M. Bourdon, Mr. Nasmyth saw a crank shaft of unusual size, not only forged in the piece, but punched. He immediately asked, “How did you forge that shaft?” M. Bourdon’s answer was, “Why, with your hammer, to be sure!” Great indeed was Nasmyth’s surprise; for he had never yet seen the hammer, except in his own drawing! A little explanation soon cleared all up. M. Bourdon said he had been so much struck with the ingenuity and simplicity of the arrangement, that he had no sooner returned than he set to work, and had a hammer made in general accordance with the design Mr. Gaskell had shown him; and that its performances had answered his every expectation. He then took Mr. Nasmyth to see the steam-hammer; and great was his delight at seeing the child of his brain in full and active work. It was not, according to Mr. Nasmyth’s ideas, quite perfect, and he readily suggested several improvements, conformable with the original design, which M. Bourdon forthwith adopted.

On reaching England, Mr. Nasmyth at once wrote to his partner telling him what he had seen, and urging that the taking out of a patent for the protection of the invention ought no longer to be deferred. But trade was still very much depressed, and as the Patricroft firm needed all their capital to carry on their business, Mr. Gaskell objected to lock any of it up in engineering novelties. Seeing himself on the brink of losing his property in the invention, Mr. Nasmyth applied to his brother-in-law, William Bennett, Esq., who advanced him the requisite money for the purpose–about 280L.,– and the patent was secured in June 1840. The first hammer, of 30 cwt., was made for the Patricroft works, with the consent of the partners; and in the course of a few weeks it was in full work. The precision and beauty of its action–the perfect ease with which it was managed, and the untiring force of its percussive blows–were the admiration of all who saw it; and from that moment the steam-hammer became a recognised power in modern mechanics. The variety or gradation of its blows was such, that it was found practicable to manipulate a hammer of ten tons as easily as if it had only been of ten ounces weight. It was under such complete control that while descending with its greatest momentum, it could be arrested at any point with even greater ease than any instrument used by hand. While capable of forging an Armstrong hundred-pounder, or the sheet-anchor for a ship of the line, it could hammer a nail, or crack a nut without bruising the kernel. When it came into general use, the facilities which it afforded for executing all kinds of forging had the effect of greatly increasing the quantity of work done, at the same time that expense was saved. The cost of making anchors was reduced by at least 50 per cent., while the quality of the forging was improved. Before its invention the manufacture of a shaft of l5 or 20cwt. required the concentrated exertions of a large establishment, and its successful execution was regarded as a great triumph of skill.; whereas forgings of 20 and 30 tons weight are now things of almost every-day occurrence. Its advantages were so obvious, that its adoption soon became general, and in the course of a few years Nasmyth steam-hammers were to be found in every well-appointed workshop both at home and abroad. Many modifications have been made in the tool, by Condie, Morrison, Naylor, Rigby, and others; but Nasmyth’s was the father of them all, and still holds its ground.*
[footnote…
Mr. Nasmyth has lately introduced, with the assistance of Mr. Wilson of the Low Moor Iron Works, a new, exceedingly ingenious, and very simple contrivance for working the hammer. By this application any length of stroke, any amount of blow, and any amount of variation can be given by the operation of a single lever; and by this improvement the machine has attained a rapidity of action and change of motion suitable to the powers of the engine, and the form or consistency of the articles under the hammer.–Mr. FAIRBAIRN’S Report on the Paris Universal Exhibition of 1855, p. 100.
…]

Among the important uses to which this hammer has of late years been applied, is the manufacture of iron plates for covering our ships of war, and the fabrication of the immense wrought-iron ordnance of Armstrong, Whitworth, and Blakely. But for the steam-hammer, indeed, it is doubtful whether such weapons could have been made. It is also used for the re-manufacture of iron in various other forms, to say nothing of the greatly extended use which it has been the direct means of effecting in wrought-iron and steel forgings in every description of machinery, from the largest marine steam-engines to the most nice and delicate parts of textile mechanism. “It is not too much to say,” observes a writer in the Engineer, “that, without Nasmyth’s steam-hammer, we must have stopped short in many of those gigantic engineering works which, but for the decay of all wonder in us, would be the perpetual wonder of this age, and which have enabled our modern engineers to take rank above the gods of all mythologies. There is one use to which the steam-hammer is now becoming extensively applied by some of our manufacturers that deserves especial mention, rather for the prospect which it opens to us than for what has already been actually accomplished. We allude to the manufacture of large articles in DIES. At one manufactory in the country, railway wheels, for example, are being manufactured with enormous economy by this means. The various parts of the wheels are produced in quantity either by rolling or by dies under the hammer; these parts are brought together in their relative positions in a mould, heated to a welding heat, and then by a blow of the steam hammer, furnished with dies, are stamped into a complete and all but finished wheel. It is evident that wherever wrought-iron articles of a manageable size have to be produced in considerable quantities, the same process may be adopted, and the saving effected by the substitution of this for the ordinary forging process will doubtless ere long prove incalculable. For this, as for the many other advantageous uses of the steam-hammer, we are primarily and mainly indebted to Mr. Nasmyth. It is but right, therefore, that we should hold his name in honour. In fact, when we think of the universal service which this machine is rendering us, we feel that some special expression of our indebtedness to him would be a reasonable and grateful service. The benefit which he has conferred upon us is so great as to justly entitle him to stand side by side with the few men who have gained name and fame as great inventive engineers, and to whom we have testified our gratitude–usually, unhappily, when it was too late for them to enjoy it.”

Mr. Nasmyth subsequently applied the principle of the steam-hammer in the pile driver, which he invented in 1845. Until its production, all piles had been driven by means of a small mass of iron falling upon the head of the pile with great velocity from a considerable height, — the raising of the iron mass by means of the “monkey” being an operation that occupied much time and labour, with which the results were very incommensurate. Pile-driving was, in Mr. Nasmyth’s words, conducted on the artillery or cannon-ball principle; the action being excessive and the mass deficient, and adapted rather for destructive than impulsive action. In his new and beautiful machine, he applied the elastic force of steam in raising the ram or driving block, on which, the block being disengaged, its whole weight of three tons descended on the head of the pile, and the process being repeated eighty times in the minute, the pile was sent home with a rapidity that was quite marvellous compared with the old-fashioned system. In forming coffer-dams for the piers and abutments of bridges, quays, and harbours, and in piling the foundations of all kinds of masonry, the steam pile driver was found of invaluable use by the engineer. At the first experiment made with the machine, Mr. Nasmyth drove a 14-inch pile fifteen feet into hard ground at the rate of 65 blows a minute. The driver was first used in forming the great steam dock at Devonport, where the results were very striking; and it was shortly after employed by Robert Stephenson in piling the foundations of the great High Level Bridge at Newcastle, and the Border Bridge at Berwick, as well as in several other of his great works. The saving of time effected by this machine was very remarkable, the ratio being as 1 to 1800; that is, a pile could be driven in four minutes that before required twelve hours. One of the peculiar features of the invention was that of employing the pile itself as the support of the steam-hammer part of the apparatus while it was being driven, so that the pile had the percussive action of the dead weight of the hammer as well as its lively blows to induce it to sink into the ground. The steam-hammer sat as it were on the shoulders of the pile, while it dealt forth its ponderous blows on the pile-head at the rate of 80 a minute, and as the pile sank, the hammer followed it down with never relaxing activity until it was driven home to the required depth. One of the most ingenious contrivances employed in the driver, which was also adopted in the hammer, was the use of steam as a buffer in the upper part of the cylinder, which had the effect of a recoil spring, and greatly enhanced the force of the downward blow.

In 1846, Mr. Nasmyth designed a form of steam-engine after that of his steam-hammer, which has been extensively adopted all over the world for screw-ships of all sizes. The pyramidal form of this engine, its great simplicity and GET-AT-ABILITY of parts, together with the circumstance that all the weighty parts of the engine are kept low, have rendered it a universal favourite. Among the other labour-saving tools invented by Mr. Nasmyth, may be mentioned the well-known planing machine for small work, called “Nasmyth’s Steam Arm,” now used in every large workshop. It was contrived for the purpose of executing a large order for locomotives received from the Great Western Railway, and was found of great use in accelerating the work, especially in planing the links, levers, connecting rods, and smaller kinds of wrought-iron work in those engines. His circular cutter for toothed wheels was another of his handy inventions, which shortly came into general use. In iron-founding also he introduced a valuable practical improvement. The old mode of pouring the molten metal into the moulds was by means of a large ladle with one or two cross handles and levers; but many dreadful accidents occurred through a slip of the hand, and Mr. Nasmyth resolved, if possible, to prevent them. The plan he adopted was to fix a worm-wheel on the side of the ladle, into which a worm was geared, and by this simple contrivance one man was enabled to move the largest ladle on its axis with perfect ease and safety. By this means the work was more promptly performed, and accidents entirely avoided.

Mr. Nasmyth’s skill in invention was backed by great energy and a large fund of common sense–qualities not often found united. These proved of much service to the concern of which he was the head, and indeed constituted the vital force. The firm prospered as it deserved; and they executed orders not only for England, but for most countries in the civilized world. Mr. Nasmyth had the advantage of being trained in a good school–that of Henry Maudslay–where he had not only learnt handicraft under the eye of that great mechanic, but the art of organizing labour, and (what is of great value to an employer) knowledge of the characters of workmen. Yet the Nasmyth firm were not without their troubles as respected the mechanics in their employment, and on one occasion they had to pass through the ordeal of a very formidable strike. The manner in which the inventor of the steam-hammer literally “Scotched” this strike was very characteristic.

A clever young man employed by the firm as a brass founder, being found to have a peculiar capacity for skilled mechanical work, had been advanced to the lathe. The other men objected to his being so employed on the ground that it was against the rules of the trade. “But he is a first-rate workman,” replied the employers, “and we think it right to advance a man according to his conduct and his merits.” “No matter,” said the workmen, “it is against the rules, and if you do not take the man from the lathe, we must turn out.” “Very well; we hold to our right of selecting the best men for the best places, and we will not take the man from the lathe.” The consequence was a general turn out. Pickets were set about the works, and any stray men who went thither to seek employment were waylaid, and if not induced to turn back, were maltreated or annoyed until they were glad to leave. The works were almost at a standstill. This state of things could not be allowed to go on, and the head of the firm bestirred himself accordingly with his usual energy. He went down to Scotland, searched all the best mechanical workshops there, and after a time succeeded in engaging sixty-four good hands. He forbade them coming by driblets, but held them together until there was a full freight; and then they came, with their wives, families, chests of drawers, and eight-day clocks, in a steamboat specially hired for their transport from Greenock to Liverpool. From thence they came by special train to Patricroft, where houses were in readiness for their reception. The arrival of so numerous, well-dressed, and respectable a corps of workmen and their families was an event in the neighbourhood, and could not fail to strike the “pickets” with surprise. Next morning the sixty-four Scotchmen assembled in the yard at Patricroft, and after giving “three cheers,” went quietly to their work. The “picketing” went on for a little while longer, but it was of no use against a body of strong men who stood “shouther to shouther,” as the new hands did. It was even bruited about that there were more trains to follow!” It very soon became clear that the back of the strike was broken. The men returned to their work, and the clever brass founder continued at his turning-lathe, from which he speedily rose to still higher employment.

Notwithstanding the losses and suffering occasioned by strikes, Mr. Nasmyth holds the opinion that they have on the whole produced much more good than evil. They have served to stimulate invention in an extraordinary degree. Some of the most important labour-saving processes now in common use are directly traceable to them. In the case of many of our most potent self-acting tools and machines, manufacturers could not be induced to adopt them until compelled to do so by strikes. This was the ease with the self-acting mule, the wool-combing machine, the planing machine, the slotting machine, Nasmyth’s steam arm, and many others. Thus, even in the mechanical world, there may be “a soul of goodness in things evil.”

Mr. Nasmyth retired from business in December, 1856. He had the moral courage to come out of the groove which he had so laboriously made for himself, and to leave a large and prosperous business, saying, “I have now enough of this world’s goods; let younger men have their chance.” He settled down at his rural retreat in Kent, but not to lead a life of idle ease. Industry had become his habit, and active occupation was necessary to his happiness. He fell back upon the cultivation of those artistic tastes which are the heritage of his family. When a boy at the High School of Edinburgh, he was so skilful in making pen and ink illustrations on the margins of the classics, that he thus often purchased from his monitors exemption from the lessons of the day. Nor had he ceased to cultivate the art during his residence at Patricroft, but was accustomed to fall back upon it for relaxation and enjoyment amid the pursuits of trade. That he possesses remarkable fertility of imagination, and great skill in architectural and landscape drawing, as well as in the much more difficult art of delineating the human figure, will be obvious to any one who has seen his works,–more particularly his “City of St. Ann’s,” “The Fairies,” and “Everybody for ever!” which last was exhibited in Pall Mail, among the recent collection of works of Art by amateurs and others, for relief of the Lancashire distress. He has also brought his common sense to bear on such unlikely subject’s as the origin of the cuneiform character. The possession of a brick from Babylon set him a thinking. How had it been manufactured? Its under side was clearly marked by the sedges of the Euphrates upon which it had been laid to dry and bake in the sun. But how about those curious cuneiform characters? How had writing assumed so remarkable a form? His surmise was this: that the brickmakers, in telling their tale of bricks, used the triangular corner of another brick, and by pressing it down upon the soft clay, left behind it the triangular mark which the cuneiform character exhibits. Such marks repeated, and placed in different relations to each other, would readily represent any number. From the use of the corner of a brick in writing, the transition was easy to a pointed stick with a triangular end, by the use of which all the cuneiform characters can readily be produced upon the soft clay. This curious question formed the subject of an interesting paper read by Mr. Nasmyth before the British Association at Cheltenham.

But the most engrossing of Mr. Nasmyth’s later pursuits has been the science of astronomy, in which, by bringing a fresh, original mind to the observation of celestial phenomena, he has succeeded in making some of the most remarkable discoveries of our time. Astronomy was one of his favourite pursuits at Patricroft, and on his retirement became his serious study. By repeated observations with a powerful reflecting telescope of his own construction, he succeeded in making a very careful and minute painting of the craters, cracks, mountains, and valleys in the moon’s surface, for which a Council Medal was awarded him at the Great Exhibition of 1851. But the most striking discovery which he has made by means of big telescope–the result of patient, continuous, and energetic observation–has been that of the nature of the sun’s surface, and the character of the extraordinary light-giving bodies, apparently possessed of voluntary motion, moving across it, sometimes forming spots or hollows of more than a hundred thousand miles in diameter.

The results of these observations were of so novel a character that astronomers for some time hesitated to receive them as facts.* [footnote…
See Memoirs of the Literary and Philosophical Society of Manchester, 3rd series, vol.1. 407.
…]
Yet so eminent an astronomer as Sir John Herschel does not hesitate now to describe them as “a most wonderful discovery.” “According to Mr. Nasmyth’s observations,” says he, “made with a very fine telescope of his own making, the bright surface of the sun consists of separate, insulated, individual objects or things, all nearly or exactly of one certain definite size and shape, which is more like that of a willow leaf, as he describes them, than anything else. These leaves or scales are not arranged in any order (as those on a butterfly’s wing are), but lie crossing one another in all directions, like what are called spills in the game of spillikins; except at the borders of a spot, where they point for the most part inwards towards the middle of the spot,* [footnote…
Sir John Herschel adds, “Spots of not very irregular, and what may be called compact form, covering an area of between seven and eight hundred millions of square miles, are by no means uncommon. One spot which I measured in the year 1837 occupied no less than three thousand seven hundred and eighty millions, taking in all the irregularities of its form; and the black space or nucleus in the middle of one very nearly round one would have allowed the earth to drop through it, leaving a thousand clear miles on either side; and many instances of much larger spots than these are on record.” …]
presenting much the sort of appearance that the small leaves of some water-plants or sea-weeds do at the edge of a deep hole of clear water. The exceedingly definite shape of these objects, their exact similarity one to another, and the way in which they lie across and athwart each other (except where they form a sort of bridge across a spot, in which case they seem to affect a common direction, that, namely, of the bridge itself),–all these characters seem quite repugnant to the notion of their being of a vaporous, a cloudy, or a fluid nature. Nothing remains but to consider them as separate and independent sheets, flakes, or scales, having some sort of solidity. And these flakes, be they what they may, and whatever may be said about the dashing of meteoric stones into the sun’s atmosphere, &c., are evidently THE IMMEDIATE SOURCES OF THE SOLAR LIGHT AND HEAT, by whatever mechanism or whatever processes they may be enabled to develope and, as it were, elaborate these elements from the bosom of the non-luminous fluid in which they appear to float. Looked at in this point of view, we cannot refuse to regard them as organisms of some peculiar and amazing kind; and though it would be too daring to speak of such organization as partaking of the nature of life, yet we do know that vital action is competent to develop heat and light, as well as electricity. These wonderful objects have been seen by others as well as Mr. Nasmyth, so that them is no room to doubt of their reality.”*
[footnote…
SIR JOHN HERSCHEL in Good Words for April, 1863. …]

Such is the marvellous discovery made by the inventor of the steam-hammer, as described by the most distinguished astronomer of the age. A writer in the Edinburgh Review, referring to the subject in a recent number, says it shows him “to possess an intellect as profound as it is expert.” Doubtless his training as a mechanic, his habits of close observation and his ready inventiveness, which conferred so much power on him as an engineer, proved of equal advantage to him when labouring in the domain of physical science. Bringing a fresh mind, of keen perception, to his new studies, and uninfluenced by preconceived opinions, he saw them in new and original lights; and hence the extraordinary discovery above described by Sir John Herschel.

Some two hundred years since, a member of the Nasmyth family, Jean Nasmyth of Hamilton, was burnt for a witch–one of the last martyrs to ignorance and superstition in Scotland–because she read her Bible with two pairs of spectacles. Had Mr. Nasmyth himself lived then, he might, with his two telescopes of his own making, which bring the sun and moon into his chamber for him to examine and paint, have been taken for a sorcerer. But fortunately for him, and still more so for us, Mr. Nasmyth stands before the public of this age as not only one of its ablest mechanics, but as one of the most accomplished and original of scientific observers.

CHAPTER XVI.

WILLIAM FAIRBAIRN.

“In science there is work for all hands, more or less skilled; and he is usually the most fit to occupy the higher posts who has risen from the ranks, and has experimentally acquainted himself with the nature of the work to be done in each and every, even the humblest department.” J. D. Forbes.

The development of the mechanical industry of England has been so rapid, especially as regards the wonders achieved by the machine-tools above referred to, that it may almost be said to have been accomplished within the life of the present generation. “When I first entered this city, said Mr.Fairbairn, in his inaugural address as President of the British Association at Manchester in 1861, “the whole of the machinery was executed by hand. There were neither planing, slotting, nor shaping machines; and, with the exception of very imperfect lathes and a few drills, the preparatory operations of construction were effected entirely by the hands of the workmen. Now, everything is done by machine-tools with a degree of accuracy which the unaided hand could never accomplish. The automaton or self-acting machine-tool has within itself an almost creative power; in fact, so great are its powers of adaptation, that there is no operation of the human hand that it does not imitate.” In a letter to the author, Mr. Fairbairn says, “The great pioneers of machine-tool-making were Maudslay, Murray of Leeds, Clement and Fox of Derby, who were ably followed by Nasmyth, Roberts, and Whitworth, of Manchester, and Sir Peter Fairbairn of Leeds; and Mr. Fairbairn might well have added, by himself,–for he has been one of the most influential and successful of mechanical engineers.

William Fairbairn was born at Kelso on the 19th of February, 1787. His parents occupied a humble but respectable position in life. His father, Andrew Fairbairn, was the son of a gardener in the employment of Mr. Baillie of Mellerston, and lived at Smailholm, a village lying a few miles west of Kelso. Tracing the Fairbairns still further back, we find several of them occupying the station of “portioners,” or small lairds, at Earlston on the Tweed, where the family had been settled since the days of the Solemn League and Covenant. By his mother’s side, the subject of our memoir is supposed to be descended from the ancient Border family of Douglas.

While Andrew Fairbairn (William’s father) lived at Smailholm, Walter Scott was living with his grandmother in Smailholm or Sandyknowe Tower, whither he had been sent from Edinburgh in the hope that change of air would help the cure of his diseased hip-joint; and Andrew, being nine years his senior, and a strong youth for his age, was accustomed to carry the little patient about in his arms, until he was able to walk by himself. At a later period, when Miss Scott, Walter’s aunt, removed from Smailholm to Kelso, the intercourse between the families was renewed. Scott was then an Edinburgh advocate, engaged in collecting materials for his Minstrelsy of the Scottish Border, or, as his aunt described his pursuit, “running after the auld wives of the country gatherin’ havers.” He used frequently to read over by the fireside in the evening the results of his curious industry, which, however, were not very greatly appreciated by his nearest relatives; and they did not scruple to declare that for the “Advocate” to go about collecting “ballants” was mere waste of time as well as money.

William Fairbairn’s first schoolmaster was a decrepit old man who went by the name of “Bowed Johnnie Ker,”–a Cameronian, with a nasal twang, which his pupils learnt much more readily than they did his lessons in reading and arithmetic, notwithstanding a liberal use of “the tawse.” Yet Johnnie had a taste for music, and taught his pupils to SING their reading lessons, which was reckoned quite a novelty in education. After a short time our scholar was transferred to the parish-school of the town, kept by a Mr. White, where he was placed under the charge of a rather severe helper, who, instead of the tawse, administered discipline by means of his knuckles, hard as horn, which he applied with a peculiar jerk to the crania of his pupils. At this school Willie Fairbairn lost the greater part of the singing accomplishments which he had acquired under “Bowed Johnnie,” but he learnt in lieu of them to read from Scott and Barrow’s collections of prose and poetry, while he obtained some knowledge of arithmetic, in which he proceeded as far as practice and the rule of three. This constituted his whole stock of school-learning up to his tenth year. Out of school-hours he learnt to climb the ruined walls of the old abbey of the town, and there was scarcely an arch, or tower, or cranny of it with which he did not become familiar.

When in his twelfth year, his father, who had been brought up to farm-work, and possessed considerable practical knowledge of agriculture, was offered the charge of a farm at Moy in Ross-shire, belonging to Lord Seaforth of Brahan Castle. The farm was of about 300 acres, situated on the banks of the river Conan, some five miles from the town of Dingwall. The family travelled thither in a covered cart, a distance of 200 miles, through a very wild and hilly country, arriving at their destination at the end of October, 1799. The farm, when reached, was found overgrown with whins and brushwood, and covered in many places with great stones and rocks; it was, in short, as nearly in a state of nature as it was possible to be. The house intended for the farmer’s reception was not finished, and Andrew Fairbairn, with his wife and five children, had to take temporary refuge in a miserable hovel, very unlike the comfortable house which they had quitted at Kelso. By next spring, however, the new house was ready; and Andrew Fairbairn set vigorously to work at the reclamation of the land. After about two years’ labours it exhibited an altogether different appearance, and in place of whins and stones there were to be seen heavy crops of barley and turnips. The barren years of 1800 and 1801, however, pressed very hardly on Andrew Fairbairn as on every other farmer of arable land. About that time, Andrew’s brother Peter, who acted as secretary to Lord Seaforth, and through whose influence the former had obtained the farm, left Brahan Castle for the West Indies with his Lordship, who–notwithstanding his being both deaf and dumb — had been appointed to the Governorship of Barbadoes; and in consequence of various difficulties which occurred shortly after his leaving, Andrew Fairbairn found it necessary to give up his holding, whereupon he engaged as steward to Mackenzie of Allengrange, with whom he remained for two years.

While the family lived at Moy, none of the boys were put to school. They could not be spared from the farm and the household. Those of them that could not work afield were wanted to help to nurse the younger children at home. But Andrew Fairbairn possessed a great treasure in his wife, who was a woman of much energy of character, setting before her children an example of patient industry, thrift, discreetness, and piety, which could not fail to exercise a powerful influence upon them in after-life; and this, of itself, was an education which probably far more than compensated for the boys’ loss of school-culture during their life at Moy. Mrs. Fairbairn span and made all the children’s clothes, as well as the blankets and sheeting; and, while in the Highlands, she not only made her own and her daughters’ dresses, and her sons’ jackets and trowsers, but her husband’s coats and waistcoats; besides helping her neighbours to cut out their clothing for family wear.

One of William’s duties at home was to nurse his younger brother Peter, then a delicate child under two years old; and to relieve himself of the labour of carrying him about, he began the construction of a little waggon in which to wheel him. This was, however, a work of some difficulty, as all the tools he possessed were only a knife, a gimlet, and an old saw. With these implements, a piece of thin board, and a few nails, he nevertheless contrived to make a tolerably serviceable waggon-body. His chief difficulty consisted in making the wheels, which he contrived to surmount by cutting sections from the stem of a small alder-tree, and with a red-hot poker he bored the requisite holes in their centres to receive the axle. The waggon was then mounted on its four wheels, and to the great joy of its maker was found to answer its purpose admirably. In it he wheeled his little brother–afterwards well known as Sir Peter Fairbairn, mayor of Leeds — in various directions about the farm, and sometimes to a considerable distance from it; and the vehicle was regarded on the whole as a decided success. His father encouraged him in his little feats of construction of a similar kind, and he proceeded to make and rig miniature boats and ships, and then miniature wind and water mills, in which last art he acquired such expertness that he had sometimes five or six mills going at a time. The machinery was all made with a knife, the water-spouts being formed by the bark of a tree, and the millstones represented by round discs of the same material. Such were the first constructive efforts of the future millwright and engineer.

When the family removed to Allengrange in 1801, the boys were sent to school at Munlachy, about a mile and a half distant from the farm. The school was attended by about forty barefooted boys in tartan kilt’s, and about twenty girls, all of the poorer class. The schoolmaster was one Donald Frazer, a good teacher, but a severe disciplinarian. Under him, William made some progress in reading, writing, and arithmetic; and though he himself has often lamented the meagreness of his school instruction, it is clear, from what he has since been enabled to accomplish, that these early lessons were enough at all events to set him fairly on the road of self-culture, and proved the fruitful seed of much valuable intellectual labour, as well as of many excellent practical books.

After two years’ trial of his new situation, which was by no means satisfactory, Andrew Fairbairn determined again to remove southward with his family; and, selling off everything, they set sail from Cromarty for Leith in June, 1803. Having seen his wife and children temporarily settled at Kelso, he looked out for a situation, and shortly after proceeded to undertake the management of Sir William Ingleby’s farm at Ripley in Yorkshire. Meanwhile William was placed for three months under the charge of his uncle William, the parish schoolmaster of Galashiels, for the purpose of receiving instruction in book-keeping and land-surveying, from which he derived considerable benefit. He could not, however, remain longer at school; for being of the age of fourteen, it was thought necessary that he should be set to work without further delay. His first employment was on the fine new bridge at Kelso, then in course of construction after the designs of Mr. Rennie; but in helping one day to carry a handbarrow-load of stone, his strength proving insufficient, he gave way under it, and the stones fell upon him, one of them inflicting a serious wound on his leg, which kept him a cripple for months. In the mean time his father, being dissatisfied with his prospects at Ripley, accepted the appointment of manager of the Percy Main Colliery Company’s farm in the neighbourhood of Newcastle-on-Tyne, whither he proceeded with his family towards the end of 1803, William joining them in the following February, when the wound in his leg had sufficiently healed to enable him to travel.

Percy Main is situated within two miles of North Shields, and is one of the largest collieries in that district. William was immediately set to work at the colliery, his first employment being to lead coals from behind the screen to the pitmen’s houses. His Scotch accent, and perhaps his awkwardness, exposed him to much annoyance from the “pit lads,” who were a very rough and profligate set; and as boxing was a favourite pastime among them, our youth had to fight his way to their respect, passing through a campaign of no less than seventeen pitched battles. He was several times on the point of abandoning the work altogether, rather than undergo the buffetings and insults to which he was almost a daily martyr, when a protracted contest with one of the noted boxers of the colliery, in which he proved the victor, at length relieved him from further persecution.

In the following year, at the age of sixteen, he was articled as an engineer for five years to the owners of Percy Main, and was placed under the charge of Mr. Robinson, the engine-wright of the colliery. His wages as apprentice were 8s. a week; but by working over-hours, making wooden wedges used in pit-work, and blocking out segments of solid oak required for walling the sides of the mine, he considerably increased his earnings, which enabled him to add to the gross income of the family, who were still struggling with the difficulties of small means and increasing expenses. When not engaged upon over-work in the evenings, he occupied himself in self-education. He drew up a scheme of daily study with this object, to which he endeavoured to adhere as closely as possible,– devoting the evenings of Mondays to mensuration and arithmetic; Tuesdays to history and poetry; Wednesdays to recreation, novels, and romances; Thursdays to algebra and mathematics; Fridays to Euclid and trigonometry; Saturdays to recreation; and Sundays to church, Milton, and recreation. He was enabled to extend the range of his reading by the help of the North Shields Subscription Library, to which his father entered him a subscriber. Portions of his spare time were also occasionally devoted to mechanical construction, in which he cultivated the useful art of handling tools. One of his first attempts was the contrivance of a piece of machinery worked by a weight and a pendulum, that should at the same time serve for a timepiece and an orrery; but his want of means, as well as of time, prevented him prosecuting this contrivance to completion. He was more successful with the construction of a fiddle, on which he was ambitious to become a performer. It must have been a tolerable instrument, for a professional player offered him 20s. for it. But though he succeeded in making a fiddle, and for some time persevered in the attempt to play upon it, he did not succeed in producing any satisfactory melody, and at length gave up the attempt, convinced that nature had not intended him for a musician.* [footnote…
Long after, when married and settled at Manchester, the fiddle, which had been carefully preserved, was taken down from the shelf for the amusement of the children; but though they were well enough pleased with it, the instrument was never brought from its place without creating alarm in the mind of their mother lest anybody should hear it. At length a dancing-master, who was giving lessons in the neighbourhood, borrowed the fiddle, and, to the great relief of the family, it was never returned. Many years later Mr.Fairbairn was present at the starting of a cotton mill at Wesserling in Alsace belonging to Messrs. Gros, Deval, and Co., for which his Manchester firm had provided the mill-work and water-wheel (the first erected in France on the suspension principle, when the event was followed by an entertainment. During dinner Mr. Fairbairn had been explaining to M. Gros, who spoke a little English, the nature of home-brewed beer, which he much admired, having tasted it when in England. The dinner was followed by music, in the performance of which the host himself took part; and on Mr. Fairbairn’s admiring his execution on the violin, M. Gros asked him if he played. “A little,” was the almost unconscious reply. “Then you must have the goodness to play some,” and the instrument was in a moment placed in his hands, amidst urgent requests from all sides that he should play. There was no alternative; so he proceeded to perform one of his best tunes–“The Keel Row.” The company listened with amazement, until the performer’s career was suddenly cut short by the host exclaiming at the top of his voice, “Stop, stop, Monsieur, by gar that be HOME-BREWED MUSIC!” …]

In due course of time our young engineer was removed from the workshop, and appointed to take charge of the pumps of the mine and the steam-engine by which they were kept in work. This employment was more to his taste, gave him better “insight,” and afforded him greater opportunities for improvement. The work was, however, very trying, and at times severe, especially in winter, the engineer being liable to be drenched with water every time that he descended the shaft to regulate the working of the pumps; but, thanks to a stout constitution, he bore through these exposures without injury, though others sank under them. At this period he had the advantage of occasional days of leisure, to which he was entitled by reason of his nightwork; and during such leisure he usually applied himself to reading and study.

It was about this time that William Fairbairn made the acquaintance of George Stephenson, while the latter was employed in working the ballast-engine at Willington Quay. He greatly admired George as a workman, and was accustomed in the summer evenings to go over to the Quay occasionally and take charge of George’s engine, to enable him to earn a few shillings extra by heaving ballast out of the collier vessels. Stephenson’s zeal in the pursuit of mechanical knowledge probably was not without its influence in stimulating William Fairbairn himself to carry on so diligently the work of self-culture. But little could the latter have dreamt, while serving his apprenticeship at Percy Main, that his friend George Stephenson, the brakesman, should yet be recognised as among the greatest engineers of his age, and that he himself should have the opportunity, in his capacity of President of the Institute of Mechanical Engineers at Newcastle, of making public acknowledgment of the opportunities for education which he had enjoyed in that neighbourhood in his early years.*
[footnote…
“Although not a native of Newcastle,” he then said, “he owed almost everything to Newcastle. He got the rudiments of his education there, such as it was; and that was (something like that of his revered predecessor George Stephenson) at a colliery. He was brought up as an engineer at the Percy Main Colliery. He was there seven years; and if it had not been for the opportunities he then enjoyed, together with the use of the library at North Shields, he believed he would not have been there to address them. Being self-taught, but with some little ambition, and a determination to improve himself, he was now enabled to stand before them with some pretensions to mechanical knowledge, and the persuasion that he had been a useful contributor to practical science and objects connected with mechanical engineering.”–Meeting of the Institute of Mechanical Engineers at Newcastle-on-Tyne, 1858.
…]

Having finished his five years’ apprenticeship at Percy Main, by which time he had reached his twenty-first year, William Fairbairn shortly after determined to go forth into the world in search of experience. At Newcastle he found employment as a millwright for a few weeks, during which he worked at the erection of a sawmill in the Close. From thence he went to Bedlington at an advanced wage. He remained there for six months, during which he was so fortunate as to make the acquaintance of Miss Mar, who five years after, when his wanderings had ceased, became his wife. On the completion of the job on which he had been employed, our engineer prepared to make another change. Work was difficult to be had in the North, and, joined by a comrade, he resolved to try his fortune in London. Adopting the cheapest route, he took passage by a Shields collier, in which he sailed for the Thames on the 11th of December, 1811. It was then war-time, and the vessel was very short-handed, the crew consisting only of three old men and three boys, with the skipper and mate; so that the vessel was no sooner fairly at sea than both the passenger youths had to lend a hand in working her, and this continued for the greater part of the voyage. The weather was very rough, and in consequence of the captain’s anxiety to avoid privateers he hugged the shore too close, and when navigating the inside passage of the Swin, between Yarmouth and the Nore, the vessel very narrowly escaped shipwreck. After beating about along shore, the captain half drunk the greater part of the time, the vessel at last reached the Thames with loss of spars and an anchor, after a tedious voyage of fourteen days.

On arriving off Blackwall the captain went ashore ostensibly in search of the Coal Exchange, taking our young engineer with him. The former was still under the influence of drink; and though he failed to reach the Exchange that night, he succeeded in reaching a public house in Wapping, beyond which he could not be got. At ten o’clock the two started on their return to the ship; but the captain took the opportunity of the darkness to separate from his companion, and did not reach the ship until next morning. It afterwards came out that he had been taken up and lodged in the watch-house. The youth, left alone in the streets of the strange city, felt himself in an awkward dilemma. He asked the next watchman he met to recommend him to a lodging, on which the man took him to a house in New Gravel Lane, where he succeeded in finding accommodation. What was his horror next morning to learn that a whole family–the Williamsons–had been murdered in the very next house during the night! Making the best of his way back to the ship, he found that his comrade, who had suffered dreadfully from sea-sickness during the voyage, had nearly recovered, and was able to accompany him into the City in search of work. They had between them a sum of only about eight pounds, so that it was necessary for them to take immediate steps to obtain employment.

They thought themselves fortunate in getting the promise of a job from Mr. Rennie, the celebrated engineer, whose works were situated at the south end of Blackfriars Bridge. Mr. Rennie sent the two young men to his foreman, with the request that he should set them to work. The foreman referred them to the secretary of the Millwrights’ Society, the shop being filled with Union men, who set their shoulders together to exclude those of their own grade, however skilled, who could not produce evidence that they had complied with the rules of the trade. Describing his first experience of London Unionists, nearly half a century later, before an assembly of working men at Derby, Mr. Fairbairn said, “When I first entered London, a young man from the country had no chance whatever of success, in consequence of the trade guilds and unions. I had no difficulty in finding employment, but before I could begin work I had to run the gauntlet of the trade societies; and after dancing attendance for nearly six weeks, with very little money in my pocket, and having to ‘box Harry’ all the time, I was ultimately declared illegitimate, and sent adrift to seek my fortune elsewhere. There were then three millwright societies in London: one called the Old Society, another the New Society, and a third the Independent Society. These societies were not founded for the protection of the trade, but for the maintenance of high wages, and for the exclusion of all those who could not assert their claims to work in London and other corporate towns. Laws of a most arbitrary character were enforced, and they were governed by cliques of self-appointed officers, who never failed to take care of their own interests.”*
[footnote…
Useful Information for Engineers, 2nd series, 1860, p. 211. …]

Their first application for leave to work in London having thus disastrously ended, the two youths determined to try their fortune in the country, and with aching hearts they started next morning before daylight. Their hopes had been suddenly crushed, their slender funds were nearly exhausted, and they scarce knew where to turn. But they set their faces bravely northward, and pushed along the high road, through slush and snow, as far as Hertford, which they reached after nearly eight hours’ walking, on the moderate fare during their journey of a penny roll and a pint of ale each. Though wet to the skin, they immediately sought out a master millwright, and applied for work. He said he had no job vacant at present; but, seeing their sorry plight, he had compassion upon them, and said, “Though I cannot give you employment, you seem to be two nice lads;” and he concluded by offering Fairbairn a half-crown. But his proud spirit revolted at taking money which he had not earned; and he declined the proffered gift with thanks, saying he was sorry they could not have work. He then turned away from the door, on which his companion, mortified by his refusal to accept the half-crown at a time when they were reduced almost to their last penny, broke out in bitter remonstrances and regrets. Weary, wet, and disheartened, the two turned into Hertford churchyard, and rested for a while upon a tombstone, Fairbairn’s companion relieving himself by a good cry, and occasional angry outbursts of “Why didn’t you take the half-crown?” “Come, come, man!” said Fairbairn, “it’s of no use crying; cheer up; let’s try another road; something must soon cast up.” They rose, and set out again, but when they reached the bridge, the dispirited youth again broke down; and, leaning his back against the parapet, said, “I winna gang a bit further; let’s get back to London.” Against this Fairbairn remonstrated, saying “It’s of no use lamenting; we must try what we can do here; if the worst comes to the worst, we can ‘list; you are a strong chap–they’ll soon take you; and as for me, I’ll join too; I think I could fight a bit.” After this council of war, the pair determined to find lodgings in the town for the night, and begin their search for work anew on the morrow.

Next day, when passing along one of the back streets of Hertford, they came to a wheelwright’s shop, where they made the usual enquiries. The wheelwright, said that he did not think there was any job to be had in the town; but if the two young men pushed on to Cheshunt, he thought they might find work at a windmill which was under contract to be finished in three weeks, and where the millwright wanted hands. Here was a glimpse of hope at last; and the strength and spirits of both revived in an instant. They set out immediately; walked the seven miles to Cheshunt; succeeded in obtaining the expected employment; worked at the job a fortnight; and entered London again with nearly three pounds in their pockets.

Our young millwright at length succeeded in obtaining regular employment in the metropolis at good wages. He worked first at Grundy’s Patent Ropery at Shadwell, and afterwards at Mr. Penn’s of Greenwich, gaining much valuable insight, and sedulously improving his mind by study in his leisure hours. Among the acquaintances he then made was an enthusiastic projector of the name of Hall, who had taken out one patent for making hemp from bean-stalks, and contemplated taking out another for effecting spade tillage by steam. The young engineer was invited to make the requisite model, which he did, and it cost him both time and money, which the out-at-elbows projector was unable to repay; and all that came of the project was the exhibition of the model at the Society of Arts and before the Board of Agriculture, in whose collection it is probably still to be found. Another more successful machine constructed By Mr. Fairbairn about the same time was a sausage-chopping machine, which he contrived and made for a pork-butcher for 33l. It was the first order he had ever had on his own account; and, as the machine when made did its work admirably, he was naturally very proud of it. The machine was provided with a fly-wheel and double crank, with connecting rods which worked a cross head. It contained a dozen knives crossing each other at right angles in such a way as to enable them to mince or divide the meat on a revolving block. Another part of the apparatus accomplished the filling of the sausages in a very expert manner, to the entire satisfaction of the pork-butcher.

As work was scarce in London at the time, and our engineer was bent on gathering further experience in his trade, he determined to make a tour in the South of England and South Wales; and set out from London in April 1813 with 7l. in his pocket. After visiting Bath and Frome, he settled to work for six weeks at Bathgate; after which he travelled by Bradford and Trowbridge — always on foot–to Bristol. From thence he travelled through South Wales, spending a few days each at Newport, Llandaff, and Cardiff, where he took ship for Dublin. By the time he reached Ireland his means were all but exhausted, only three-halfpence remaining in his pocket; but, being young, hopeful, skilful, and industrious, he was light of heart, and looked cheerfully forward. The next day he succeeded in finding employment at Mr. Robinson’s, of the Phoenix Foundry, where he was put to work at once upon a set of patterns for some nail-machinery. Mr. Robinson was a man of spirit and enterprise, and, seeing the quantities of English machine-made nails imported into Ireland, he was desirous of giving Irish industry the benefit of the manufacture. The construction of the nail-making machinery occupied Mr. Fairbairn the entire summer; and on its completion he set sail in the month of October for Liverpool. It may be added, that, notwithstanding the expense incurred by Mr. Robinson in setting up the new nail-machinery, his workmen threatened him with a strike if he ventured to use it. As he could not brave the opposition of the Unionists, then all-powerful in Dublin, the machinery was never set to work; the nail-making trade left Ireland, never to return; and the Irish market was thenceforward supplied entirely with English-made nails. The Dublin iron-manufacture was ruined in the same way; not through any local disadvantages, but solely by the prohibitory regulations enforced by the workmen of the Trades Unions.

Arrived at Liverpool, after a voyage of two days–which was then considered a fair passage–our engineer proceeded to Manchester, which had already become the principal centre of manufacturing operations in the North of England. As we have already seen in the memoirs of Nasmyth, Roberts, and Whitworth, Manchester offered great attractions for highly-skilled mechanics; and it was as fortunate for Manchester as for William Fairbairn himself that he settled down there as a working millwright in the year 1814, bringing with him no capital, but an abundance of energy, skill, and practical experience in his trade. Afterwards describing the characteristics of the millwright of that time, Mr, Fairbairn said–“In those days a good millwright was a man of large resources; he was generally well educated, and could draw out his own designs and work at the lathe; he had a knowledge of mill machinery, pumps, and cranes, and could turn his hand to the bench or the forge with equal adroitness and facility. If hard pressed, as was frequently the case in country places far from towns, he could devise for himself expedients which enabled him to meet special requirements, and to complete his work without assistance. This was the class of men with whom I associated in early life–proud of their calling, fertile in resources, and aware of their value in a country where the industrial arts were rapidly developing.”*
[footnote…
Lecture at Derby–Useful Information for Engineers, 2nd series, p. 212.
…]

When William Fairbairn entered Manchester he was twenty-four years of age; and his hat still “covered his family.” But, being now pretty well satiated with his “wandetschaft,”–as German tradesmen term their stage of travelling in search of trade experience,–he desired to settle, and, if fortune favoured him, to marry the object of his affections, to whom his heart still faithfully turned during all his wanderings. He succeeded in finding employment with Mr. Adam Parkinson, remaining with him for two years, working as a millwright, at good wages. Out of his earnings he saved sufficient to furnish a two-roomed cottage comfortably; and there we find him fairly installed with his wife by the end of 1816. As in the case of most men of a thoughtful turn, marriage served not only to settle our engineer, but to stimulate him to more energetic action. He now began to aim at taking a higher position, and entertained the ambition of beginning business on his own account. One of his first efforts in this direction was the preparation of the design of a cast-iron bridge over the Irwell, at Blackfriars, for which a prize was offered. The attempt was unsuccessful, and a stone bridge was eventually decided on; but the effort made was creditable, and proved the beginning of many designs. The first job he executed on his own account was the erection of an iron conservatory and hothouse for Mr. J. Hulme, of Clayton, near Manchester; and he induced one of his shopmates, James Lillie, to join him in the undertaking. This proved the beginning of a business connection which lasted for a period of fifteen years, and laid the foundation of a partnership, the reputation of which, in connection with mill-work and the construction of iron machinery generally, eventually became known all over the civilized world.

Although the patterns for the conservatory were all made, and the castings were begun, the work was not proceeded with, in consequence of the notice given by a Birmingham firm that the plan after which it was proposed to construct it was an infringement of their patent. The young firm were consequently under the necessity of looking about them for other employment. And to be prepared for executing orders, they proceeded in the year 1817 to hire a small shed at a rent of l2s. a week, in which they set up a lathe of their own making, capable of turning shafts of from 3 to 6 inches diameter; and they hired a strong Irishman to drive the wheel and assist at the heavy work. Their first job was the erection of a cullender, and their next a calico-polishing machine; but orders came in slowly, and James Lillie began to despair of success. His more hopeful partner strenuously urged him to perseverance, and so buoyed him up with hopes of orders, that he determined to go on a little longer. They then issued cards among the manufacturers, and made a tour of the principal firms, offering their services and soliciting work.

Amongst others, Mr. Fairbairn called upon the Messrs. Adam and George Murray, the large cotton-spinners, taking with him the designs of his iron bridge. Mr. Adam Murray received him kindly, heard his explanations, and invited him to call on the following day with his partner. The manufacturer must have been favourably impressed by this interview, for next day, when Fairbairn and Lillie called, he took them over his mill, and asked whether they felt themselves competent to renew with horizontal cross-shafts the whole of the work by which the mule-spinning machinery was turned. This was a formidable enterprise for a young firm without capital and almost without plant to undertake; but they had confidence in themselves, and boldly replied that they were willing and able to execute the work. On this, Mr. Murray said he would call and see them at their own workshop, to satisfy himself that they possessed the means of undertaking such an order. This proposal was by no means encouraging to the partners, who feared that when Mr. Murray spied “the nakedness of the land ” in that quarter, he might repent him of his generous intentions. He paid his promised visit, and it is probable that he was more favourably impressed by the individual merits of the partners than by the excellence of their machine-tools–of which they had only one, the lathe which they had just made and set up; nevertheless he gave them the order, and they began with glad hearts and willing hands and minds to execute this their first contract. It may be sufficient to state that by working late and early–from 5 in the morning until 9 at night for a considerable period–they succeeded in completing the alterations within the time specified, and to Mr. Murray’s entire satisfaction. The practical skill of the young men being thus proved, and their anxiety to execute the work entrusted to them to the best of their ability having excited the admiration of their employer, he took the opportunity of recommending them to his friends in the trade, and amongst others to Mr. John Kennedy, of the firm of MacConnel and Kennedy, then the largest spinners in the kingdom.

The Cotton Trade had by this time sprung into great importance, and was increasing with extraordinary rapidity. Population and wealth were pouring into South Lancashire, and industry and enterprise were everywhere on foot. The foundations were being laid of a system of manufacturing in iron, machinery, and textile fabrics of nearly all kinds, the like of which has perhaps never been surpassed in any country. It was a race of industry, in which the prizes were won by the swift, the strong, and the skilled. For the most part, the early Lancashire manufacturers started very nearly equal in point of worldly circumstances, men originally of the smallest means often coming to the front – work men, weavers, mechanics, pedlers, farmers, or labourers–in course of time rearing immense manufacturing concerns by sheer force of industry, energy, and personal ability. The description given by one of the largest employers in Lancashire, of the capital with which he started, might apply to many of them: “When I married,” said he, “my wife had a spinning-wheel, and I had a loom–that was the beginning of our fortune.” As an illustration of the rapid rise of Manchester men from small beginnings, the following outline of John Kennedy’s career, intimately connected as he was with the subject of our memoir–may not be without interest in this place.

John Kennedy was one of five young men of nearly the same age, who came from the same neighbourhood in Scotland, and eventually settled in Manchester as cottons-pinners about the end of last century. The others were his brother James, his partner James MacConnel, and the brothers Murray, above referred to–Mr. Fairbairn’s first extensive employers. John Kennedy’s parents were respectable peasants, possessed of a little bit of ground at Knocknalling, in the stewartry of Kirkcudbright, on which they contrived to live, and that was all. John was one of a family of five sons and two daughters, and the father dying early, the responsibility and the toil of bringing up these children devolved upon the mother. She was a strict disciplinarian, and early impressed upon the minds of her boys that they had their own way to make in the world. One of the first things she made them think about was, the learning of some useful trade for the purpose of securing an independent living; “for,” said she, “if you have gotten mechanical skill and intelligence, and are honest and trustworthy, you will always find employment and be ready to avail yourselves of opportunities for advancing yourselves in life.” Though the mother desired to give her sons the benefits of school education, there was but little of that commodity to be had in the remote district of Knocknalling. The parish-school was six miles distant, and the teaching given in it was of a very inferior sort–usually administered by students, probationers for the ministry, or by half-fledged dominies, themselves more needing instruction than able to impart it. The Kennedys could only attend the school during a few months in summer-time, so that what they had acquired by the end of one season was often forgotten by the beginning of the next. They learnt, however, to read the Testament, say their catechism, and write their own names.

As the children grew up, they each longed for the time to come when they could be put to a trade. The family were poorly clad; stockings and shoes were luxuries rarely indulged in; and Mr. Kennedy used in after-life to tell his grandchildren of a certain Sunday which he remembered shortly after his father died, when he was setting out for Dalry church, and had borrowed his brother Alexander’s stockings, his brother ran after him and cried, “See that you keep out of the dirt, for mind you have got my stockings on!” John indulged in many day-dreams about the world that lay beyond the valley and the mountains which surrounded the place of his birth. Though a mere boy, the natural objects, eternally unchangeable, which daily met his eyes–the profound silence of the scene, broken only by the bleating of a solitary sheep, or the crowing of a distant cock, or the thrasher beating out with his flail the scanty grain of the black oats spread upon a skin in the open air, or the streamlets leaping from the rocky clefts, or the distant church-bell sounding up the valley on Sundays– all bred in his mind a profound melancholy and feeling of loneliness, and he used to think to himself, “What can I do to see and know something of the world beyond this?” The greatest pleasure he experienced during that period was when packmen came round with their stores of clothing and hardware, and displayed them for sale; he eagerly listened to all that such visitors had to tell of the ongoings of the world beyond the valley.

The people of the Knocknalling district were very poor. The greater part of them were unable to support the younger members, whose custom it was to move off elsewhere in search of a living when they arrived at working years,–some to America, some to the West Indies, and some to the manufacturing districts of the south. Whole families took their departure in this way, and the few friendships which Kennedy formed amongst those of his own age were thus suddenly snapped, and only a great blank remained. But he too could follow their example, and enter upon that wider world in which so many others had ventured and succeeded. As early as eight years of age, his mother still impressing upon her boys the necessity of learning to work, John gathered courage to say to her that he wished to leave home and apprentice himself to some handicraft business. Having seen some carpenters working in the neighbourhood, with good clothes on their backs, and hearing the men’s characters well spoken of, he thought it would be a fine thing to be a carpenter too, particularly as the occupation would enable him to move from place to place and see the world. He was as yet, however, of too tender an age to set out on the journey of life; but when he was about eleven years old, Adam Murray, one of his most intimate acquaintances, having gone off to serve an apprenticeship in Lancashire with Mr. Cannan of Chowbent, himself a native of the district, the event again awakened in him a strong desire to migrate from Knocknalling. Others had gone after Murray, James MacConnel and two or three more; and at length, at about fourteen years of age, Kennedy himself left his native home for Lancashire. About the time that he set out, Paul Jones was ravaging the coasts of Galloway, and producing general consternation throughout the district. Great excitement also prevailed through the occurrence of the Gordon riots in London, which extended into remote country places; and Kennedy remembered being nearly frightened out of his wits on one occasion by a poor dominie whose school he attended, who preached to his boys about the horrors that were coming upon the land through the introduction of Popery. The boy set out for England on the 2nd of February, 1784, mounted upon a Galloway, his little package of clothes and necessaries strapped behind him. As he passed along the glen, recognising each familiar spot, his heart was in his mouth, and he dared scarcely trust himself to look back. The ground was covered with snow, and nature quite frozen up. He had the company of his brother Alexander as far as the town of New Galloway, where he slept the first night. The next day, accompanied by one of his future masters, Mr. James Smith, a partner of Mr. Cannan’s, who had originally entered his service as a workman, they started on ponyback for Dumfries. After a long day’s ride, they entered the town in the evening, and amongst the things which excited the boy’s surprise were the few street-lamps of the town, and a waggon with four horses and four wheels. In his remote valley carts were as yet unknown, and even in Dumfries itself they were comparative rarities; the common means of transport in the district being what were called “tumbling cars.” The day after, they reached Longtown, and slept there; the boy noting ANOTHER lamp. The next stage was to Carlisle, where Mr. Smith, whose firm had supplied a carding engine and spinning-jenny to a small manufacturer in the town, went to “gate” and trim them. One was put up in a small house, the other in a small room; and the sight of these machines was John Kennedy’s first introduction to cotton-spinning. While going up the inn-stairs he was amazed and not a little alarmed at seeing two men in armour–he had heard of the battles between the Scots and English–and believed these to be some of the fighting men; though they proved to be but effigies. Five more days were occupied in travelling southward, the resting places being at Penrith, Kendal, Preston, and Chorley, the two travellers arriving at Chowbent on Sunday the 8th of February, 1784. Mr. Cannan seems to have collected about him a little colony of Scotsmen, mostly from the same neighbourhood, and in the evening there was quite an assembly of them at the “Bear’s Paw,” where Kennedy put up, to hear the tidings from their native county brought by the last new comer. On the following morning the boy began his apprenticeship as a carpenter with the firm of Cannan and Smith, serving seven years for his meat and clothing. He applied himself to his trade, and became a good, steady workman. He was thoughtful and self-improving, always endeavouring to acquire knowledge of new arts and to obtain insight into new machines. “Even in early life,” said he, in the account of his career addressed to his children, “I felt a strong desire to know what others knew, and was always ready to communicate what little I knew myself; and by admitting at once my want of education, I found that I often made friends of those on whom I had no claims beyond what an ardent desire for knowledge could give me.”

His apprenticeship over, John Kennedy commenced business* [footnote…
One of the reasons which induced Kennedy thus early to begin the business of mule-spinning has been related as follows. While employed as apprentice at Chowbent, he happened to sleep over the master’s apartment; and late one evening, on the latter returning from market, his wife asked his success. “I’ve sold the eightys,” said he, “at a guinea a pound.” “What,” exclaimed the mistress, in a loud voice, “sold the eightys for ONLY a guinea a pound! I never heard of such a thing.” The apprentice could not help overhearing the remark, and it set him a-thinking. He knew the price of cotton and the price of labour, and concluded there must be a very large margin of profit. So soon as he was out of his time, therefore, he determined that he should become a cotton spinner.
…]
in a small way in Manchester in 1791, in conjunction with two other workmen, Sandford and MacConnel. Their business was machine-making and mule-spinning, Kennedy taking the direction of the machine department. The firm at first put up their mules for spinning in any convenient garrets they could hire at a low rental. After some time, they took part of a small factory in Canal Street, and carried on their business on a larger scale. Kennedy and MacConnel afterwards occupied a little factory in the same street,–since removed to give place to Fairbairn’s large machine works. The progress of the firm was steady and even rapid, and they went on building mills and extending their business–Mr. Kennedy, as he advanced in life, gathering honour, wealth, and troops of friends. Notwithstanding the defects of his early education, he was one of the few men of his class who became distinguished for his literary labours in connexion principally with the cotton trade. Towards the close of his life, he prepared several papers of great interest for the Literary and Philosophical Society of Manchester, which are to be found printed in their Proceedings; one of these, on the Invention of the Mule by Samuel Crompton, was for a long time the only record which the public possessed of the merits and claims of that distinguished inventor. His knowledge of the history of the cotton manufacture in its various stages, and of mechanical inventions generally, was most extensive and accurate. Among his friends he numbered James Watt, who placed his son in his establishment for the purpose of acquiring knowledge and experience of his profession. At a much later period he numbered George Stephenson among his friends, having been one of the first directors of the Liverpool and Manchester Railway, and one of the three judges (selected because of his sound judgment and proved impartiality, as well as his knowledge of mechanical engineering) to adjudicate on the celebrated competition of Locomotives at Rainhill. By these successive steps did this poor Scotch boy become one of the leading men of Manchester, closing his long and useful life in 1855 at an advanced age, his mental faculties remaining clear and unclouded to the last. His departure from life was happy and tranquil–so easy that it was for a time doubtful whether he was dead or asleep.

To return to Mr. Fairbairn’s career, and his progress as a millwright and engineer in Manchester. When he and his partner undertook the extensive alterations in Mr. Murray’s factory, both were in a great measure unacquainted with the working of cotton-mills, having until then been occupied principally with corn-mills, and printing and bleaching works; so that an entirely new field was now opened to their united exertions. Sedulously improving their opportunities, the young partners not only thoroughly mastered the practical details of cotton-mill work, but they were very shortly enabled to introduce a series of improvements of the greatest importance in this branch of our national manufactures. Bringing their vigorous practical minds to bear on the subject, they at once saw that the gearing of even the best mills was of a very clumsy and imperfect character. They found the machinery driven by large square cast-iron shafts, on which huge wooden drums, some of them as much as four feet in diameter, revolved at the rate of about forty revolutions a minute; and the couplings were so badly fitted that they might be heard creaking and groaning a long way off. The speeds of the driving-shafts were mostly got up by a series of straps and counter drums, which not only crowded the rooms, but seriously obstructed the light where most required for conducting the delicate operations of the different machines. Another serious defect lay in the construction of the shafts, and in the mode of fixing the couplings, which were constantly giving way, so that a week seldom passed without one or more breaks-down. The repairs were usually made on Sundays, which were the millwrights’ hardest working days, to their own serious moral detriment; but when trade was good, every consideration was made to give way to the uninterrupted running of the mills during the rest of the week.

It occurred to Mr. Fairbairn that the defective arrangements thus briefly described, might be remedied by the introduction of lighter shafts driven at double or treble the velocity, smaller drums to drive the machinery, and the use of wrought-iron wherever practicable, because of its greater lightness and strength compared with wood. He also provided for the simplification of the hangers and fixings by which the shafting was supported, and introduced the “half-lap coupling” so well known to millwrights and engineers. His partner entered fully into his views; and the opportunity shortly presented itself of carrying them into effect in the large new mill erected in 1818, for the firm of MacConnel and Kennedy. The machinery of that concern proved a great improvement on all that had preceded it; and, to Messrs. Fairbairn and Lillie’s new system of gearing Mr. Kennedy added an original invention of his own in a system of double speeds, with the object of giving an increased quantity of twist in the finer descriptions of mule yarn.

The satisfactory execution of this important work at once placed the firm of Fairbairn and Lillie in the very front rank of engineering millwrights. Mr. Kennedy’s good word was of itself a passport to fame and business, and as he was more than satisfied with the manner in which his mill machinery had been planned and executed, he sounded their praises in all quarters. Orders poured in upon them so rapidly, that they had difficulty in keeping pace with the demands of the trade. They then removed from their original shed to larger premises in Matherstreet, where they erected additional lathes and other tool-machines, and eventually a steam-engine. They afterwards added a large cellar under an adjoining factory to their premises; and from time to time provided new means of turning out work with increased efficiency and despatch. In due course of time the firm erected a factory of their own, fitted with the most improved machinery for turning out millwork; and they went on from one contract to another, until their reputation as engineers became widely celebrated. In 1826-7, they supplied the water-wheels for the extensive cotton-mills belonging to Kirkman Finlay and Company, at Catrine Bank in Ayrshire. These wheels are even at this day regarded as among the most perfect hydraulic machines in Europe. About the same time they supplied the mill gearing and water-machinery for Messrs. Escher and Company’s large works at Zurich, among the largest cotton manufactories on the continent.

In the mean while the industry of Manchester and the neighbourhood, through which the firm had risen and prospered, was not neglected, but had the full benefit of the various improvements which they were introducing in mill machinery. In the course of a few years an entire revolution was effected in the gearing. Ponderous masses of timber and cast-iron, with their enormous bearings and couplings, gave place to slender rods of wrought-iron and light frames or hooks by which they were suspended. In like manner, lighter yet stronger wheels and pulleys were introduced, the whole arrangements were improved, and, the workmanship being greatly more accurate, friction was avoided, while the speed was increased from about 40 to upwards of 300 revolutions a minute. The fly-wheel of the engine was also converted into a first motion by the formation of teeth on its periphery, by which a considerable saving was effected both in cost and power.

These great improvements formed quite an era in the history of mill machinery; and exercised the most important influence on the development of the cotton, flax, silk, and other branches of manufacture. Mr. Fairbairn says the system introduced by his firm was at first strongly condemned by leading engineers, and it was with difficulty that he could overcome the force of their opposition; nor was it until a wheel of thirty tons weight for a pair of engines of 100-horse power each was erected and set to work, that their prognostications of failure entirely ceased. From that time the principles introduced by Mr. Fairbairn have been adopted wherever steam is employed as a motive power in mills.

Mr. Fairbairn and his partner had a hard uphill battle to fight while these improvements were being introduced; but energy and perseverance, guided by sound judgment, secured their usual reward, and the firm became known as one of the most thriving and enterprising in Manchester. Long years after, when addressing an assembly of working men, Mr. Fairbairn, while urging the necessity of labour and application as the only sure means of self-improvement, said, “I can tell you from experience, that there is no labour so sweet, none so consolatory, as that which is founded upon an honest, straightforward, and honourable ambition.” The history of any prosperous business, however, so closely resembles every other, and its details are usually of so monotonous a character, that it is unnecessary for us to pursue this part of the subject; and we will content ourselves with briefly indicating the several further improvements introduced by Mr. Fairbairn in the mechanics of construction in the course of his long and useful career.

His improvements in water-wheels were of great value, especially as regarded the new form of bucket which he introduced with the object of facilitating the escape of the air as the water entered the bucket above, and its readmission as the water emptied itself out below. This arrangement enabled the water to act upon the wheel with the maximum of effect in all states of the river; and it so generally recommended itself, that it very soon became adopted in most water-mills both at home and abroad.*
[footnote…
The subject will be found fully treated in Mr. Fairbairn’s own work, A Treatise on Mills and Mill-Work, embodying the results of his large experience.
…]
His labours were not, however, confined to his own particular calling as a mill engineer, but were shortly directed to other equally important branches of the constructive art. Thus he was among the first to direct his attention to iron ship building as a special branch of business. In 1829, Mr. Houston, of Johnstown, near Paisley, launched a light boat on the Ardrossan Canal for the purpose of ascertaining the speed at which it could be towed by horses with two or three persons on board. To the surprise of Mr. Houston and the other gentlemen present, it was found that the labour the horses had to perform in towing the boat was mach greater at six or seven, than at nine miles an hour. This anomaly was very puzzling to the experimenters, and at the request of the Council of the Forth and Clyde Canal, Mr. Fairbairn, who had already become extensively known as a scientific mechanic, was requested to visit Scotland and institute a series of experiments with light boats to determine the law of traction, and clear up, if possible, the apparent anomalies in Mr. Houston’s experiments. This he did accordingly, and the results of his experiments were afterwards published, The trials extended over a series of years, and were conducted at a cost of several thousand pounds. The first experiments were made with vessels of wood, but they eventually led to the construction of iron vessels upon a large scale and on an entirely new principle of construction, with angle iron ribs and wrought-iron sheathing plates. The results proved most valuable, and had the effect of specially directing the attention of naval engineers to the employment of iron in ship building.