This page contains affiliate links. As Amazon Associates we earn from qualifying purchases.
Language:
Published:
  • 30/1/1868
Buy it on Amazon FREE Audible 30 days

Indies (21/17. G. Lewis ‘Journal of Residence in West Indies’ ‘Home and Col. Library’ page 100.) it is said that “the only horned cattle fit for work are those which have a good deal of black in them. The white are terribly tormented by the insects; and they are weak and sluggish in proportion to the white.”

In Devonshire there is a prejudice against white pigs, because it is believed that the sun blisters them when turned out (21/18. Sidney’s edition of Youatt on the ‘Pig’ page 24. I have given analogous facts in the case of mankind in my ‘Descent of Man’ 2nd edition page 195.); and I knew a man who would not keep white pigs in Kent, for the same reason. The scorching of flowers by the sun seems likewise to depend much on colour; thus, dark pelargoniums suffer most; and from various accounts it is clear that the cloth-of-gold variety will not withstand a degree of exposure to sunshine which other varieties enjoy. Another amateur asserts that not only all dark-coloured verbenas, but likewise scarlets, suffer from the sun: “the paler kinds stand better, and pale blue is perhaps the best of all.” So again with the heartsease (Viola tricolor); hot weather suits the blotched sorts, whilst it destroys the beautiful markings of some other kinds. (21/19. ‘Journal of Horticulture’ 1862 pages 476, 498; 1865 page 460. With respect to the heartsease ‘Gardener’s Chronicle’ 1863 page 628.) During one extremely cold season in Holland all red-flowered hyacinths were observed to be very inferior in quality. It is believed by many agriculturists that red wheat is hardier in northern climates than white wheat. (21/20. ‘Des Jacinthes, de leur Culture’ 1768 page 53: on wheat ‘Gardener’s Chronicle’ 1846 page 653.)

With animals, white varieties from being conspicuous are the most liable to be attacked by beasts and birds of prey. In parts of France and Germany where hawks abound, persons are advised not to keep white pigeons; for, as Parmentier says, “it is certain that in a flock the white always first fall victims to the kite.” In Belgium, where so many societies have been established for the flight of carrier-pigeons, white is the one colour which for the same reason is disliked. (20/21. W.B. Tegetmeier ‘The Field’ February 25, 1865. With respect to black fowls see a quotation in Thompson ‘Nat. Hist. of Ireland’ 1849 volume 1 page 22.) Prof. G. Jaeger (21/22. ‘In Sachen Darwin’s contra Wigand’ 1874 page 70.) whilst fishing found four pigeons which had been killed by hawks, and all were white; on another occasion he examined the eyrie of a hawk, and the feathers of the pigeons which had been caught were all of a white or yellow colour. On the other hand, it is said that the sea-eagle (Falco ossifragus, Linn.) on the west coast of Ireland picks out the black fowls, so that “the villagers avoid as much as possible rearing birds of that colour.” M. Daudin (20/23. ‘Bull. de la Soc. d’Acclimat.’ tome 7 1860 page 359.), speaking of white rabbits kept in warrens in Russia, remarks that their colour is a great disadvantage, as they are thus more exposed to attack, and can be seen during bright nights from a distance. A gentleman in Kent, who failed to stock his woods with a nearly white and hardy kind of rabbit, accounted in the same manner for their early disappearance. Any one who will watch a white cat prowling after her prey will soon perceive under what a disadvantage she lies.

The white Tartarian cherry, “owing either to its colour being so much like that of the leaves, or to the fruit always appearing from a distance unripe,” is not so readily attacked by birds as other sorts. The yellow-fruited raspberry, which generally comes nearly true by seed, “is very little molested by birds, who evidently are not fond of it; so that nets may be dispensed with in places where nothing else will protect the red fruit.” (21/24. ‘Transact. Hort. Soc.’ volume 1 2nd series 1835 page 275. For raspberries see ‘Gardener’s Chronicle’ 1855 page 154 and 1863 page 245.) This immunity, though a benefit to the gardener, would be a disadvantage in a state of nature both to the cherry and raspberry, as dissemination depends on birds. I noticed during several winters that some trees of the yellow-berried holly, which were raised from seed from a tree found wild by my father remained covered with fruit, whilst not a scarlet berry could be seen on the adjoining trees of the common kind. A friend informs me that a mountain-ash (Pyrus aucuparia) growing in his garden bears berries which, though not differently coloured, are always devoured by birds before those on the other trees. This variety of the mountain-ash would thus be more freely disseminated, and the yellow-berried variety of the holly less freely, than the common varieties of these two trees.

Independently of colour, trifling differences are sometimes found to be of importance to plants under cultivation, and would be of paramount importance if they had to fight their own battle and to struggle with many competitors. The thin-shelled peas, called pois sans parchemin, are attacked by birds (21/25. ‘Gardener’s Chronicle’ 1843 page 806.) much more commonly than ordinary peas. On the other hand, the purple-podded pea, which has a hard shell, escaped the attacks of tomtits (Parus major) in my garden far better than any other kind. The thin-shelled walnut likewise suffers greatly from the tomtit. (21/26. Ibid 1850 page 732.) These same birds have been observed to pass over and thus favour the filbert, destroying only the other kinds of nuts which grew in the same orchard. (21/27. Ibid 1860 page 956.)

Certain varieties of the pear have soft bark, and these suffer severely from wood-boring beetles; whilst other varieties are known to resist their attacks much better. (21/28. J. De Jonghe in ‘Gardener’s Chronicle’ 1860 page 120.) In North America the smoothness, or absence of down on the fruit, makes a great difference in the attacks of the weevil, “which is the uncompromising foe of all smooth stone-fruits;” and the cultivator “has the frequent mortification of seeing nearly all, or indeed often the whole crop, fall from the trees when half or two-thirds grown.” Hence the nectarine suffers more than the peach. A particular variety of the Morello cherry, raised in North America, is, without any assignable cause, more liable to be injured by this same insect than other cherry-trees. (21/29. Downing ‘Fruit-trees of North America’ pages 266, 501: in regard to the cherry page 198.) From some unknown cause, certain varieties of the apple enjoy, as we have seen, the great advantage in various parts of the world of not being infested by the coccus. On the other hand, a particular case has been recorded in which aphides confined themselves to the Winter Nelis pear and touched no other kind in an extensive orchard. (21/30. ‘Gardener’s Chronicle’ 1849 page 755.) The existence of minute glands on the leaves of peaches, nectarines, and apricots, would not be esteemed by botanists as a character of the least importance for they are present or absent in closely-related sub-varieties, descended from the same parent-tree; yet there is good evidence (21/31. ‘Journal of Horticulture’ September 26, 1865 page 254; see other references given in chapter 10.) that the absence of glands leads to mildew, which is highly injurious to these trees.

A difference either in flavour or in the amount of nutriment in certain varieties causes them to be more eagerly attacked by various enemies than other varieties of the same species. Bullfinches (Pyrrhula vulgaris) injure our fruit-trees by devouring the flower-buds, and a pair of these birds have been seen “to denude a large plum-tree in a couple of days of almost every bud;” but certain varieties (21/32. Mr. Selby in ‘Mag. of Zoology and Botany’ Edinburgh volume 2 1838 page 393.) of the apple and thorn (Crataegus oxyacantha) are more especially liable to be attacked. A striking instance of this was observed in Mr. Rivers’s garden, in which two rows of a particular variety of plum (21/33. The Reine Claude de Bavay ‘Journal of Horticulture’ December 27, 1864 page 511.) had to be carefully protected, as they were usually stripped of all their buds during the winter, whilst other sorts growing near them escaped. The root (or enlarged stem) of Laing’s Swedish turnip is preferred by hares, and therefore suffers more than other varieties. Hares and rabbits eat down common rye before St. John’s-day-rye, when both grow together. (21/34. Mr. Pusey in ‘Journal of R. Agricult. Soc.’ volume 6 page 179. For Swedish turnips see ‘Gardener’s Chronicle’ 1847 page 91.) In the south of France, when an orchard of almond-trees is formed, the nuts of the bitter variety are sown, “in order that they may not be devoured by field- mice” (21/35. Godron ‘De l’Espece’ tome 2 page 98.); so we see the use of the bitter principle in almonds.

Other slight differences, which would be thought quite unimportant, are no doubt sometimes of great service both to plants and animals. The Whitesmith’s gooseberry, as formerly stated, produces its leaves later than other varieties, and, as the flowers are thus left unprotected, the fruit often fails. In one variety of the cherry, according to Mr. Rivers (21/36. ‘Gardener’s Chronicle’ 1866 page 732.), the petals are much curled backwards, and in consequence of this the stigmas were observed to be killed by a severe frost; whilst at the same time, in another variety with incurved petals, the stigmas were not in the least injured. The straw of the Fenton wheat is remarkably unequal in height; and a competent observer believes that this variety is highly productive, partly because the ears from being distributed at various heights above the ground are less crowded together. The same observer maintains that in the upright varieties the divergent awns are serviceable by breaking the shocks when the ears are dashed together by the wind. (21/37. ‘Gardener’s Chronicle’ 1862 pages 820, 821.) If several varieties of a plant are grown together, and the seed is indiscriminately harvested, it is clear that the hardier and more productive kinds will, by a sort of natural selection, gradually prevail over the others; this takes place, as Colonel Le Couteur believes (21/38. ‘On the Varieties of Wheat’ page 59.), in our wheat-fields, for, as formerly shown, no variety is quite uniform in character. The same thing, as I am assured by nurserymen, would take place in our flower-gardens, if the seed of the different varieties were not separately saved. When the eggs of the wild and tame duck are hatched together, the young wild ducks almost invariably perish, from being of smaller size and not getting their fair share of food. (21/39. Mr. Hewitt and others, in ‘Journal of Hort.’ 1862 page 773.)

Facts in sufficient number have now been given showing that natural selection often checks, but occasionally favours, man’s power of selection. These facts teach us, in addition, a valuable lesson, namely, that we ought to be extremely cautious in judging what characters are of importance in a state of nature to animals and plants, which have to struggle for existence from the hour of their birth to that of their death,–their existence depending on conditions, about which we are profoundly ignorant.

CIRCUMSTANCES FAVOURABLE TO SELECTION BY MAN.

The possibility of selection rests on variability, and this, as we shall see in the following chapters, mainly depends on changed conditions of life, but is governed by infinitely complex and unknown laws. Domestication, even when long continued, occasionally causes but a small amount of variability, as in the case of the goose and turkey. The slight differences, however, which characterise each individual animal and plant would in most, probably in all, cases suffice for the production of distinct races through careful and prolonged selection. We see what selection, though acting on mere individual differences, can effect when families of cattle, sheep, pigeons, etc., of the same race, have been separately bred during a number of years by different men without any wish on their part to modify the breed. We see the same fact in the difference between hounds bred for hunting in different districts (21/40. ‘Encyclop. of Rural Sports’ page 405.), and in many other such cases.

In order that selection should produce any result, it is manifest that the crossing of distinct races must be prevented; hence facility in pairing, as with the pigeon, is highly favourable for the work; and difficulty in pairing, as with cats, prevents the formation of distinct breeds. On nearly the same principle the cattle of the small island of Jersey have been improved in their milking qualities “with a rapidity that could not have been obtained in a widely extended country like France.” (21/41. Col. Le Couteur ‘Journal Roy. Agricult. Soc.’ volume 4 page 43.) Although free crossing is a danger on the one side which every one can see, too close interbreeding is a hidden danger on the other side. Unfavourable conditions of life overrule the power of selection. Our improved heavy breeds of cattle and sheep could not have been formed on mountainous pastures; nor could dray-horses have been raised on a barren and inhospitable land, such as the Falkland Islands, where even the light horses of La Plata rapidly decrease in size. It seems impossible to preserve several English breeds of sheep in France; for as soon as the lambs are weaned their vigour decays as the heat of the summer increases (21/42. Malingie-Nouel ‘Journal R. Agricult. Soc.’ volume 14 1853 pages 215, 217.): it would be impossible to give great length of wool to sheep within the tropics; yet selection has kept the Merino breed nearly true under diversified and unfavourable conditions. The power of selection is so great, that breeds of the dog, sheep, and poultry, of the largest and smallest size, long and short beaked pigeons, and other breeds with opposite characters, have had their characteristic qualities augmented, though treated in every way alike, being exposed to the same climate and fed on the same food. Selection, however, is either checked or favoured by the effects of use or habit. Our wonderfully- improved pigs could never have been formed if they had been forced to search for their own food; the English racehorse and greyhound could not have been improved up to their present high standard of excellence without constant training.

As conspicuous deviations of structure occur rarely, the improvement of each breed is generally the result of the selection of slight individual differences. Hence the closest attention, the sharpest powers of observation, and indomitable perseverance, are indispensable. It is, also, highly important that many individuals of the breed which is to be improved should be raised; for thus there will be a better chance of the appearance of variations in the right direction, and individuals varying in an unfavourable manner may be freely rejected or destroyed. But that a large number of individuals should be raised, it is necessary that the conditions of life should favour the propagation of the species. Had the peacock been reared as easily as the fowl, we should probably ere this have had many distinct races. We see the importance of a large number of plants, from the fact of nursery gardeners almost always beating amateurs in the exhibition of new varieties. In 1845 it was estimated (21/43. Gardener’s Chronicle’ 1845 page 273.) that between 4000 and 5000 pelargoniums were annually raised from seed in England, yet a decidedly improved variety is rarely obtained. At Messrs. Carter’s grounds, in Essex, where such flowers as the Lobelia, Nemophila, Mignonette, etc., are grown by the acre for seed, “scarcely a season passes without some new kinds being raised, or some improvement effected on old kinds.” (21/44. ‘Journal of Horticulture’ 1862 page 157.) At Kew, as Mr. Beaton remarks, where many seedlings of common plants are raised, “you see new forms of Laburnums, Spiraeas, and other shrubs.” (21/45. ‘Cottage Gardener’ 1860 page 368.) So with animals: Marshall (21/46. ‘A Review of Reports’ 1808 page 406.), in speaking of the sheep in one part of Yorkshire, remarks, “as they belong to poor people, and are mostly in small lots, they never can be improved.” Lord Rivers, when asked how he succeeded in always having first-rate greyhounds, answered, “I breed many, and hang many.” This, as another man remarks, “was the secret of his success; and the same will be found in exhibiting fowls,– successful competitors breed largely, and keep the best.” (21/47. ‘Gardener’s Chronicle’ 1853 page 45.)

It follows from this that the capacity of breeding at an early age and at short intervals, as with pigeons, rabbits, etc., facilitates selection; for the result is thus soon made visible, and perseverance in the work encouraged. It can hardly be an accident that the great majority of the culinary and agricultural plants which have yielded numerous races are annuals or biennials, which therefore are capable of rapid propagation, and thus of improvement. Sea-kale, asparagus, common and Jerusalem artichokes, potatoes, and onions, must be excepted, as they are perennials: but onions are propagated like annuals, and of the other plants just specified, none, with the exception of the potato, have yielded in this country more than one or two varieties. In the Mediterranean region, where artichokes are often raised from seed, there are several kinds, as I hear from Mr. Bentham. No doubt fruit- trees, which cannot be propagated quickly by seed, have yielded a host of varieties, though not permanent races; but these, judging from prehistoric remains, have been produced at a comparatively late period.

A species may be highly variable, but distinct races will not be formed, if from any cause selection be not applied. It would be difficult to select slight variations in fishes from their place of habitation; and though the carp is extremely variable and is much attended to in Germany, only one well- marked race has been formed, as I hear from Lord A. Russell, namely the spiegel-carpe; and this is carefully secluded from the common scaly kind. On the other hand, a closely allied species, the gold-fish, from being reared in small vessels, and from having been carefully attended to by the Chinese, has yielded many races. Neither the bee, which has been semi-domesticated from an extremely remote period, nor the cochineal insect, which was cultivated by the aboriginal Mexicans (21/48. Isidore Geoffroy Saint-Hilaire ‘Hist. Nat. Gen.’ tome 3 page 49. ‘On the Cochineal Insect’ page 46.), has yielded races; and it would be impossible to match the queen-bee with any particular drone, and most difficult to match cochineal insects. Silk-moths, on the other hand, have been subjected to rigorous selection, and have produced a host of races. Cats, which from their nocturnal habits cannot be selected for breeding, do not, as formerly remarked, yield distinct races within the same country. Dogs are held in abomination in the East, and their breeding is neglected; consequently, as Prof. Moritz Wagner (21/49. ‘Die Darwin’sche Theorie und das Migrationsgesetz der Organismen’ 1868 page 19.) remarks, one kind alone exists there. The ass in England varies much in colour and size; but as it is an animal of little value and bred by poor people, there has been no selection, and distinct races have not been formed. We must not attribute the inferiority of our asses to climate, for in India they are of even smaller size than in Europe. But when selection is brought to bear on the ass, all is changed. Near Cordova, as I am informed (February 1860) by Mr. W.E. Webb, C.E., they are carefully bred, as much as 200 pounds having been paid for a stallion ass, and they have been immensely improved. In Kentucky, asses have been imported (for breeding mules) from Spain, Malta, and France; these “seldom averaged more than fourteen hands high: but the Kentuckians, by great care, have raised them up to fifteen hands, and sometimes even to sixteen. The prices paid for these splendid animals, for such they really are, will prove how much they are in request. One male, of great celebrity, was sold for upwards of one thousand pounds sterling.” These choice asses are sent to cattle-shows, a day being given for their exhibition. (21/50. Capt. Marryat quoted by Blyth in ‘Journ. Asiatic Soc. of Bengal’ volume 28 page 229.)

Analogous facts have been observed with plants: the nutmeg-tree in the Malay archipelago is highly variable, but there has been no selection, and there are no distinct races. (21/51. Mr. Oxley ‘Journal of the Indian Archipelago’ volume 2 1848 page 645.) The common mignonette (Reseda odorata), from bearing inconspicuous flowers, valued solely for their fragrance, “remains in the same unimproved condition as when first introduced.” (21/52. Mr. Abbey ‘Journal of Horticulture’ December 1, 1863 page 430.) Our common forest-trees are very variable, as may be seen in every extensive nursery-ground; but as they are not valued like fruit-trees, and as they seed late in life, no selection has been applied to them; consequently, as Mr. Patrick Matthews remarks (21/53. ‘On Naval Timber’ 1831 page 107.), they have not yielded distinct races, leafing at different periods, growing to different sizes, and producing timber fit for different purposes. We have gained only some fanciful and semi- monstrous varieties, which no doubt appeared suddenly as we now see them.

Some botanists have argued that plants cannot have so strong a tendency to vary as is generally supposed, because many species long grown in botanic gardens, or unintentionally cultivated year after year mingled with our corn crops, have not produced distinct races; but this is accounted for by slight variations not having been selected and propagated. Let a plant which is now grown in a botanic garden, or any common weed, be cultivated on a large scale, and let a sharp-sighted gardener look out for each slight variety and sow the seed, and then, if distinct races are not produced, the argument will be valid.

The importance of selection is likewise shown by considering special characters. For instance, with most breeds of fowls the form of the comb and the colour of the plumage have been attended to, and are eminently characteristic of each race; but in Dorkings fashion has never demanded uniformity of comb or colour; and the utmost diversity in these respects prevails. Rose-combs, double-combs, cup-combs, etc., and colours of all kinds, may be seen in purely bred and closely related Dorking fowls, whilst other points, such as the general form of body, and the presence of an additional toe, have been attended to, and are invariably present. It has also been ascertained that colour can be fixed in this breed, as well as in any other. (21/54. Mr. Baily in ‘The Poultry Chronicle’ volume 2 1854 page 150. Also volume 1 page 342; volume 3 page 245.)

During the formation or improvement of a breed, its members will always be found to vary much in those characters to which especial attention is directed, and of which each slight improvement is eagerly sought and selected. Thus, with short-faced tumbler-pigeons, the shortness of the beak, shape of head and plumage,–with carriers, the length of the beak and wattle,–with fantails, the tail and carriage,–with Spanish fowls, the white face and comb,–with long-eared rabbits, the length of ear, are all points which are eminently variable. So it is in every case; and the large price paid for first-rate animals proves the difficulty of breeding them up to the highest standard of excellence. This subject has been discussed by fanciers (21/55. ‘Cottage Gardener’ 1855 December page 171; 1856 January pages 248, 323.), and the greater prizes given for highly improved breeds, in comparison with those given for old breeds which are not now undergoing rapid improvement, have been fully justified. Nathusius makes (21/56. ‘Ueber Shorthorn Rindvieh’ 1857 s. 51.) a similar remark when discussing the less uniform character of improved Shorthorn cattle and of the English horse, in comparison, for example, with the unennobled cattle of Hungary, or with the horses of the Asiatic steppes. This want of uniformity in the parts which at the time are undergoing selection chiefly depends on the strength of the principle of reversion; but it likewise depends to a certain extent on the continued variability of the parts which have recently varied. That the same parts do continue varying in the same manner we must admit, for if it were not so, there could be no improvement beyond an early standard of excellence, and we know that such improvement is not only possible, but is of general occurrence.

As a consequence of continued variability, and more especially of reversion, all highly improved races, if neglected or not subjected to incessant selection, soon degenerate. Youatt gives a curious instance of this in some cattle formerly kept in Glamorganshire; but in this case the cattle were not fed with sufficient care. Mr. Baker, in his memoir on the Horse, sums up: “It must have been observed in the preceding pages that, whenever there has been neglect, the breed has proportionally deteriorated.” (21/57. ‘The Veterinary’ volume 13 page 720. For the Glamorganshire cattle see Youatt on ‘Cattle’ page 51.) If a considerable number of improved cattle, sheep, or other animals of the same race, were allowed to breed freely together, with no selection, but with no change in their condition of life, there can be no doubt that after a score or hundred generations they would be very far from excellent of their kind; but, from what we see of the many common races of dogs, cattle, fowls, pigeons, etc., which without any particular care have long retained nearly the same character, we have no grounds for believing that they would altogether depart from their type.

It is a general belief amongst breeders that characters of all kinds become fixed by long-continued inheritance. But I have attempted to show in the fourteenth chapter that this belief apparently resolves itself into the following proposition, namely, that all characters whatever, whether recently acquired or ancient, tend to be transmitted, but that those which have already long withstood all counteracting influences, will, as a general rule, continue to withstand them, and consequently be faithfully transmitted.

TENDENCY IN MAN TO CARRY THE PRACTICE OF SELECTION TO AN EXTREME POINT.

It is an important principle that in the process of selection man almost invariably wishes to go to an extreme point. Thus, there is no limit to his desire to breed certain kinds of horses and dogs as fleet as possible, and others as strong as possible; certain kinds of sheep for extreme fineness, and others for extreme length of wool; and he wishes to produce fruit, grain, tubers, and other useful parts of plants, as large and excellent as possible. With animals bred for amusement, the same principle is even more powerful; for fashion, as we see in our dress, always runs to extremes. This view has been expressly admitted by fanciers. Instances were given in the chapters on the pigeon, but here is another: Mr. Eaton, after describing a comparatively new variety, namely, the Archangel, remarks, “What fanciers intend doing with this bird I am at a loss to know, whether they intend to breed it down to the tumbler’s head and beak, or carry it out to the carrier’s head and beak; leaving it as they found it, is not progressing.” Ferguson, speaking of fowls, says, “their peculiarities, whatever they may be, must necessarily be fully developed: a little peculiarity forms nought but ugliness, seeing it violates the existing laws of symmetry.” So Mr. Brent, in discussing the merits of the sub-varieties of the Belgian canary-bird, remarks, “Fanciers always go to extremes; they do not admire indefinite properties.” (21/58. J.M. Eaton ‘A Treatise on Fancy Pigeons’ page 82; Ferguson on ‘Rare and Prize Poultry’ page 162; Mr. Brent in ‘Cottage Gardener’ October 1860 page 13.)

This principle, which necessarily leads to divergence of character, explains the present state of various domestic races. We can thus see how it is that racehorses and dray-horses, greyhounds and mastiffs, which are opposed to each other in every character,–how varieties so distinct as Cochin-china fowls and bantams, or carrier-pigeons with very long beaks, and tumblers with excessively short beaks, have been derived from the same stock. As each breed is slowly improved, the inferior varieties are first neglected and finally lost. In a few cases, by the aid of old records, or from intermediate varieties still existing in countries where other fashions have prevailed, we are enabled partially to trace the graduated changes through which certain breeds have passed. Selection, whether methodical or unconscious, always tending towards an extreme point, together with the neglect and slow extinction of the intermediate and less-valued forms, is the key which unlocks the mystery of how man has produced such wonderful results.

In a few instances selection, guided by utility for a single purpose, has led to convergence of character. All the improved and different races of the pig, as Nathusius has well shown (21/59. ‘Die Racen des Schweines’ 1860 s. 48.), closely approach each other in character, in their shortened legs and muzzles, their almost hairless, large, rounded bodies, and small tusks. We see some degree of convergence in the similar outline of the body in well-bred cattle belonging to distinct races. (21/60. See some good remarks on this head by M. de Quatrefages ‘Unite de l’Espece Humaine’ 1861 page 119.) I know of no other such cases.

Continued divergence of character depends on, and is indeed a clear proof, as previously remarked, of the same parts continuing to vary in the same direction. The tendency to mere general variability or plasticity of organisation can certainly be inherited, even from one parent, as has been shown by Gartner and Kolreuter, in the production of varying hybrids from two species, of which one alone was variable. It is in itself probable that, when an organ has varied in any manner, it will again vary in the same manner, if the conditions which first caused the being to vary remain, as far as can be judged, the same. This is either tacitly or expressly admitted by all horticulturists: if a gardener observes one or two additional petals in a flower, he feels confident that in a few generations he will be able to raise a double flower, crowded with petals. Some of the seedlings from the weeping Moccas oak were so prostrate that they only crawled along the ground. A seedling from the fastigiate or upright Irish yew is described as differing greatly from the parent-form “by the exaggeration of the fastigiate habit of its branches.” (21/61. Verlot ‘Des Varietes’ 1865 page 94.) Mr. Shirreff, who has been highly successful in raising new kinds of wheat, remarks, “A good variety may safely be regarded as the forerunner of a better one.” (21/62. Mr. Patrick Shirreff ‘Gardener’s Chronicle’ 1858 page 771.) A great rose-grower, Mr. Rivers, has made the same remark with respect to roses. Sageret (21/63. ‘Pomologie Physiolog.’ 1830 page 106.), who had large experience, in speaking of the future progress of fruit-trees, observes that the most important principle is “that the more plants have departed from their original type, the more they tend to depart from it.” There is apparently much truth in this remark; for we can in no other way understand the surprising amount of difference between varieties in the parts or qualities which are valued, whilst other parts retain nearly their original character.

The foregoing discussion naturally leads to the question, what is the limit to the possible amount of variation in any part or quality, and, consequently, is there any limit to what selection can effect? Will a racehorse ever be reared fleeter than Eclipse? Can our prize-cattle and sheep be still further improved? Will a gooseberry ever weigh more than that produced by “London” in 1852? Will the beet-root in France yield a greater percentage of sugar? Will future varieties of wheat and other grain produce heavier crops than our present varieties? These questions cannot be positively answered; but it is certain that we ought to be cautious in answering them by a negative. In some lines of variation the limit has probably been reached. Youatt believes that the reduction of bone in some of our sheep has already been carried so far that it entails great delicacy of constitution. (21/64. Youatt on ‘Sheep’ page 521.) But seeing the great improvement within recent times in our cattle and sheep, and especially in our pigs; seeing the wonderful increase in weight in our poultry of all kinds during the last few years; he would be a bold man who would assert that perfection has been reached. It has often been said that Eclipse never was, and never will be, beaten in speed by any other horse; but on making inquiries I find that the best judges believe that our present racehorses are fleeter. (21/65. See also Stonehenge ‘British Rural Sports’ edition of 1871 page 384.) The attempt to raise a new variety of wheat more productive than the many old kinds, might have been thought until lately quite hopeless; but this has been effected by Major Hallett, by careful selection. With respect to almost all our animals and plants, those who are best qualified to judge do not believe that the extreme point of perfection has yet been reached even in the characters which have already been carried to a high standard. For instance, the short-faced tumbler-pigeon has been greatly modified; nevertheless, according to Mr. Eaton (21/66. ‘A Treatise on the Almond Tumbler’ page 1.) “the field is still as open for fresh competitors as it was one hundred years ago.” Over and over again it has been said that perfection had been attained with our flowers, but a higher standard has soon been reached. Hardly any fruit has been more improved than the strawberry, yet a great authority remarks (21/67. M. J. de Jonghe in ‘Gardener’s Chronicle’ 1858 page 173.), “it must not be concealed that we are far from the extreme limits at which we may arrive.”

No doubt there is a limit beyond which the organisation cannot be modified compatibly with health or life. The extreme degree of fleetness, for instance, of which a terrestrial animal is capable, may have been acquired by our present racehorses; but as Mr. Wallace has well remarked (21/68. ‘Contributions to the Theory of Natural Selection’ 2nd edition 1871 page 292.), the question that interests us, “is not whether indefinite and unlimited change in any or all directions is possible, but whether such differences as do occur in nature could have been produced by the accumulation of varieties by selection.” And in the case of our domestic productions, there can be no doubt that many parts of the organisation, to which man has attended, have been thus modified to a greater degree than the corresponding parts in the natural species of the same genera or even families. We see this in the form and size of our light and heavy dogs or horses,–in the beak and many other characters of our pigeons,–in the size and quality of many fruits,–in comparison with the species belonging to the same natural groups.

Time is an important element in the formation of our domestic races, as it permits innumerable individuals to be born, and these when exposed to diversified conditions are rendered variable. Methodical selection has been occasionally practised from an ancient period to the present day, even by semi-civilised people, and during former times will have produced some effect. Unconscious selection will have been still more effective; for during a lengthened period the more valuable individual animals will occasionally have been saved, and the less valuable neglected. In the course of time, different varieties, especially in the less civilised countries, will also have been more or less modified through natural selection. It is generally believed, though on this head we have little or no evidence, that new characters in time become fixed; and after having long remained fixed it seems possible that under new conditions they might again be rendered variable.

How great the lapse of time has been since man first domesticated animals and cultivated plants, we begin dimly to see. When the lake-dwellings of Switzerland were inhabited during the Neolithic period, several animals were already domesticated and various plants cultivated. The science of language tells us that the art of ploughing and sowing the land was followed, and the chief animals had been already domesticated, at an epoch so immensely remote, that the Sanskrit, Greek, Latin, Gothic, Celtic, and Sclavonic languages had not as yet diverged from their common parent-tongue. (21/69. Max Muller ‘Science of Language’ 1861 page 223.)

It is scarcely possible to overrate the effects of selection occasionally carried on in various ways and places during thousands of generations. All that we know, and, in a still stronger degree, all that we do not know (21/70. ‘Youatt on Cattle’ pages 116, 128.), of the history of the great majority of our breeds, even of our more modern breeds, agrees with the view that their production, through the action of unconscious and methodical selection, has been almost insensibly slow. When a man attends rather more closely than is usual to the breeding of his animals, he is almost sure to improve them to a slight extent. They are in consequence valued in his immediate neighbourhood, and are bred by others; and their characteristic features, whatever these may be, will then slowly but steadily be increased, sometimes by methodical and almost always by unconscious selection. At last a strain, deserving to be called a sub-variety, becomes a little more widely known, receives a local name, and spreads. The spreading will have been extremely slow during ancient and less civilised times, but now is rapid. By the time that the new breed had assumed a somewhat distinct character, its history, hardly noticed at the time, will have been completely forgotten; for, as Low remarks (21/71. ‘Domesticated Animals’ page 188.), “we know how quickly the memory of such events is effaced.”

As soon as a new breed is thus formed, it is liable through the same process to break up into new strains and sub-varieties. For different varieties are suited for, and are valued under, different circumstances. Fashion changes, but, should a fashion last for even a moderate length of time, so strong is the principle of inheritance, that some effect will probably be impressed on the breed. Thus varieties go on increasing in number, and history shows us how wonderfully they have increased since the earliest records. (21/72. Volz ‘Beitrage zur Kulturgeschichte’ 1852 s. 99 et passim.) As each new variety is produced, the earlier, intermediate, and less valuable forms will be neglected, and perish. When a breed, from not being valued, is kept in small numbers, its extinction almost inevitably follows sooner or later, either from accidental causes of destruction or from close interbreeding; and this is an event which, in the case of well-marked breeds, excites attention. The birth or production of a new domestic race is so slow a process that it escapes notice; its death or destruction is comparatively sudden, is often recorded, and when too late sometimes regretted.

Several authors have drawn a wide distinction between artificial and natural races. The latter are more uniform in character, possessing in a high degree the appearance of natural species, and are of ancient origin. They are generally found in less civilised countries, and have probably been largely modified by natural selection, and only to a small extent by man’s unconscious and methodical selection. They have, also, during a long period, been directly acted on by the physical conditions of the countries which they inhabit. The so-called artificial races, on the other hand, are not so uniform in character; some have a semi-monstrous character, such as “the wry-legged terriers so useful in rabbit-shooting” (21/73. Blaine ‘Encyclop. of Rural Sports’ page 213.), turnspit dogs, ancon sheep, niata oxen, Polish fowls, fantail-pigeons, etc.; their characteristic features have generally been acquired suddenly, though subsequently increased by careful selections in many cases. Other races, which certainly must be called artificial, for they have been largely modified by methodical selection and by crossing, as the English racehorse, terrier-dogs, the English game-cock, Antwerp carrier-pigeons, etc., nevertheless cannot be said to have an unnatural appearance; and no distinct line, as it seems to me, can be drawn between natural and artificial races.

It is not surprising that domestic races should generally present a different aspect from natural species. Man selects and propagates modifications solely for his own use or fancy, and not for the creature’s own good. His attention is struck by strongly marked modifications, which have appeared suddenly, due to some great disturbing cause in the organisation. He attends almost exclusively to external characters; and when he succeeds in modifying internal organs,–when for instance he reduces the bones and offal, or loads the viscera with fat, or gives early maturity, etc.-the chances are strong that he will at the same time weaken the constitution. On the other hand, when an animal has to struggle throughout its life with many competitors and enemies, under circumstances inconceivably complex and liable to change, modifications of the most varied nature in the internal organs as well as in external characters, in the functions and mutual relations of parts, will be rigorously tested, preserved, or rejected. Natural selection often checks man’s comparatively feeble and capricious attempts at improvement; and if it were not so, the result of his work, and of nature’s work, would be even still more different. Nevertheless, we must not overrate the amount of difference between natural species and domestic races; the most experienced naturalists have often disputed whether the latter are descended from one or from several aboriginal stocks, and this clearly shows that there is no palpable difference between species and races.

Domestic races propagate their kind far more truly, and endure for munch longer periods, than most naturalists are willing to admit. Breeders feel no doubt on this head: ask a man who has long reared Shorthorn or Hereford cattle, Leicester or Southdown sheep, Spanish or Game poultry, tumbler or carrier-pigeons, whether these races may not have been derived from common progenitors, and he will probably laugh you to scorn. The breeder admits that he may hope to produce sheep with finer or longer wool and with better carcases, or handsomer fowls, or carrier-pigeons with beaks just perceptibly longer to the practised eye, and thus be successful at an exhibition. Thus far he will go, but no farther. He does not reflect on what follows from adding up during a long course of time many slight, successive modifications; nor does he reflect on the former existence of numerous varieties, connecting the links in each divergent line of descent. He concludes, as was shown in the earlier chapters, that all the chief breeds to which he has long attended are aboriginal productions. The systematic naturalist, on the other hand, who generally knows nothing of the art of breeding, who does not pretend to know how and when the several domestic races were formed, who cannot have seen the intermediate gradations, for they do not now exist, nevertheless feels no doubt that these races are sprung from a single source. But ask him whether the closely allied natural species which he has studied may not have descended from a common progenitor, and he in his turn will perhaps reject the notion with scorn. Thus the naturalist and breeder may mutually learn a useful lesson from each other.

SUMMARY ON SELECTION BY MAN. — There can be no doubt that methodical selection has effected and will effect wonderful results. It was occasionally practised in ancient times, and is still practised by semi-civilised people. Characters of the highest importance, and others of trifling value, have been attended to, and modified. I need not here repeat what has been so often said on the part which unconscious selection has played: we see its power in the difference between flocks which have been separately bred, and in the slow changes, as circumstances have slowly changed, which many animals have undergone in the same country, or when transported into a foreign land. We see the combined effects of methodical and unconscious selection, in the great amount of difference in those parts or qualities which are valued by man in comparison with the parts which are not valued, and consequently have not been attended to. Natural selection often determines man’s power of selection. We sometimes err in imagining that characters, which are considered as unimportant by the systematic naturalist, could not be affected by the struggle for existence, and could not be acted on by natural selection; but striking cases have been given, showing how great an error this is.

The possibility of selection coming into action rests on variability; and this is mainly caused, as we shall hereafter see, by changes in the conditions of life. Selection is sometimes rendered difficult, or even impossible, by the conditions being opposed to the desired character or quality. It is sometimes checked by the lessened fertility and weakened constitution which follow from long-continued close interbreeding. That methodical selection may be successful, the closest attention and discernment, combined with unwearied patience, are absolutely necessary; and these same qualities, though not indispensable, are highly serviceable in the case of unconscious selection. It is almost necessary that a large number of individuals should be reared; for thus there will be a fair chance of variations of the desired nature arising, and of every individual with the slightest blemish or in any degree inferior being freely rejected. Hence length of time is an important element of success. Thus, also, reproduction at an early age and at short intervals favours the work. Facility in pairing animals, or their inhabiting a confined area, is advantageous as a check to free crossing. Whenever and wherever selection is not practised, distinct races are not formed within the same country. When any one part of the body or one quality is not attended to, it remains either unchanged or varies in a fluctuating manner, whilst at the same time other parts and other qualities may become permanently and greatly modified. But from the tendency to reversion and to continued variability, those parts or organs which are now undergoing rapid improvement through selection, are likewise found to vary much. Consequently highly-bred animals when neglected soon degenerate; but we have no reason to believe that the effects of long-continued selection would, if the conditions of life remained the same, be soon and completely lost.

Man always tends to go to an extreme point in the selection, whether methodical or unconscious, of all useful and pleasing qualities. This is an important principle, as it leads to continued divergence, and in some rare cases to convergence of character. The possibility of continued divergence rests on the tendency in each part or organ to go on varying in the same manner in which it has already varied; and that this occurs, is proved by the steady and gradual improvement of many animals and plants during lengthened periods. The principle of divergence of character, combined with the neglect and final extinction of all previous, less-valued, and intermediate varieties, explains the amount of difference and the distinctness of our several races. Although we may have reached the utmost limit to which certain characters can be modified, yet we are far from having reached, as we have good reason to believe, the limit in the majority of cases. Finally, from the difference between selection as carried on by man and by nature, we can understand how it is that domestic races often, though by no means always, differ in general aspect from closely allied natural species.

Throughout this chapter and elsewhere I have spoken of selection as the paramount power, yet its action absolutely depends on what we in our ignorance call spontaneous or accidental variability. Let an architect be compelled to build an edifice with uncut stones, fallen from a precipice. The shape of each fragment may be called accidental; yet the shape of each has been determined by the force of gravity, the nature of the rock, and the slope of the precipice,–events and circumstances, all of which depend on natural laws; but there is no relation between these laws and the purpose for which each fragment is used by the builder. In the same manner the variations of each creature are determined by fixed and immutable laws; but these bear no relation to the living structure which is slowly built up through the power of selection, whether this be natural or artificial selection.

If our architect succeeded in rearing a noble edifice, using the rough wedge- shaped fragments for the arches, the longer stones for the lintels, and so forth, we should admire his skill even in a higher degree than if he had used stones shaped for the purpose. So it is with selection, whether applied by man or by nature; for although variability is indispensably necessary, yet, when we look at some highly complex and excellently adapted organism, variability sinks to a quite subordinate position in importance in comparison with selection, in the same manner as the shape of each fragment used by our supposed architect is unimportant in comparison with his skill.

CHAPTER 2. XXII. CAUSES OF VARIABILITY.

We will now consider, as far as we can, the causes of the almost universal variability of our domesticated productions. The subject is an obscure one; but it may be useful to probe our ignorance. Some authors, for instance Dr. Prosper Lucas, look at variability as a necessary contingent on reproduction, and as much an aboriginal law as growth or inheritance. Others have of late encouraged, perhaps unintentionally, this view by speaking of inheritance and variability as equal and antagonistic principles. Pallas maintained, and he has had some followers, that variability depends exclusively on the crossing of primordially distinct forms. Other authors attribute variability to an excess of food, and with animals to an excess relatively to the amount of exercise taken, or again to the effects of a more genial climate. That these causes are all effective is highly probable. But we must, I think, take a broader view, and conclude that organic beings, when subjected during several generations to any change whatever in their conditions, tend to vary; the kind of variation which ensues depending in most cases in a far higher degree on the nature or constitution of the being, than on the nature of the changed conditions.

Those authors who believe that it is a law of nature that each individual should differ in some slight degree from every other, may maintain, apparently with truth, that this is the fact, not only with all domesticated animals and cultivated plants, but likewise with all organic beings in a state of nature. The Laplander by long practice knows and gives a name to each reindeer, though, as Linnaeus remarks, “to distinguish one from another among such multitudes was beyond my comprehension, for they were like ants on an anthill.” In Germany shepherds have won wagers by recognising each sheep in a flock of a hundred, which they had never seen until the previous fortnight. This power of discrimination, however, is as nothing compared to that which some florists have acquired. Verlot mentions a gardener who could distinguish 150 kinds of camellia, when not in flower; and it has been positively asserted that the famous old Dutch florist Voorhelm, who kept above 1200 varieties of the hyacinth, was hardly ever deceived in knowing each variety by the bulb alone. Hence we must conclude that the bulbs of the hyacinth and the branches and leaves of the camellia, though appearing to an unpractised eye absolutely undistinguishable, yet really differ. (22/1. ‘Des Jacinthes’ etc. Amsterdam 1768 page 43; Verlot ‘Des Varietes’ etc. page 86. On the reindeer see Linnaeus ‘Tour in Lapland’ translated by Sir J.E. Smith volume 1 page 314. The statement in regard to German shepherds is given on the authority of Dr. Weinland.)

As Linnaeus has compared the reindeer in number to ants, I may add that each ant knows its fellow of the same community. Several times I carried ants of the same species (Formica rufa) from one ant-hill to another, inhabited apparently by tens of thousands of ants; but the strangers were instantly detected and killed. I then put some ants taken from a very large nest into a bottle strongly perfumed with assafoetida, and after an interval of twenty- four hours returned them to their home; they were at first threatened by their fellows, but were soon recognised and allowed to pass. Hence each ant certainly recognised, independently of odour, its fellow; and if all the ants of the same community have not some countersign or watchword, they must present to each other’s senses some distinguishable character.

The dissimilarity of brothers or sisters of the same family, and of seedlings from the same capsule, may be in part accounted for by the unequal blending of the characters of the two parents, and by the more or less complete recovery through reversion of ancestral characters on either side; but we thus only push the difficulty further back in time, for what made the parents or their progenitors different? Hence the belief (22/2. Muller ‘Physiology’ English translation, volume 2 page 1662. With respect to the similarity of twins in constitution, Dr. William Ogle has given me the following extract from Professor Trousseau’s Lectures ‘Clinique Medicale’ tome 1 page 523, in which a curious case is recorded:–“J’ai donne mes soins a deux freres jumeaux, tous deux si extraordinairement ressemblants qu’il m’etait impossible de les reconnaitre, a moin de les voir l’un a cote de l’autre. Cette ressemblance physique s’etendait plus loin: ils avaient, permettez-moi l’expression, une similitude pathologique plus remarquable encore. Ainsi l’un d’eux que je voyais aux neothermes a Paris malade d’une ophthalmie rhumatismale me disait, ‘En ce moment mon frere doit avoir une ophthalmie comme la mienne;’ et comme je m’etais recrie, il me montrait quelques jours apres une lettre qu’il venait de recevoir de ce frere alors a Vienne, et qui lui ecrivait en effet–‘J’ai mon ophthalmie, tu dois avoir la tienne.’ Quelque singulier que ceci puisse paraitre, le fait n’en est pas moins exact: on ne me l’a pas raconte, je l’ai vu, et j’en ai vu d’autres analogues dans ma pratique. Ces deux jumeaux etaient aussi tous deux asthmatiques, et asthmatiques a un effroyable degre. Originaires de Marseille, ils n’ont jamais pu demeurer dans cette ville, ou leurs interets les appelaient souvent, sans etre pris de leurs acces; jamais ils n’en eprouvaient a Paris. Bien mieux, il leur suffisait de gagner Toulon pour etre gueris de leurs attaques de Marseille. Voyageant sans cesse et dans tous pays pour leurs affaires, ils avaient remarque que certaines localites leur etaient funestes, que dans d’autres ils etaient exempts de tout phenomene d’oppression.”) that an innate tendency to vary exists, independently of external differences, seems at first sight probable. But even the seeds nurtured in the same capsule are not subjected to absolutely uniform conditions, as they draw their nourishment from different points; and we shall see in a future chapter that this difference sometimes suffices to affect the character of the future plant. The greater dissimilarity of the successive children of the same family in comparison with twins, which often resemble each other in external appearance, mental disposition, and constitution, in so extraordinary a manner, apparently proves that the state of the parents at the exact period of conception, or the nature of the subsequent embryonic development, has a direct and powerful influence on the character of the offspring. Nevertheless, when we reflect on the individual differences between organic beings in a state of nature, as shown by every wild animal knowing its mate; and when we reflect on the infinite diversity of the many varieties of our domesticated productions, we may well be inclined to exclaim, though falsely as I believe, that Variability must be looked at as an ultimate fact, necessarily contingent on reproduction.

Those authors who adopt this latter view would probably deny that each separate variation has its own proper exciting cause. Although we can seldom trace the precise relation between cause and effect, yet the considerations presently to be given lead to the conclusion that each modification must have its own distinct cause, and is not the result of what we blindly call accident. The following striking case has been communicated to me by Dr. William Ogle. Two girls, born as twins, and in all respects extremely alike, had their little fingers on both hands crooked; and in both children the second bicuspid tooth of the second dentition on the right side in the upper jaw was misplaced; for, instead of standing in a line with the others, it grew from the roof of the mouth behind the first bicuspid. Neither the parents nor any other members of the family were known to have exhibited any similar peculiarity; but a son of one of these girls had the same tooth similarly misplaced. Now, as both the girls were affected in exactly the same manner, the idea of accident is at once excluded: and we are compelled to admit that there must have existed some precise and sufficient cause which, if it had occurred a hundred times, would have given crooked fingers and misplaced bicuspid teeth to a hundred children. It is of course possible that this case may have been due to reversion to some long-forgotten progenitor, and this would much weaken the value of the argument. I have been led to think of the probability of reversion, from having been told by Mr. Galton of another case of twin girls born with their little fingers slightly crooked, which they inherited from their maternal grandmother.

We will now consider the general arguments, which appear to me to have great weight, in favour of the view that variations of all kinds and degrees are directly or indirectly caused by the conditions of life to which each being, and more especially its ancestors, have been exposed.

No one doubts that domesticated productions are more variable than organic beings which have never been removed from their natural conditions. Monstrosities graduate so insensibly into mere variations that it is impossible to separate them; and all those who have studied monstrosities believe that they are far commoner with domesticated than with wild animals and plants (22/3. Isid. Geoffroy St.-Hilaire ‘Hist. des Anomalies’ tome 3 page 352; Moquin-Tandon ‘Teratologie Vegetale’ 1841 page 115.); and in the case of plants, monstrosities would be equally noticeable in the natural as in the cultivated state. Under nature, the individuals of the same species are exposed to nearly uniform conditions, for they are rigorously kept to their proper places by a host of competing animals and plants; they have, also, long been habituated to their conditions of life; but it cannot be said that they are subject to quite uniform conditions, and they are liable to a certain amount of variation. The circumstances under which our domestic productions are reared are widely different: they are protected from competition; they have not only been removed from their natural conditions and often from their native land, but they are frequently carried from district to district, where they are treated differently, so that they rarely remain during any considerable length of time exposed to closely similar conditions. In conformity with this, all our domesticated productions, with the rarest exceptions, vary far more than natural species. The hive-bee, which feeds itself and follows in most respects its natural habits of life, is the least variable of all domesticated animals, and probably the goose is the next least variable; but even the goose varies more than almost any wild bird, so that it cannot be affiliated with perfect certainty to any natural species. Hardly a single plant can be named, which has long been cultivated and propagated by seed, that is not highly variable; common rye (Secale cereale) has afforded fewer and less marked varieties than almost any other cultivated plant (22/4. Metzger ‘Die Getreidarten’ 1841 s. 39.); but it may be doubted whether the variations of this, the least valuable of all our cereals, have been closely observed.

Bud-variation, which was fully discussed in a former chapter, shows us that variability may be quite independent of seminal reproduction, and likewise of reversion to long-lost ancestral characters. No one will maintain that the sudden appearance of a moss-rose on a Provence-rose is a return to a former state, for mossiness of the calyx has been observed in no natural species; the same argument is applicable to variegated and laciniated leaves; nor can the appearance of nectarines on peach-trees be accounted for on the principle of reversion. But bud-variations more immediately concern us, as they occur far more frequently on plants which have been highly cultivated during a length of time, than on other and less highly cultivated plants; and very few well- marked instances have been observed with plants growing under strictly natural conditions. I have given one instance of an ash-tree growing in a gentleman’s pleasure-grounds; and occasionally there may be seen, on beech and other trees, twigs leafing at a different period from the other branches. But our forest trees in England can hardly be considered as living under strictly natural conditions; the seedlings are raised and protected in nursery-grounds, and must often be transplanted into places where wild trees of the kind would not naturally grow. It would be esteemed a prodigy if a dog-rose growing in a hedge produced by bud-variation a moss-rose, or a wild bullace or wild cherry- tree yielded a branch bearing fruit of a different shape and colour from the ordinary fruit. The prodigy would be enhanced if these varying branches were found capable of propagation, not only by grafts, but sometimes by seed; yet analogous cases have occurred with many of our highly cultivated trees and herbs.

These several considerations alone render it probable that variability of every kind is directly or indirectly caused by changed conditions of life. Or, to put the case under another point of view, if it were possible to expose all the individuals of a species during many generations to absolutely uniform conditions of life, there would be no variability.

ON THE NATURE OF THE CHANGES IN THE CONDITIONS OF LIFE WHICH INDUCE VARIABILITY.

From a remote period to the present day, under climates and circumstances as different as it is possible to conceive, organic beings of all kinds, when domesticated or cultivated, have varied. We see this with the many domestic races of quadrupeds and birds belonging to different orders, with goldfish and silkworms, with plants of many kinds, raised in various quarters of the world. In the deserts of northern Africa the date-palm has yielded thirty-eight varieties; in the fertile plains of India it is notorious how many varieties of rice and of a host of other plants exist; in a single Polynesian island, twenty-four varieties of the bread-fruit, the same number of the banana, and twenty-two varieties of the arum, are cultivated by the natives; the mulberry- tree in India and Europe has yielded many varieties serving as food for the silkworm; and in China sixty-three varieties of the bamboo are used for various domestic purposes. (22/5. On the date-palm see Vogel ‘Annals and Mag. of Nat. Hist.’ 1854 page 460. On Indian varieties Dr. F. Hamilton ‘Transact. Linn. Soc.’ volume 14 page 296. On the varieties cultivated in Tahiti see Dr. Bennett in Loudon’s ‘Mag. of N. Hist.’ volume 5 1832 page 484. Also Ellis ‘Polynesian Researches’ volume 1 pages 370, 375. On twenty varieties of the Pandanus and other trees in the Marianne Island see ‘Hooker’s Miscellany’ volume 1 page 308. On the bamboo in China see Huc ‘Chinese Empire’ volume 2 page 307.) These facts, and innumerable others which could be added, indicate that a change of almost any kind in the conditions of life suffices to cause variability–different changes acting on different organisms.

Andrew Knight (22/6. ‘Treatise on the Culture of the Apple’ etc. page 3.) attributed the variation of both animals and plants to a more abundant supply of nourishment, or to a more favourable climate, than that natural to the species. A more genial climate, however, is far from necessary; the kidney- bean, which is often injured by our spring frosts, and peaches, which require the protection of a wall, have varied much in England, as has the orange-tree in northern Italy, where it is barely able to exist. (22/7. Gallesio ‘Teoria della Riproduzione Veg.’ page 125.) Nor can we overlook the fact, though not immediately connected with our present subject, that the plants and shells of the Arctic regions are eminently variable. (22/8. See Dr. Hooker’s Memoir on Arctic Plants in ‘Linn. Transact.’ volume 23 part 2. Mr. Woodward, and a higher authority cannot be quoted, speaks of the Arctic mollusca in his ‘Rudimentary Treatise’ 1856 page 355 as remarkably subject to variation.) Moreover, it does not appear that a change of climate, whether more or less genial, is one of the most potent causes of variability; for in regard to plants Alph. De Candolle, in his ‘Geographie Botanique’ repeatedly shows that the native country of a plant, where in most cases it has been longest cultivated, is that where it has yielded the greatest number of varieties.

It is doubtful whether a change in the nature of the food is a potent cause of variability. Scarcely any domesticated animal has varied more than the pigeon or the fowl, but their food, especially that of highly-bred pigeons, is generally the same. Nor can our cattle and sheep have been subjected to any great change in this respect. But in all these cases the food probably is much less varied in kind than that which was consumed by the species in its natural state. (22/9. Bechstein in his ‘Naturgeschichte der Stubenvogel’ 1840 s. 238, has some good remarks on this subject. He states that his canary-birds varied in colour, though kept on uniform food.)

Of all the causes which induce variability, excess of food, whether or not changed in nature, is probably the most powerful. This view was held with regard to plants by Andrew Knight, and is now held by Schleiden, more especially in reference to the inorganic elements of the food. (22/10. ‘The Plant’ by Schleiden translated by Henfrey 1848 page 169. See also Alex. Braun in ‘Bot. Memoirs’ Ray Soc. 1853 page 313.) In order to give a plant more food it suffices in most cases to grow it separately, and thus prevent other plants robbing its roots. It is surprising, as I have often seen, how vigorously our common wild species flourish when planted by themselves, though not in highly manured land; separate growth is, in fact, the first step in cultivation. We see the converse of the belief that excess of food induces variability in the following statement by a great raiser of seeds of all kinds (22/11. Messrs. Hardy and Son of Maldon in ‘Gardener’s Chronicle’ 1856 page 458. Carriere ‘Production et Fixation des Varietes’ 1865 page 31.): “It is a rule invariably with us, when we desire to keep a true stock of any one kind of seed, to grow it on poor land without dung; but when we grow for quantity, we act contrary, and sometimes have dearly to repent of it.” According also to Carriere, who has had great experience with flower-garden seeds, “On remarque en general les plantes de vigeur moyenne sont celles qui conservent le mieux leurs caracteres.”

In the case of animals the want of a proper amount of exercise, as Bechstein remarked, has perhaps played, independently of the direct effects of the disuse of any particular organ, an important part in causing variability. We can see in a vague manner that, when the organised and nutrient fluids of the body are not used during growth, or by the wear and tear of the tissues, they will be in excess; and as growth, nutrition, and reproduction are intimately allied processes, this superfluity might disturb the due and proper action of the reproductive organs, and consequently affect the character of the future offspring. But it may be argued that neither an excess of food nor a superfluity in the organised fluids of the body necessarily induces variability. The goose and the turkey have been well fed for many generations, yet have varied very little. Our fruit-trees and culinary plants, which are so variable, have been cultivated from an ancient period, and, though they probably still receive more nutriment than in their natural state, yet they must have received during many generations nearly the same amount; and it might be thought that they would have become habituated to the excess. Nevertheless, on the whole, Knight’s view, that excess of food is one of the most potent causes of variability, appears, as far as I can judge, probable.

Whether or not our various cultivated plants have received nutriment in excess, all have been exposed to changes of various kinds. Fruit-trees are grafted on different stocks, and grown in various soils. The seeds of culinary and agricultural plants are carried from place to place; and during the last century the rotation of our crops and the manures used have been greatly changed.

Slight changes of treatment often suffice to induce variability. The simple fact of almost all our cultivated plants and domesticated animals having varied in all places and at all times, leads to this conclusion. Seeds taken from common English forest-trees, grown under their native climate, not highly manured or otherwise artificially treated, yield seedlings which vary much, as may be seen in every extensive seed-bed. I have shown in a former chapter what a number of well-marked and singular varieties the thorn (Crataegus oxycantha) has produced: yet this tree has been subjected to hardly any cultivation. In Staffordshire I carefully examined a large number of two British plants, namely Geranium phaeum and pyrenaicum, which have never been highly cultivated. These plants had spread spontaneously by seed from a common garden into an open plantation; and the seedlings varied in almost every single character, both in their flower and foliage, to a degree which I have never seen exceeded; yet they could not have been exposed to any great change in their conditions.

With respect to animals, Azara has remarked with much surprise (22/12. ‘Quadrupedes du Paraguay’ 1801 tome 2 page 319.) that, whilst the feral horses on the Pampas are always of one of three colours, and the cattle always of a uniform colour, yet these animals, when bred on the unenclosed estancias, though kept in a state which can hardly be called domesticated, and apparently exposed to almost identically the same conditions as when they are feral, nevertheless display a great diversity of colour. So again in India several species of fresh-water fish are only so far treated artificially, that they are reared in great tanks; but this small change is sufficient to induce much variability. (22/13. M’Clelland on Indian Cyprinidae ‘Asiatic Researches’ volume 19 part 2 1839 pages 266, 268, 313.)

Some facts on the effects of grafting, in regard to the variability of trees, deserve attention. Cabanis asserts that when certain pears are grafted on the quince, their seeds yield a greater number of varieties than do the seeds of the same variety of pear when grafted on the wild pear. (22/14. Quoted by Sageret ‘Pom. Phys.’ 1830 page 43. This statement, however, is not believed by Decaisne.) But as the pear and quince are distinct species, though so closely related that the one can be readily grafted and succeeds admirably on the other, the fact of variability being thus caused is not surprising; as we are here enabled to see the cause, namely, the very different nature of the stock and graft. Several North American varieties of the plum and peach are well known to reproduce themselves truly by seed; but Downing asserts (22/15. ‘The Fruits of America’ 1845 page 5.), “that when a graft is taken from one of these trees and placed upon another stock, this grafted tree is found to lose its singular property of producing the same variety by seed, and becomes like all other worked trees;”–that is, its seedlings become highly variable. Another case is worth giving: the Lalande variety of the walnut-tree leafs between April 20th and May 15th, and its seedlings invariably inherit the same habit; whilst several other varieties of the walnut leaf in June. Now, if seedlings are raised from the May-leafing Lalande variety, grafted on another May-leafing variety, though both stock and graft have the same early habit of leafing, yet the seedlings leaf at various times, even as late as the 5th of June. (22/16. M. Cardan in ‘Comptes Rendus’ December 1848 quoted in ‘Gardener’s Chronicle’ 1849 page 101.) Such facts as these are well fitted to show on what obscure and slight causes variability depends.

I may here just allude to the appearance of new and valuable varieties of fruit-trees and of wheat in woods and waste places, which at first sight seems a most anomalous circumstance. In France a considerable number of the best pears have been discovered in woods; and this has occurred so frequently, that Poiteau asserts that “improved varieties of our cultivated fruits rarely originate with nurserymen.” (22/17. M. Alexis Jordan mentions four excellent pears found in woods in France, and alludes to others (‘Mem. Acad. de Lyon’ tome 2 1852 page 159). Poiteau’s remark is quoted in ‘Gardener’s Mag.’ volume 4 1828 page 385. See ‘Gardener’s Chronicle’ 1862 page 335, for another case of a new variety of the pear found in a hedge in France. Also for another case, see Loudon’s ‘Encyclop. of Gardening’ page 901. Mr. Rivers has given me similar information.) In England, on the other hand, no instance of a good pear having been found wild has been recorded; and Mr. Rivers informs me that he knows of only one instance with apples, namely, the Bess Poole, which was discovered in a wood in Nottinghamshire. This difference between the two countries may be in part accounted for by the more favourable climate of France, but chiefly from the great number of seedlings which spring up there in the woods. I infer that this is the case from a remark made by a French gardener (22/18. Duval ‘Hist. du Poirier’ 1849 page 2.), who regards it as a national calamity that such a number of pear-trees are periodically cut down for firewood, before they have borne fruit. The new varieties which thus spring up in the woods, though they cannot have received any excess of nutriment, will have been exposed to abruptly changed conditions, but whether this is the cause of their production is very doubtful. These varieties, however, are probably all descended (22/19. I infer that this is the fact from Van Mons’ statement (‘Arbres Fruitiers’ 1835 tome 1 page 446) that he finds in the woods seedlings resembling all the chief cultivated races of both the pear and apple. Van Mons, however, looked at these wild varieties as aboriginal species.) from old cultivated kinds growing in adjoining orchards– a circumstance which will account for their variability; and out of a vast number of varying trees there will always be a good chance of the appearance of a valuable kind. In North America, where fruit-trees frequently spring up in waste places, the Washington pear was found in a hedge, and the Emperor peach in a wood. (22/20. Downing ‘Fruit-trees of North America’ page 422; Foley in ‘Transact. Hort. Soc.’ volume 6 page 412.)

With respect to wheat, some writers have spoken (22/21. ‘Gardener’s Chronicle’ 1847 page 244.) as if it were an ordinary event for new varieties to be found in waste places; the Fenton wheat was certainly discovered growing on a pile of basaltic detritus in a quarry, but in such a situation the plant would probably receive a sufficient amount of nutriment. The Chidham wheat was raised from an ear found ON a hedge; and Hunter’s wheat was discovered BY the roadside in Scotland, but it is not said that this latter variety grew where it was found. (22/22. ‘Gardener’s Chronicle’ 1841 page 383; 1850 page 700; 1854 page 650.)

Whether our domestic productions would ever become so completely habituated to the conditions under which they now live, as to cease varying, we have no sufficient means for judging. But, in fact, our domestic productions are never exposed for a great length of time to uniform conditions, and it is certain that our most anciently cultivated plants, as well as animals, still go on varying, for all have recently undergone marked improvement. In some few cases, however, plants have become habituated to new conditions. Thus, Metzger, who cultivated in Germany during many years numerous varieties of wheat, brought from different countries (22/23. ‘Die Getreidearten’ 1843 s. 66, 116, 117.), states that some kinds were at first extremely variable, but gradually, in one instance after an interval of twenty-five years, became constant; and it does not appear that this resulted from the selection of the more constant forms.

ON THE ACCUMULATIVE ACTION OF CHANGED CONDITIONS OF LIFE. — We have good grounds for believing that the influence of changed conditions accumulates, so that no effect is produced on a species until it has been exposed during several generations to continued cultivation or domestication. Universal experience shows us that when new flowers are first introduced into our gardens they do not vary; but ultimately all, with the rarest exceptions, vary to a greater or less extent. In a few cases the requisite number of generations, as well as the successive steps in the progress of variation, have been recorded, as in the often quoted instance of the Dahlia. (22/24. Sabine in ‘Hort. Transact.’ volume 3 page 225; Bronn ‘Geschichte der Natur’ b. 2 s. 119.) After several years’ culture the Zinnia has only lately (1860) begun to vary in any great degree. “In the first seven or eight years of high cultivation, the Swan River daisy (Brachycome iberidifolia) kept to its original colour; it then varied into lilac and purple and other minor shades.” (22/25. ‘Journal of Horticulture’ 1861 page 112; on Zinnia ‘Gardener’s Chronicle’ 1860 page 852.) Analogous facts have been recorded with the Scotch rose. In discussing the variability of plants several experienced horticulturists have spoken to the same general effect. Mr. Salter (22/26. ‘The Chrysanthemum, its History, etc.’ 1865 page 3.) remarks, “Every one knows that the chief difficulty is in breaking through the original form and colour of the species, and every one will be on the look-out for any natural sport, either from seed or branch; that being once obtained, however trifling the change may be, the result depends upon himself.” M. de Jonghe, who has had so much success in raising new varieties of pears and strawberries (22/27. ‘Gardener’s Chronicle’ 1855 page 54; ‘Journal of Horticulture’ May 9, 1865 page 363.), remarks with respect to the former, “There is another principle, namely, that the more a type has entered into a state of variation, the greater is its tendency to continue doing so; and the more it has varied from the original type, the more it is disposed to vary still farther.” We have, indeed, already discussed this latter point when treating of the power which man possesses, through selection, of continually augmenting in the same direction each modification; for this power depends on continued variability of the same general kind. The most celebrated horticulturist in France, namely, Vilmorin (22/28. Quoted by Verlot ‘Des Varietes’ etc. 1865 page 28.), even maintains that, when any particular variation is desired, the first step is to get the plant to vary in any manner whatever, and to go on selecting the most variable individuals, even though they vary in the wrong direction; for the fixed character of the species being once broken, the desired variation will sooner or later appear.

As nearly all our animals were domesticated at an extremely remote epoch, we cannot, of course, say whether they varied quickly or slowly when first subjected to new conditions. But Dr. Bachman (22/29. ‘Examination of the Characteristics of Genera and Species’ Charleston 1855 page 14.) states that he has seen turkeys raised from the eggs of the wild species lose their metallic tints and become spotted with white in the third generation. Mr. Yarrell many years ago informed me that the wild ducks bred on the ponds in St. James’s Park, which had never been crossed, as it is believed, with domestic ducks, lost their true plumage after a few generations. An excellent observer (22/30. Mr. Hewitt ‘Journal of Hort.’ 1863 page 39.), who has often reared ducks from the eggs of the wild bird, and who took precautions that there should be no crossing with domestic breeds, has given, as previously stated, full details on the changes which they gradually undergo. He found that he could not breed these wild ducks true for more than five or six generations, “as they then proved so much less beautiful. The white collar round the neck of the mallard became much broader and more irregular, and white feathers appeared in the ducklings’ wings.” They increased also in size of body; their legs became less fine, and they lost their elegant carriage. Fresh eggs were then procured from wild birds; but again the same result followed. In these cases of the duck and turkey we see that animals, like plants, do not depart from their primitive type until they have been subjected during several generations to domestication. On the other hand, Mr. Yarrell informed me that the Australian dingos, bred in the Zoological Gardens, almost invariably produced in the first generation puppies marked with white and other colours; but, these introduced dingos had probably been procured from the natives, who keep them in a semi-domesticated state. It is certainly a remarkable fact that changed conditions should at first produce, as far as we can see, absolutely no effect; but that they should subsequently cause the character of the species to change. In the chapter on pangenesis I shall attempt to throw a little light on this fact.

Returning now to the causes which are supposed to induce variability. Some authors (22/31. Devay ‘Mariages Consanguins’ pages 97, 125. In conversation I have found two or three naturalists of the same opinion.) believe that close interbreeding gives this tendency, and leads to the production of monstrosities. In the seventeenth chapter some few facts were advanced, showing that monstrosities are, as it appears, occasionally thus induced; and there can be no doubt that close interbreeding causes lessened fertility and a weakened constitution; hence it may lead to variability: but I have not sufficient evidence on this head. On the other hand, close interbreeding, if not carried to an injurious extreme, far from causing variability, tends to fix the character of each breed.

It was formerly a common belief, still held by some persons, that the imagination of the mother affects the child in the womb. (22/32. Muller has conclusively argued against this belief, ‘Elements of Phys.’ English translation volume 2 1842 page 1405.) This view is evidently not applicable to the lower animals, which lay unimpregnated eggs, or to plants. Dr. William Hunter, in the last century, told my father that during many years every woman in a large London Lying-in Hospital was asked before her confinement whether anything had specially affected her mind, and the answer was written down; and it so happened that in no one instance could a coincidence be detected between the woman’s answer and any abnormal structure; but when she knew the nature of the structure, she frequently suggested some fresh cause. The belief in the power of the mother’s imagination may perhaps have arisen from the children of a second marriage resembling the previous father, as certainly sometimes occurs, in accordance with the facts given in the eleventh chapter.

CROSSING AS A CAUSE OF VARIABILITY. — In an early part of this chapter it was stated that Pallas (22/33. ‘Act. Acad. St. Petersburg’ 1780 part 2 page 84 etc.) and a few other naturalists maintain that variability is wholly due to crossing. If this means that new characters never spontaneously appear in our domestic races, but that they are all directly derived from certain aboriginal species, the doctrine is little less than absurd; for it implies that animals like Italian greyhounds, pug-dogs, bull-dogs, pouter and fantail pigeons, etc., were able to exist in a state of nature. But the doctrine may mean something widely different, namely, that the crossing of distinct species is the sole cause of the first appearance of new characters, and that without this aid man could not have formed his various breeds. As, however, new characters have appeared in certain cases by bud- variation, we may conclude with certainty that crossing is not necessary for variability. It is, moreover, certain that the breeds of various animals, such as of the rabbit, pigeon, duck, etc., and the varieties of several plants, are the modified descendants of a single wild species. Nevertheless, it is probable that the crossing of two forms, when one or both have long been domesticated or cultivated, adds to the variability of the offspring, independently of the commingling of the characters derived from the two parent-forms; and this implies that new characters actually arise. But we must not forget the facts advanced in the thirteenth chapter, which clearly prove that the act of crossing often leads to the reappearance or reversion of long- lost characters; and in most cases it would be impossible to distinguish between the reappearance of ancient characters and the first appearance of absolutely new characters. Practically, whether new or old, they would be new to the breed in which they reappeared.

Gartner declares (22/34. ‘Bastarderzeugung’ s. 249, 255, 295.), and his experience is of the highest value on such a point, that, when he crossed native plants which had not been cultivated, he never once saw in the offspring any new character; but that from the odd manner in which the characters derived from the parents were combined, they sometimes appeared as if new. When, on the other hand, he crossed cultivated plants, he admits that new characters occasionally appeared, but he is strongly inclined to attribute their appearance to ordinary variability, not in any way to the cross. An opposite conclusion, however, appears to me the more probable. According to Kolreuter, hybrids in the genus Mirabilis vary almost infinitely, and he describes new and singular characters in the form of the seeds, in the colour of the anthers, in the cotyledons being of immense size, in new and highly peculiar odours, in the flowers expanding early in the season, and in their closing at night. With respect to one lot of these hybrids, he remarks that they presented characters exactly the reverse of what might have been expected from their parentage. (22/35. ‘Nova Acta, St. Petersburg’ 1794 page 378; 1795 pages 307, 313, 316; 1787 page 407.)

Prof. Lecoq (22/36. ‘De la Fecondation’ 1862 page 311.) speaks strongly to the same effect in regard to this same genus, and asserts that many of the hybrids from Mirabilis jalapa and multiflora might easily be mistaken for distinct species, and adds that they differed in a greater degree than the other species of the genus, from M. jalapa. Herbert, also, has described (22/37. ‘Amaryllidaceae’ 1837 page 362.) certain hybrid Rhododendrons as being “as UNLIKE ALL OTHERS in foliage, as if they had been a separate species.” The common experience of floriculturists proves that the crossing and recrossing of distinct but allied plants, such as the species of Petunia, Calceolaria, Fuchsia, Verbena, etc., induces excessive variability; hence the appearance of quite new characters is probable. M. Carriere (22/38. Abstracted in ‘Gardener’s Chronicle’ 1860 page 1081.) has lately discussed this subject: he states that Erythrina cristagalli had been multiplied by seed for many years, but had not yielded any varieties: it was then crossed with the allied E. herbacea, and “the resistance was now overcome, and varieties were produced with flowers of extremely different size, form, and colour.”

From the general and apparently well-founded belief that the crossing of distinct species, besides commingling their characters, adds greatly to their variability, it has probably arisen that some botanists have gone so far as to maintain (22/39. This was the opinion of the elder De Candolle, as quoted in ‘Dic. Class. d’Hist. Nat.’ tome 8 page 405. Puvis in his work ‘De la Degeneration’ 1837 page 37, has discussed this same point.) that, when a genus includes only a single species, this when cultivated never varies. The proposition made so broadly cannot be admitted; but it is probably true that the variability of monotypic genera when cultivated is generally less than that of genera including numerous species, and this quite independently of the effects of crossing. I have shown in my ‘Origin of Species’ that the species belonging to small genera generally yield a less number of varieties in a state of nature than those belonging to large genera. Hence the species of small genera would, it is probable, produce fewer varieties under cultivation than the already variable species of larger genera.

Although we have not at present sufficient evidence that the crossing of species, which have never been cultivated, leads to the appearance of new characters, this apparently does occur with species which have been already rendered in some degree variable through cultivation. Hence crossing, like any other change in the conditions of life, seems to be an element, probably a potent one, in causing variability. But we seldom have the means of distinguishing, as previously remarked, between the appearance of really new characters and the reappearance of long-lost characters, evoked through the act of crossing. I will give an instance of the difficulty in distinguishing such cases. The species of Datura may be divided into two sections, those having white flowers with green stems, and those having purple flowers with brown stems: now Naudin (22/40. ‘Comptes Rendus’ Novembre 21, 1864 page 838.) crossed Datura laevis and ferox, both of which belong to the white section, and raised from them 205 hybrids. Of these hybrids, every one had brown stems and bore purple flowers; so that they resembled the species of the other section of the genus, and not their own two parents. Naudin was so much astonished at this fact, that he was led carefully to observe both parent- species, and he discovered that the pure seedlings of D. ferox, immediately after germination, had dark purple stems, extending from the young roots up to the cotyledons, and that this tint remained ever afterwards as a ring round the base of the stem of the plant when old. Now I have shown in the thirteenth chapter that the retention or exaggeration of an early character is so intimately related to reversion, that it evidently comes under the same principle. Hence probably we ought to look at the purple flowers and brown stems of these hybrids, not as new characters due to variability, but as a return to the former state of some ancient progenitor.

Independently of the appearance of new characters from crossing, a few words may be added to what has been said in former chapters on the unequal combination and transmission of the characters proper to the two parent-forms. When two species or races are crossed, the offspring of the first generation are generally uniform, but those subsequently produced display an almost infinite diversity of character. He who wishes, says Kolreuter (22/41. ‘Nova Acta, St. Petersburg’ 1794 page 391.), to obtain an endless number of varieties from hybrids should cross and recross them. There is also much variability when hybrids or mongrels are reduced or absorbed by repeated crosses with either pure parent-form: and a still higher degree of variability when three distinct species, and most of all when four species, are blended together by successive crosses. Beyond this point Gartner (22/42. ‘Bastarderzeugung’ s. 507, 516, 572.), on whose authority the foregoing statements are made, never succeeded in effecting a union; but Max Wichura (22/43. ‘Die Bastardbefruchtung’ etc. 1865 s. 24.) united six distinct species of willows into a single hybrid. The sex of the parent species affects in an inexplicable manner the degree of variability of hybrids; for Gartner (22/44. ‘Bastarderzeugung’ s. 452, 507.) repeatedly found that when a hybrid was used as a father and either one of the pure parent-species, or a third species, was used as the mother, the offspring were more variable than when the same hybrid was used as the mother, and either pure parent or the same third species as the father: thus seedlings from Dianthus barbatus crossed by the hybrid D. chinensi-barbatus were more variable than those raised from this latter hybrid fertilised by the pure D. barbatus. Max Wichura (22/45. ‘Die Bastardbefruchtung’ s. 56.) insists strongly on an analogous result with his hybrid willows. Again Gartner (22/46. ‘Bastarderzeugung’ s. 423.) asserts that the degree of variability sometimes differs in hybrids raised from reciprocal crosses between the same two species; and here the sole difference is, that the one species is first used as the father and then as the mother. On the whole we see that, independently of the appearance of new characters, the variability of successive crossed generations is extremely complex, partly from the offspring partaking unequally of the characters of the two parent- forms, and more especially from their unequal tendency to revert to such characters or to those of more ancient progenitors.

ON THE MANNER AND ON THE PERIOD OF ACTION OF THE CAUSES WHICH INDUCE VARIABILITY. — This is an extremely obscure subject, and we need here only consider, whether inherited variations are due to certain parts being acted on after they have been formed, or through the reproductive system being affected before their formation; and in the former case at what period of growth or development the effect is produced. We shall see in the two following chapters that various agencies, such as an abundant supply of food, exposure to a different climate, increased use or disuse of parts, etc., prolonged during several generations, certainly modify either the whole organisation or certain organs; and it is clear at least in the case of bud-variation that the action cannot have been through the reproductive system.

With respect to the part which the reproductive system takes in causing variability, we have seen in the eighteenth chapter that even slight changes in the conditions of life have a remarkable power in causing a greater or less degree of sterility. Hence it seems not improbable that beings generated through a system so easily affected should themselves be affected, or should fail to inherit, or inherit in excess, characters proper to their parents. We know that certain groups of organic beings, but with exceptions in each group, have their reproductive systems much more easily affected by changed conditions than other groups; for instance, carnivorous birds, more readily than carnivorous mammals, and parrots more readily than pigeons; and this fact harmonises with the apparently capricious manner and degree in which various groups of animals and plants vary under domestication.

Kolreuter (22/47. ‘Dritte Fortsetzung’ etc. 1766 s. 85.) was struck with the parallelism between the excessive variability of hybrids when crossed and recrossed in various ways,–these hybrids having their reproductive powers more or less affected,–and the variability of anciently cultivated plants. Max Wichura (22/48. ‘Die Bastardbefruchtung’ etc. 1865 s. 92: see also the Rev. M.J. Berkeley on the same subject in ‘Journal of Royal Hort. Soc.’ 1866 page 80.) has gone one step farther, and shows that with many of our highly cultivated plants, such as the hyacinth, tulip, auricula, snapdragon, potato, cabbage, etc., which there is no reason to believe have been hybridised, the anthers contain many irregular pollen-grains in the same state as in hybrids. He finds also in certain wild forms, the same coincidence between the state of the pollen and a high degree of variability, as in many species of Rubus; but in R. caesius and idaeus, which are not highly variable species, the pollen is sound. It is also notorious that many cultivated plants, such as the banana, pineapple, bread-fruit, and others previously mentioned, have their reproductive organs so seriously affected as to be generally quite sterile; and when they do yield seed, the seedlings, judging from the large number of cultivated races which exist, must be variable in an extreme degree. These facts indicate that there is some relation between the state of the reproductive organs and a tendency to variability; but we must not conclude that the relation is strict. Although many of our highly cultivated plants may have their pollen in a deteriorated condition, yet, as we have previously seen, they yield more seeds, and our anciently domesticated animals are more prolific, than the corresponding species in a state of nature. The peacock is almost the only bird which is believed to be less fertile under domestication than in its native state, and it has varied in a remarkably small degree. From these considerations it would seem that changes in the conditions of life lead either to sterility or to variability, or to both; and not that sterility induces variability. On the whole it is probable that any cause affecting the organs of reproduction would likewise affect their product,–that is, the offspring thus generated.

The period of life at which the causes that induce variability act, is likewise an obscure subject, which has been discussed by various authors. (22/49. Dr. P. Lucas has given a history of opinion on this subject ‘Hered. Nat.’ 1847 tome 1 page 175.) In some of the cases, to be given in the following chapter, of modifications from the direct action of changed conditions, which are inherited, there can be no doubt that the causes have acted on the mature or nearly mature animal. On the other hand, monstrosities, which cannot be distinctly separated from lesser variations, are often caused by the embryo being injured whilst in the mother’s womb or in the egg. Thus I. Geoffroy Saint-Hilaire (22/50. ‘Hist. des Anomalies’ tome 3 page 499.) asserts that poor women who work hard during their pregnancy, and the mothers of illegitimate children troubled in their minds and forced to conceal their state, are far more liable to give birth to monsters than women in easy circumstances. The eggs of the fowl when placed upright or otherwise treated unnaturally frequently produce monstrous chickens. It would, however, appear that complex monstrosities are induced more frequently during a rather late than during a very early period of embryonic life; but this may partly result from some one part, which has been injured during an early period, affecting by its abnormal growth other parts subsequently developed; and this would be less likely to occur with parts injured at a later period. (22/51. Ibid tome 3 pages 392, 502. The several memoirs by M. Dareste hereafter referred to are of special value on this whole subject.) When any part or organ becomes monstrous through abortion, a rudiment is generally left, and this likewise indicates that its development had already commenced.

Insects sometimes have their antennae or legs in a monstrous condition, the larvae of which do not possess either antennae or legs; and in these cases, as Quatrefages (22/52. See his interesting work ‘Metamorphoses de l’Homme’ etc. 1862 page 129.) believes, we are enabled to see the precise period at which the normal progress of development was troubled. But the nature of the food given to a caterpillar sometimes affects the colours of the moth, without the caterpillar itself being affected; therefore it seems possible that other characters in the mature insect might be indirectly modified through the larvae. There is no reason to suppose that organs which have been rendered monstrous have always been acted on during their development; the cause may have acted on the organisation at a much earlier stage. It is even probable that either the male or female sexual elements, or both, before their union, may be affected in such a manner as to lead to modifications in organs developed at a late period of life; in nearly the same manner as a child may inherit from his father a disease which does not appear until old age.

In accordance with the facts above given, which prove that in many cases a close relation exists between variability and the sterility following from changed conditions, we may conclude that the exciting cause often acts at the earliest possible period, namely, on the sexual elements, before impregnation has taken place. That an affection of the female sexual element may induce variability we may likewise infer as probable from the occurrence of bud- variations; for a bud seems to be the analogue of an ovule. But the male element is apparently much oftener affected by changed conditions, at least in a visible manner, than the female element or ovule and we know from Gartner’s and Wichura’s statements that a hybrid used as the father and crossed with a pure species gives a greater degree of variability to the offspring, than does the same hybrid when used as the mother. Lastly, it is certain that variability may be transmitted through either sexual element, whether or not originally excited in them, for Kolreuter and Gartner (22/53. ‘Dritte Fortsetzung’ etc. s. 123; ‘Bastarderzeugung’ s. 249.) found that when two species were crossed, if either one was variable, the offspring were rendered variable.

SUMMARY. — From the facts given in this chapter, we may conclude that the variability of organic beings under domestication, although so general, is not an inevitable contingent on life, but results from the conditions to which the parents have been exposed. Changes of any kind in the conditions of life, even extremely slight changes, often suffice to cause variability. Excess of nutriment is perhaps the most efficient single exciting cause. Animals and plants continue to be variable for an immense period after their first domestication; but the conditions to which they are exposed never long remain quite constant. In the course of time they can be habituated to certain changes, so as to become less variable; and it is possible that when first domesticated they may have been even more variable than at present. There is good evidence that the power of changed conditions accumulates; so that two, three, or more generations must be exposed to new conditions before any effect is visible. The crossing of distinct forms, which have already become variable, increases in the offspring the tendency to further variability, by the unequal commingling of the characters of the two parents, by the reappearance of long-lost characters, and by the appearance of absolutely new characters. Some variations are induced by the direct action of the surrounding conditions on the whole organisation, or on certain parts alone; other variations appear to be induced indirectly through the reproductive system being affected, as we know is often the case with various beings, which when removed from their natural conditions become sterile. The causes which induce variability act on the mature organism, on the embryo, and, probably, on the sexual elements before impregnation has been effected.

CHAPTER 2. XXIII. DIRECT AND DEFINITE ACTION OF THE EXTERNAL CONDITIONS OF LIFE.

If we ask ourselves why this or that character has been modified under domestication, we are, in most cases, lost in utter darkness. Many naturalists, especially of the French school, attribute every modification to the “monde ambiant,” that is, to changed climate, with all its diversities of heat and cold, dampness and dryness, light and electricity, to the nature of the soil, and to varied kinds and amount of food. By the term definite action, as used in this chapter, I mean an action of such a nature that, when many individuals of the same variety are exposed during several generations to any particular change in their conditions of life, all, or nearly all the individuals, are modified in the same manner. The effects of habit, or of the increased use and disuse of various organs, might have been included under this head; but it will be convenient to discuss this subject in a separate chapter. By the term indefinite action I mean an action which causes one individual to vary in one way and another individual in another way, as we often see with plants and animals after they have been subjected for some generations to changed conditions of life. But we know far too little of the causes and laws of variation to make a sound classification. The action of changed conditions, whether leading to definite or indefinite results, is a totally distinct consideration from the effects of selection; for selection depends on the preservation by man of certain individuals, or on their survival under various and complex natural circumstances, and has no relation whatever to the primary cause of each particular variation.

I will first give in detail all the facts which I have been able to collect, rendering it probable that climate, food, etc., have acted so definitely and powerfully on the organisation of our domesticated productions, that new sub- varieties or races have been thus formed without the aid of selection by man or nature. I will then give the facts and considerations opposed to this conclusion, and finally we will weigh, as fairly as we can, the evidence on both sides.

When we reflect that distinct races of almost all our domesticated animals exist in each kingdom of Europe, and formerly even in each district of England, we are at first strongly inclined to attribute their origin to the definite action of the physical conditions of each country; and this has been the conclusion of many authors. But we should bear in mind that man annually has to choose which animals shall be preserved for breeding, and which shall be slaughtered. We have also seen that both methodical and unconscious selection were formerly practised, and are now occasionally practised by the most barbarous races, to a much greater extent than might have been anticipated. Hence it is difficult to judge how far differences in the conditions between, for instance, the several districts in England, have sufficed to modify the breeds which have been reared in each. It may be argued that, as numerous wild animals and plants have ranged during many ages throughout Great Britain, and still retain the same character, the difference in conditions between the several districts could not have modified in a marked manner the various native races of cattle, sheep, pigs, and horses. The same difficulty of distinguishing between the effects of natural selection and the definite action of external conditions is encountered in a still higher degree when we compare closely allied species inhabiting two countries, such as North America and Europe, which do not differ greatly in climate, nature of soil, etc., for in this case natural selection will inevitably and rigorously have acted during a long succession of ages.

Prof. Weismann has suggested (23/1. ‘Ueber den Einfluss der Isolirung auf die Artbildung’ 1872.) that when a variable species enters a new and isolated country, although the variations may be of the same general nature as before, yet it is improbable that they should occur in the same proportional numbers. After a longer or shorter period, the species will tend to become nearly uniform in character from the incessant crossing of the varying individuals; but owing to the proportion of the individuals varying in different ways not being the same in the two cases, the final result will be the production of two forms somewhat different from one another. In cases of this kind it would falsely appear as if the conditions had induced certain definite modifications, whereas they had only excited indefinite variability, but with the variations in slightly different proportional numbers. This view may throw some light on the fact that the domestic animals which formerly inhabited the several districts in Great Britain, and the half wild cattle lately kept in several British parks, differed slightly from one another; for these animals were prevented from wandering over the whole country and intercrossing, but would have crossed freely within each district or park.

From the difficulty of judging how far changed conditions have caused definite modifications of structure, it will be advisable to give as large a body of facts as possible, showing that extremely slight differences within the same country, or during different seasons, certainly produce an appreciable effect, at least on varieties which are already in an unstable condition. Ornamental flowers are good for this purpose, as they are highly variable, and are carefully observed. All floriculturists are unanimous that certain varieties are affected by very slight differences in the nature of the artificial compost in which they are grown, and by the natural soil of the district, as well as by the season. Thus, a skilful judge, in writing on Carnations and Picotees (23/2. ‘Gardener’s Chronicle’ 1853 page 183.) asks “where can Admiral Curzon be seen possessing the colour, size, and strength which it has in Derbyshire? Where can Flora’s Garland be found equal to those at Slough? Where do high-coloured flowers revel better than at Woolwich and Birmingham? Yet in no two of these districts do the same varieties attain an equal degree of excellence, although each may be receiving the attention of the most skilful cultivators.” The same writer then recommends every cultivator to keep five different kinds of soil and manure, “and to endeavour to suit the respective appetites of the plants you are dealing with, for without such attention all hope of general success will be vain.” So it is with the Dahlia (23/3. Mr. Wildman ‘Floricultural Soc.’ February 7, 1843 reported in ‘Gardener’s Chronicle’ 1843 page 86.): the Lady Cooper rarely succeeds near London, but does admirably in other districts; the reverse holds good with other varieties; and again, there are others which succeed equally well in various situations. A skilful gardener (23/4. Mr. Robson in ‘Journal of Horticulture’ February 13, 1866 page 122.) states that he procured cuttings of an old and well-known variety (pulchella) of Verbena, which from having been propagated in a different situation presented a slightly different shade of colour; the two varieties were afterwards multiplied by cuttings, being carefully kept distinct; but in the second year they could hardly be distinguished, and in the third year no one could distinguish them.

The nature of the season has an especial influence on certain varieties of the Dahlia: in 1841 two varieties were pre-eminently good, and the next year these same two were pre-eminently bad. A famous amateur (23/5. ‘Journal of Horticulture’ 1861 page 24.) asserts that in 1861 many varieties of the Rose came so untrue in character, “that it was hardly possible to recognise them, and the thought was not seldom entertained that the grower had lost his tally.” The same amateur (23/6. Ibid 1862 page 83.) states that in 1862 two- thirds of his Auriculas produced central trusses of flowers, and such trusses are liable not to keep true; and he adds that in some seasons certain varieties of this plant all prove good, and the next season all prove bad; whilst exactly the reverse happens with other varieties. In 1845 the editor of the ‘Gardener’s Chronicle’ (23/7. ‘Gardener’s Chronicle’ 1845 page 660.) remarked how singular it was that this year many Calceolarias tended to assume a tubular form. With Heartsease (23/8. Ibid 1863 page 628.) the blotched sorts do not acquire their proper character until hot weather sets in; whilst other varieties lose their beautiful marks as soon as this occurs.

Analogous facts have been observed with leaves: Mr. Beaton asserts (23/9. ‘Journal of Hort.’ 1861 pages 64, 309.) that he raised at Shrubland, during six years, twenty thousand seedlings from the Punch Pelargonium, and not one had variegated leaves; but at Surbiton, in Surrey, one-third, or even a greater proportion, of the seedlings from this same variety were more or less variegated. The soil of another district in Surrey has a strong tendency to cause variegation, as appears from information given me by Sir F. Pollock. Verlot (23/10. ‘Des Varietes’ etc. page 76.) states that the variegated strawberry retains its character as long as grown in a dryish soil, but soon loses it when planted in fresh and humid soil. Mr. Salter, who is well known for his success in cultivating variegated plants, informs me that rows of strawberries were planted in his garden in 1859, in the usual way; and at various distances in one row, several plants simultaneously became variegated; and what made the case more extraordinary, all were variegated in precisely the same manner. These plants were removed, but during the three succeeding years other plants in the same row became variegated, and in no instance were the plants in any adjoining row affected.

The chemical qualities, odours, and tissues of plants are often modified by a change which seems to us slight. The Hemlock is said not to yield conicine in Scotland. The root of the Aconitum napellus becomes innocuous in frigid climates. The medicinal properties of the Digitalis are easily affected by culture. As the Pistacia lentiscus grows abundantly in the South of France, the climate must suit it, but it yields no mastic. The Laurus sassafras in Europe loses the odour proper to it in North America. (23/11. Engel ‘Sur les Prop. Medicales des Plantes’ 1860 pages 10, 25. On changes in the odours of plants see Dalibert’s Experiments quoted by Beckman ‘Inventions’ volume 2 page 344; and Nees in Ferussac ‘Bull. des Sc. Nat.’ 1824 tome 1 page 60. With respect to the rhubarb etc. see also ‘Gardener’s Chronicle’ 1849 page 355; 1862 page 1123.) Many similar facts could be given, and they are remarkable because it might have been thought that definite chemical compounds would have been little liable to change either in quality or quantity.

The wood of the American Locust-tree (Robinia) when grown in England is nearly worthless, as is that of the Oak-tree when grown at the Cape of Good Hope. (23/12. Hooker ‘Flora Indica’ page 32.) Hemp and flax, as I hear from Dr. Falconer, flourish and yield plenty of seed on the plains of India, but their fibres are brittle and useless. Hemp, on the other hand, fails to produce in England that resinous matter which is so largely used in India as an intoxicating drug.

The fruit of the Melon is greatly influenced by slight differences in culture and climate. Hence it is generally a better plan, according to Naudin, to improve an old kind than to introduce a new one into any locality. The seed of the Persian Melon produces near Paris fruit inferior to the poorest market kinds, but at Bordeaux yields delicious fruit. (23/13. Naudin ‘Annales des Sc. Nat.’ 4th series, Bot. tome 11 1859 page 81. ‘Gardener’s Chronicle’ 1859 page 464.) Seed is annually brought from Thibet to Kashmir (23/14. Moorcroft ‘Travels’ etc. volume 2 page 143.) and produces fruit weighing from four to ten pounds, but plants raised next year from seed saved in Kashmir give fruit weighing only from two to three pounds. It is well known that American varieties of the Apple produce in their native land magnificent and brightly- coloured fruit, but these in England are of poor quality and a dull colour. In Hungary there are many varieties of the kidney-bean, remarkable for the beauty of their seeds, but the Rev. M.J. Berkeley (23/15. ‘Gardener’s Chronicle’ 1861 page 1113.) found that their beauty could hardly ever be preserved in England, and in some cases the colour was greatly changed. We have seen in the ninth chapter, with respect to wheat, what a remarkable effect transportal from the north to the south of France, and conversely, produced on the weight of the grain.

When man can perceive no change in plants or animals which have been exposed to a new climate or to different treatment, insects can sometimes perceive a marked change. A cactus has been imported into India from Canton, Manilla Mauritius, and from the hot-houses of Kew, and there is likewise a so-called native kind which was formerly introduced from South America; all these plants belong to the same species and are alike in appearance, but the cochineal insect flourishes only on the native kind, on which it thrives prodigiously. (23/16. Royle ‘Productive Resources of India’ page 59.) Humboldt remarks (23/17. ‘Personal Narrative’ English translation volume 5 page 101. This statement has been confirmed by Karsten ‘Beitrag zur Kenntniss der Rhynchoprion’ Moscow 1864 s. 39 and by others.) that white men “born in the torrid zone walk barefoot with impunity in the same apartment where a European, recently landed, is exposed to the attacks of the Pulex penetrans.” This insect, the too well-known chigoe, must therefore be able to perceive what the most delicate chemical analysis fails to discover, namely, a difference between the blood or tissues of a European and those of a white man born in the tropics. But the discernment of the chigoe is not so surprising as it at first appears; for according to Liebig (23/18. ‘Organic Chemistry’ English translation 1st edition page 369.) the blood of men with different complexions, though inhabiting the same country, emits a different odour.

Diseases peculiar to certain localities, heights, or climates, may be here briefly noticed, as showing the influence of external circumstances on the human body. Diseases confined to certain races of man do not concern us, for the constitution of the race may play the more important part, and this may have been determined by unknown causes. The Plica Polonica stands, in this respect, in a nearly intermediate position; for it rarely affects Germans, who inhabit the neighbourhood of the Vistula, where so many Poles are grievously affected; neither does it affect Russians, who are said to belong to the same original stock as the Poles. (23/19. Prichard ‘Phys. Hist. of Mankind’ 1851 volume 1 page 155.) The elevation of a district often governs the appearance of diseases; in Mexico the yellow fever does not extend above 924 metres; and in Peru, people are affected with the verugas only between 600 and 1600 metres above the sea; many other such cases could be given. A peculiar cutaneous complaint, called the Bouton d’Alep, affects in Aleppo and some neighbouring districts almost every native infant, and some few strangers; and it seems fairly well established that this singular complaint depends on drinking certain waters. In the healthy little island of St. Helena the scarlet-fever is dreaded like the Plague; analogous facts have been observed in Chili and Mexico. (23/20. Darwin ‘Journal of Researches’ 1845 page 434.) Even in the different departments of France it is found that the various infirmities which render the conscript unfit for serving in the army, prevail with remarkable inequality, revealing, as Boudin observes, that many of them are endemic, which otherwise would never have been suspected. (23/21. These statements on disease are taken from Dr. Boudin ‘Geographie et Statistique Medicale’ 1857 tome 1 pages 44 and 52; tome 2 page 315.) Any one who will study the distribution of disease will be struck with surprise at what slight differences in the surrounding circumstances govern the nature and severity of the complaints by which man is at least temporarily affected.

The modifications as yet referred to are extremely slight, and in most cases have been caused, as far as we can judge, by equally slight differences in the conditions. But such conditions acting during a series of generations would perhaps produce a marked effect.

With plants, a considerable change of climate sometimes produces a conspicuous result. I have given in the ninth chapter the most remarkable case known to me, namely, that of varieties of maize, which were greatly modified in the course of only two or three generations when taken from a tropical country to a cooler one, or conversely. Dr. Falconer informs me that he has seen the English Ribston-pippin apple, a Himalayan oak, Prunus and Pyrus, all assume in the hotter parts of India a fastigiate or pyramidal habit; and this fact is the more interesting, as a Chinese tropical species of Pyrus naturally grows thus. Although in these cases the changed manner of growth seems to have been directly caused by the great heat, we know that many fastigiate trees have originated in their temperate homes. In the Botanic Gardens of Ceylon the apple-tree (23/22. ‘Ceylon’ by Sir J.E. Tennent volume 1 1859 page 89.) “sends out numerous runners under ground, which continually rise into small stems, and form a growth around the parent-tree.) The varieties of the cabbage which produce heads in Europe fail to do so in certain tropical countries (23/23. Godron ‘De l’Espece’ tome 2 page 52.) The Rhododendron ciliatum produced at Kew flowers so much larger and paler-coloured than those which it bears on its native Himalayan mountain, that Dr. Hooker (23/24. ‘Journal of Horticultural Soc.’ volume 7 1852 page 117.) would hardly have recognised the species by the flowers alone. Many similar facts with respect to the colour and size of flowers could be given.

The experiments of Vilmorin and Buckman on carrots and parsnips prove that abundant nutriment produces a definite and inheritable effect on the roots, with scarcely any change in other parts of the plant. Alum directly influences the colour of the flowers of the Hydrangea. (23/25. ‘Journal of Hort. Soc.’ volume 1 page 160.) Dryness seems generally to favour the hairiness or villosity of plants. Gartner found that hybrid Verbascums became extremely woolly when grown in pots. Mr. Masters, on the other hand, states that the Opuntia leucotricha “is well clothed with beautiful white hairs when grown in a damp heat, but in a dry heat exhibits none of this peculiarity.” (23/26. See Lecoq on the Villosity of Plants ‘Geograph. Bot.’ tome 3 pages 287, 291; Gartner ‘Bastarderz.’ s. 261; Mr. Masters on the Opuntia in ‘Gardener’s Chronicle’ 1846 page 444.) Slight variations of many kinds, not worth specifying in detail, are retained only as long as plants are grown in certain soils, of which Sageret (23/27. ‘Pom. Phys.’ page 136.) gives some instances from his own experience. Odart, who insists strongly on the permanence of the varieties of the grape, admits (23/28. ‘Ampelographie’ 1849 page 19.) that some varieties, when grown under a different climate or treated differently, vary in a slight degree, as in the tint of the fruit and in the period of ripening. Some authors have denied that grafting causes even the slightest difference in the scion; but there is sufficient evidence that the fruit is sometimes slightly affected in size and flavour, the leaves in duration, and the flowers in appearance. (23/29. Gartner ‘Bastarderz.’ s. 606, has collected nearly all recorded facts. Andrew Knight in ‘Transact. Hort. Soc.’ volume 2 page 160, goes so far as to maintain that few varieties are absolutely permanent in character when propagated by buds or grafts.)

There can be no doubt, from the facts given in the first chapter, that European dogs deteriorate in India, not only in their instincts but in structure; but the changes which they undergo are of such a nature, that they may be partly due to reversion to a primitive form, as in the case of feral animals. In parts of India the turkey becomes reduced in size, “with the pendulous appendage over the beak enormously developed.” (23/30. Mr. Blyth ‘Annals and Mag of Nat. Hist.’ volume 20 1847 page 391.) We have seen how soon the wild duck, when domesticated, loses its true character, from the effects of abundant or changed food, or from taking little exercise. From the direct action of a humid climate and poor pasture the horse rapidly decreases in size in the Falkland Islands. From information which I have received, this seems likewise to be the case to a certain extent with sheep in Australia.

Climate definitely influences the hairy covering of animals; in the West Indies a great change is produced in the fleece of sheep, in about three generations. Dr. Falconer states (23/31. ‘Natural History Review’ 1862 page 113.) that the Thibet mastiff and goat, when brought down from the Himalaya to Kashmir, lose their fine wool. At Angora not only goats, but shepherd-dogs and cats, have fine fleecy hair, and Mr. Ainsworth (23/32. ‘Journal of Roy. Geographical Soc.’ volume 9 1839 page 275.) attributes the thickness of the fleece to the severe winters, and its silky lustre to the hot summers. Burnes states positively (23/33. ‘Travels in Bokhara’ volume 3 page 151.) that the Karakool sheep lose their peculiar black curled fleeces when removed into any other country. Even within the limits of England, I have been assured that the wool of two breeds of sheep was slightly changed by the flocks being pastured in different localities. (23/34. See also on the influence of marshy pastures on the wool Godron ‘L’Espece’ tome 2 page 22.) It has been asserted on good authority (23/35. Isidore Geoffroy Saint-Hilaire ‘Hist. Nat. Gen.’ tome 3 page 438.) that horses kept during several years in the deep coal-mines of Belgium become covered with velvety hair, almost like that on the mole. These cases probably stand in close relation to the natural change of coat in winter and summer. Naked varieties of several domestic animals have occasionally appeared; but there is no reason to believe that this is in any way related to the nature of the climate to which they have been exposed. (23/36. Azara has made some good remarks on this subject ‘Quadrupedes du Paraguay’ tome 2 page 337. See an account of a family of naked mice produced in England ‘Proc. Zoolog. Soc.’ 1856 page 38.)

It appears at first sight probable that the increased size, the tendency to fatten, the early maturity and altered forms of our improved cattle, sheep, and pigs, have directly resulted from their abundant supply of food. This is the opinion of many competent judges, and probably is to a great extent true. But as far as form is concerned, we must not overlook the more potent influence of lessened use on the limbs and lungs. We see, moreover, as far as size is concerned, that selection is apparently a more powerful agent than a large supply of food, for we can thus only account for the existence, as remarked to me by Mr. Blyth, of the largest and smallest breeds of sheep in the same country, of Cochin-China fowls and Bantams, of small Tumbler and large Runt pigeons, all kept together and supplied with abundant nourishment. Nevertheless there can be little doubt that our domesticated animals have been modified, independently of the increased or lessened use of parts, by the conditions to which they have been subjected, without the aid of selection. For instance, Prof. Rutimeyer (23/37. ‘Die Fauna der Pfahlbauten’ 1861 s. 15.) shows that the bones of domesticated quadrupeds can be distinguished from those of wild animals by the state of their surface and general appearance. It is scarcely possible to read Nathusius’s excellent ‘Vorstudien’ (23/38. ‘Schweineschadel’ 1864 s. 99.) and doubt that, with the highly improved races of the pig, abundant food has produced a conspicuous effect on the general form of the body, on the breadth of the head and face, and even on the teeth. Nathusius rests much on the case of a purely bred Berkshire pig, which when two months old became diseased in its digestive organs, and was preserved for observation until nineteen months old; at this age it had lost several characteristic features of the breed, and had acquired a long, narrow head, of large size relatively to its small body, and elongated legs. But in this case and in some others we ought not to assume that, because certain characters are lost, perhaps through reversion, under one course of treatment, therefore that they were at first directly produced by an opposite treatment.

In the case of the rabbit, which has become feral on the island of Porto Santo, we are at first strongly tempted to attribute the whole change–the greatly reduced size, the altered tints of the fur, and the loss of certain characteristic marks–to the definite action of the new conditions to which it has been exposed. But in all such cases we have to consider in addition the tendency to reversion to progenitors more or less remote, and the natural selection of the finest shades of difference.

The nature of the food sometimes either definitely induces certain peculiarities, or stands in some close relation with them. Pallas long ago asserted that the fat-tailed sheep of Siberia degenerate and lose their enormous tails when removed from certain saline pastures; and recently Erman (23/39. ‘Travels in Siberia’ English translation volume 1 page 228.) states that this occurs with the Kirgisian sheep when brought to Orenburgh.

It is well known that hemp-seed causes bullfinches and certain other birds to become black. Mr. Wallace has communicated to me some much more remarkable facts of the same nature. The natives of the Amazonian region feed the common green parrot (Chrysotis festiva, Linn.) with the fat of large Siluroid fishes, and the birds thus treated become beautifully variegated with red and yellow feathers. In the Malayan archipelago, the natives of Gilolo alter in an analogous manner the colours of another parrot, namely, the Lorius garrulus, Linn., and thus produce the Lori rajah or King-Lory. These parrots in the Malay Islands and South America, when fed by the natives on natural vegetable food, such as rice and plaintains, retain their proper colours. Mr. Wallace has, also, recorded (23/40. A.R. Wallace ‘Travels on the Amazon and Rio Negro’ page 294.) a still more singular fact. “The Indians (of S. America) have a curious art by which they change the colours of the feathers of many birds. They pluck out those from the part they wish to paint, and inoculate the fresh wound with the milky secretion from the skin of a small toad. The feathers grow of a brilliant yellow colour, and on being plucked out, it is said, grow again of the same colour without any fresh operation.”

Bechstein (23/41. ‘Naturgeschichte der Stubenvogel’ 1840 s. 262, 308.) does not entertain any doubt that seclusion from light affects, at least temporarily, the colours of cage-birds.

It is well known that the shells of land-mollusca are affected by the abundance of lime in different districts. Isidore Geoffroy Saint-Hilaire (23/42. ‘Hist. Nat Gen.’ tome 3 page 402.) gives the case of Helix lactea, which has recently been carried from Spain to the South of France and to the Rio Plata, and in both countries now presents a distinct appearance, but whether this has resulted from food or climate is not known. With respect to the common oyster, Mr. F. Buckland informs me that he can generally distinguish the shells from different districts; young oysters brought from Wales and laid down in beds where “natives” are indigenous, in the short space of two months begin to assume the “native” character. M. Costa (23/43. ‘Bull. de La Soc. Imp. d’Acclimat.’ tome 8 page 351.) has recorded a much more remarkable case of the same nature, namely, that young shells taken from the shores of England and placed in the Mediterranean, at once altered their manner of growth and formed prominent diverging rays, like those on the shells of the proper Mediterranean oyster. The same individual shell, showing both forms of growth, was exhibited before a society in Paris. Lastly, it is well known that caterpillars fed on different food sometimes either themselves acquire a different colour or produce moths differing in colour. (23/44. See an account of Mr. Gregson’s experiments on the Abraxus grossulariata ‘Proc. Entomolog. Soc.’ January 6, 1862: these experiments have been confirmed by Mr. Greening in ‘Proc. of the Northern Entomolog. Soc.’ July 28, 1862. For the effects of food on caterpillars see a curious account by M. Michely in ‘Bull. De La Soc. Imp. d’Acclimat.’ tome 8 page 563. For analogous facts from Dahlbom on Hymenoptera see Westwood ‘Modern Class. of Insects’ volume 2 page 98. See also Dr. L. Moller ‘Die Abhangigkeit der Insecten’ 1867 s. 70.)

It would be travelling beyond my proper limits here to discuss how far organic beings in a state of nature are definitely modified by changed conditions. In my ‘Origin of Species’ I have given a brief abstract of the facts bearing on this point, and have shown the influence of light on the colours of birds, and of residence near the sea on the lurid tints of insects, and on the succulency of plants. Mr. Herbert Spencer (23/45. ‘The Principles of Biology’ volume 2 1866. The present chapters were written before I had read Mr. Herbert Spencer’s work, so that I have not been able to make so much use of it as I should otherwise probably have done.) has recently discussed with much ability this whole subject on general grounds. He argues, for instance, that with all animals the external and internal tissues are differently acted on by the surrounding conditions, and they invariably differ in intimate structure. So again the upper and lower surfaces of true leaves, as well as of stems and petioles, when these assume the function and occupy the position of leaves, are differently circumstanced with respect to light, etc., and apparently in consequence differ in structure. But, as Mr. Herbert Spencer admits, it is most difficult in all such cases to distinguish between the effects of the definite action of physical conditions and the accumulation through natural selection of inherited variations which are serviceable to the organism, and which have arisen independently of the definite action of these conditions.

Although we are not here concerned with the definite action of the conditions of life on organisms in a state of nature, I may state that much evidence has been gained during the last few years on this subject. In the United States, for instance, it has been clearly proved, more especially by Mr. J.A. Allen, that, with birds, many species differ in tint, size of body and of beak, and in length of tail, in proceeding from the North to the South; and it appears that these differences must be attributed to the direct action of temperature. (23/46. Professor Weismann comes to the same conclusion with respect to certain European butterflies in his valuable essay ‘Ueber den Saison- Dimorphismus’ 1875. I might also refer to the recent works of several other authors on the present subject; for instance to Kerner’s ‘Gute und schlechte Arten’ 1866.) With respect to plants I will give a somewhat analogous case: Mr. Meehan (23/47. ‘Proc. Acad. Nat. Soc. of Philadelphia’ January 28, 1862.), has compared twenty-nine kinds of American trees with their nearest European allies, all grown in close proximity and under as nearly as possible the same conditions. In the American species he finds, with the rarest exceptions, that the leaves fall earlier in the season, and assume before their fall a brighter tint; that they are less deeply toothed or serrated; that the buds are smaller; that the trees are more diffuse in growth and have fewer branchlets; and, lastly, that the seeds are smaller–all in comparison with the corresponding European species. Now considering that these corresponding trees belong to several distinct orders, and that they are adapted to widely different stations, it can hardly be supposed that their differences are of any special service to them in the New and Old worlds; and if so such differences cannot have been gained through natural selection, and must be attributed to the long continued action of a different climate.