Full Text Archive logoFull Text Archive — Free Classic E-books

Acetylene, The Principles Of Its Generation And Use by F. H. Leeds and W. J. Atkinson Butterfield

Part 5 out of 9

Adobe PDF icon
Download Acetylene, The Principles Of Its Generation And Use pdf
File size: 1.0 MB
What's this? light bulb idea Many people prefer to read off-line or to print out text and read from the real printed page. Others want to carry documents around with them on their mobile phones and read while they are on the move. We have created .pdf files of all out documents to accommodate all these groups of people. We recommend that you download .pdfs onto your mobile phone when it is connected to a WiFi connection for reading off-line.

differences make the solution fit for employment. It may be observed that
as the solution of acetylene in acetone is a liquid, the acetylene must
exist therein as a liquid; it is, in fact, liquid acetylene in a state of
dilution, the diluent being an exothermic and comparatively stable body.

The specific heat of acetylene is given by M. A. Morel at 0.310, though
he has not stated by whom the value was determined. For the purpose of a
calculation in Chapter III. the specific heat at constant pressure was
assumed to be 0.25, which, in the absence of precise information, appears
somewhat more probable as an approximation to the truth. The ratio
(_k_ or C_p/C_v ) of the specific heat at constant pressure to that
at constant volume has been found by Maneuvrier and Fournier to be 1.26;
but they did not measure the specific heat itself. [Footnote: The ratio
1.26 _k_ or (C_p/C_v) has been given in many text-books as the value
of the specific heat of acetylene, whereas this value should obviously be
only about one-fourth or one-fifth of 1.26.

By employing the ordinary gas laws it is possible approximately to
calculate the specific heat of acetylene from Maneuvrier and Fournier's
ratio. Taking the molecular weight of acetylene as 26, we have

26 C_p - 26 C_v = 2 cal.,


C_p = 1.26 C_v.

From this it follows that C_p, _i.e._, the specific heat at constant
pressure of acetylene, should be 0.373.] It will be seen that this value
for _k_ differs considerably from the corresponding ratio in the
case of air and many common gases, where it is usually 1.41; the figure
approaches more closely that given for nitrous oxide. For the specific
heat of calcium carbide Carlson quotes the following figures:

0 deg. 1000 deg. 1500 deg. 2000 deg. 2500 deg. 3000 deg. 3500 deg.
0.247 0.271 0.296 0.325 0.344 0.363 0.381

The molecular volume of acetylene is 0.8132 (oxygen = 1).

According to the international atomic weights adopted in 1908, the
molecular weight of acetylene is 26.016 if O = 16; in round numbers, as
ordinarily used, it is 26. Employing the latest data for the weight of 1
litre of dry hydrogen and of dry normal air containing 0.04 per cent. of
carbon dioxide at a temperature of 0 deg. C. and a barometric pressure of
760 mm. in the latitude of London, viz., 0.089916 and 1.29395 grammes
respectively (Castell-Evans), it now becomes possible to give the weight
of a known volume of dry or moist acetylene as measured under stated
conditions with some degree of accuracy. Using 26.016 as the molecular
weight of the gas (O = 16), 1 litre of dry acetylene at 0 deg. C. and 760 mm.
weighs 1.16963 grammes, or 1 gramme measures 0.854973 litre. From this it
follows that the theoretical specific gravity of the gas at 0 deg./0 deg. C.
is 0.9039 (air = 1), a figure which may be compared with Leduc's
experimental value of 0.9056. Taking as the coefficient of expansion at
constant pressure the figure already given, viz., 0.003738, the weights
and measures of dry and moist acetylene observed under British conditions
(60 deg. F. and 30 inches of mercury) become approximately:

Dry. Saturated.
1 litre . . . 1.108 grm. . . 1.102 grm.
1 gramme . . . 0.902 litre. . . 0.907 litre.
1000 cubic feet . 69.18 lb. . . . 68.83 lb.

It should be remembered that unless the gas has been passed through a
chemical drier, it is always saturated with aqueous vapour, the amount of
water present being governed by the temperature and pressure. The 1 litre
of moist acetylene which weighs 1.102 gramme at 60 deg. F. and 30 inches of
mercury, contains 0.013 gramme of water vapour; and therefore the weight
of dry acetylene in the 1 litre of moist gas is 1.089 gramme. Similarly,
the 68.83 pounds which constitute the weight of 1000 cubic feet of moist
acetylene, as measured under British standard conditions, are composed of
almost exactly 68 pounds of dry acetylene and 0.83 pound of water vapour.
The data required in calculating the mass of vapour in a known volume of
a saturated gas at any observed temperature and pressure, _i.e._, in
reducing the figures to those which represent the dry gas at any other
(standard) temperature and pressure, will be found in the text-books of
physical chemistry. It is necessary to recollect that since coal-gas is
measured wet, the factors given in the table quoted in Chapter XIV. from
the "Notification of the Gas Referees" simply serve to convert the volume
of a wet gas observed under stated conditions to the equivalent volume of
the same wet gas at the standard conditions mentioned.

HEAT OF COMBUSTION, &C--Based on Berthelot and Matignon's value for the
heat of combustion which is given on a subsequent page, viz., 315.7 large
calories per molecular weight of 26.016 grammes, the calorific power of
acetylene under different conditions is shown in the following table:

Dry. Dry. Saturated.
0 deg. C. & 760 mm. 60 deg. F & 30 ins. 60 deg. F. & 30 ins.

1 gramme 12.14 cals. 12.14 cals. 12.0 cals.
1 litre 14.l9 " 13.45 " 13.22 "
1 cubic foot 40.19 " 380.8 " 374.4 "

The figures in the last column refer to the dry acetylene in the gas, no
correction having been made for the heat absorbed by the water vapour
present. As will appear in Chapter X., the average of actual
determinations of the calorific value of ordinary acetylene is 363 large
calories or 1440 B.Th.U. per cubic foot. The temperature of ignition of
acetylene has been generally stated to be about 480 deg. C. V. Meyer and
Muench in 1893 found that a mixture of acetylene and oxygen ignited
between 509 deg. and 515 deg. C. Recent (1909) investigations by H. B. Dixon
and H. F. Coward show, however, that the ignition temperature in neat oxygen
is between 416 deg. and 440 deg. (mean 428 deg. C.) and in air between
406 deg. and 440 deg., with a mean of 429 deg. C. The corresponding mean
temperature of ignition found by the same investigators for other gases are:
hydrogen, 585 deg.; carbon monoxide, moist 664 deg., dry 692 deg.; ethylene,
in oxygen 510 deg., in air 543 deg.; and methane, in oxygen between 550 deg.
and 700 deg., and in air, between 650 deg. and 750 deg. C.

Numerous experiments have been performed to determine the temperature of the
acetylene flame. According to an exhaustive research by L. Nichols, when the
gas burns in air it attains a maximum temperature of 1900 deg. C. +- 20 deg.,
which is 120 deg. higher than the temperature he found by a similar method
of observation for the coal-gas flame (fish-tail burner). Le Chatelier had
previously assigned to the acetylene flame a temperature between 2100 deg.
and 2400 deg., while Lewes had found for the dark zone 459 deg., for the
luminous zone 1410 deg., and for the tip 1517 deg. C, Fery and Mahler have
also made measurements of the temperatures afforded by acetylene and other
fuels, some of their results being quoted below. Fery employed his optical
method of estimating the temperature, Mahler a process devised by Mallard
and Le Chatelier. Mahler's figures all relate to flames supplied with air
at a temperature of 0 deg. C. and a constant pressure of 760 mm.

Hydrogen . . . . . . . . . . . 1900 1960
Carbon monoxide . . . . . . . . . -- 2100
Methane . . . . . . . . . . . -- _ 1850
Coal-gas (luminous) . . . . . . . . 1712 |
" (atmospheric, with deficient supply of air) . 1812 | 1950
" (atmospheric, with full supply of air) . . 1871 _|
Water-gas . . . . . . . . . . -- 2000
Oxy-coal-gas blowpipe . . . . . . . 2200 --
Oxy-hydrogen blowpipe . . . . . . . 2420 --
Acetylene . . . . . . . . . . 2548 2350
Alcohol . . . . . . . . . . . 1705 1700
Alcohol (in Denayrouze Bunsen) . . . . . 1862 --
Alcohol and petrol in equal parts . . . . 2053 --
Crude petroleum (American) . . . . . . -- 2000
Petroleum spirit " . . . . . . . -- 1920
Petroleum oil " . . . . . . . -- 1660

Catani has published the following determinations of the temperature
yielded by acetylene when burnt with cold and hot air and also with

Acetylene and cold air . . . . . . 2568 deg. C.
" air at 500 deg. C . . . . 2780 deg. C.
" air at 1000 deg. C . . . . 3000 deg. C.
" oxygen . . . . . . 4160 deg. C.

EXPLOSIVE LIMITS.--The range of explosibility of mixtures of acetylene
and air has been determined by various observers. Eitner's figures for
the lower and upper explosive limits, when the mixture, at 62.6 deg. F.,
is in a tube 19 mm. in diameter, and contains 1.9 per cent. of aqueous
vapour, are 3.35 and 52.3 per cent. of acetylene (_cf._ Chapter X.).
In this case the mixture was fired by electric spark. In wider vessels,
the upper explosive limit, when the mixture was fired by a Bunsen flame,
was found to be as high as 75 per cent. of acetylene. Eitner also found
that when 13 of the 21 volumes of oxygen in air are displaced by carbon
dioxide, a mixture of such "carbon dioxide air" with acetylene is
inexplosive in all proportions. Also that when carbon dioxide is added to
a mixture of acetylene and air, an explosion no longer occurs when the
carbon dioxide amounts to 46 volumes or more to every 54 volumes of air,
whatever may be the proportion of acetylene in the mixture. [Footnote:
According to Caro, if acetylene is added to a mixture composed of 55 per
cent. by volume of air and 45 per cent. of carbon dioxide, the whole is
only explosive when the proportion of acetylene lies between 5.0 and 5.8
per cent. Caro has also quoted the effect of various inflammable vapours
upon the explosive limits of acetylene, his results being referred to in
Chapter X.] These figures are valuable in connexion with the prevention
of the formation of explosive mixtures of air and acetylene when new
mains or plant are being brought into operation (_cf._ Chapter
VII.). Eitner has also shown, by direct investigation on mixtures of
other combustible gases and air, that the range of explosibility is
greatly reduced by increase in the proportion of aqueous vapour present.
As the proportion of aqueous vapour in gas standing over water increases
with the temperature the range of explosibility of mixtures of a
combustible gas and air is naturally and automatically reduced when the
temperature rises, provided the mixture is in contact with water. Thus at
17.0 deg. C., mixtures of hydrogen, air, and aqueous vapour containing from
9.3 to 65.0 per cent, of hydrogen are explosive, whereas at 78.1 deg. C.,
provided the mixture is saturated with aqueous vapour, explosion occurs
only when the percentage of hydrogen in the mixture is between 11.2 and
21.9. The range of explosibility of mixtures of acetylene and air is
similarly reduced by the addition of aqueous vapour (though the exact
figures have not been experimentally ascertained); and hence it follows
that when the temperature in an acetylene generator in which water is in
excess, or in a gasholder, rises, the risk of explosion, if air is mixed
with the gas, is automatically reduced with the rise in temperature by
reason of the higher proportion of aqueous vapour which the gas will
retain at the higher temperature. This fact is alluded to in Chapter II.
Acetone vapour also acts similarly in lowering the upper explosive limit
of acetylene (_cf._ Chapter XI.).

It may perhaps be well to indicate briefly the practical significance of
the range of explosibility of a mixture of air and a combustible gas,
such as acetylene. The lower explosive limit is the lowest percentage of
combustible gas in the mixture of it and air at which explosion will
occur in the mixture if a light or spark is applied to it. If the
combustible gas is present in the mixture with air in less than that
percentage explosion is impossible. The upper explosive limit is the
highest percentage of combustible gas in the mixture of it and air at
which explosion will occur in the mixture if a light or spark is applied
to it. If the combustible gas is present in the mixture with air in more
than that percentage explosion is impossible. Mixtures, however, in which
the percentage of combustible gas lies between these two limits will
explode when a light or spark is applied to them; and the comprehensive
term "range of explosibility" is used to cover all lying between the two
explosive limits. If, then, a naked light is applied to a vessel
containing a mixture of a combustible gas and air, in which mixture the
proportion of combustible gas is below the lower limit of explosibility,
the gas will not take fire, but the light will continue to burn, deriving
its necessary oxygen from the excess of air present. On the other hand,
if a light is applied to a vessel containing a mixture of a combustible
gas and air, in which mixture the proportion of combustible gas is above
the upper limit of explosibility, the light will be extinguished, and
within the vessel the gaseous mixture will not burn; but it may burn at
the open mouth of the vessel as it comes in contact with the surrounding
air, until by diffusion, &c., sufficient air has entered the vessel to
form, with the remaining gas, a mixture lying within the explosive
limits, when an explosion will occur. Again, if a gaseous mixture
containing less of its combustible constituent than is necessary to
attain the lower explosive limit escapes from an open-ended pipe and a
light is applied to it, the mixture will not burn as a useful compact
flame (if, indeed, it fires at all); if the mixture contains more of its
combustible constituent than is required to attain the upper explosive
limit, that mixture will burn quietly at the mouth of the pipe and will
be free from any tendency to fire back into the pipe--assuming, of
course, that the gaseous mixture within the pipe is constantly travelling
towards the open end. If, however, a gaseous mixture containing a
proportion of its combustible constituent which lies between the lower
and the upper explosive limit of that constituent escapes from an open-
ended pipe and a light is applied, the mixture will fire and the flame
will pass back into the pipe, there to produce an explosion, unless the
orifice of the said pipe is so small as to prevent the explosive wave
passing (as is the case with a proper acetylene burner), or unless the
pipe itself is so narrow as appreciably to alter the range of
explosibility by lowering the upper explosive limit from its normal

By far the most potent factor in altering the range of explosibility of
any gas when mixed with air is the diameter of the vessel containing or
delivering such mixture. Le Chatelier has investigated this point in the
case of acetylene, and his values are reproduced overleaf; they are
comparable among themselves, although it will be observed that his
absolute results differ somewhat from those obtained by Eitner which are
quoted later:

_Explosive Limits of Acetylene mixed with Air._--(Le Chatelier.)

| | | |
| | Explosive Limits. | |
| Diameter of Tube |_______________________| Range of |
| in Millimetres. | | | Explosibility. |
| | Lower. | Upper. | |
| | | | |
| | Per Cent. | Per Cent. | Per Cent. |
| 40 | 2.9 | 64 | 61.1 |
| 30 | 3.1 | 62 | 58.9 |
| 20 | 3.5 | 55 | 51.5 |
| 6 | 4.0 | 40 | 36.0 |
| 4 | 4.5 | 25 | 20.5 |
| 2 | 5.0 | 15 | 10.0 |
| 0.8 | 7.7 | 10 | 2.3 |
| 0.5 | ... | ... | ... |

Thus it appears that past an orifice or constriction 0.5 mm. in diameter
no explosion of acetylene can proceed, whatever may be the proportions
between the gas and the air in the mixture present.

With every gas the explosive limits and the range of explosibility are
also influenced by various circumstances, such as the manner of ignition,
the pressure, and other minor conditions; but the following figures for
mixtures of air and different combustible gases were obtained by Eitner
under similar conditions, and are therefore strictly comparable one with
another. The conditions were that the mixture was contained in a tube 19
mm. (3/4-inch) wide, was at about 60 deg. to 65 deg. F., was saturated with
aqueous vapour, and was fired by electric spark.

_Table giving the Percentage by volume of Combustible Gas in a Mixture
of that Gas and Air corresponding with the Explosive Limits of such a

| | | | |
| Description of | Lower | Upper | Difference between the |
| Combustible Gas. | Explosive | Explosive | Lower and Upper Limits, |
| | Limit. | Limit. | showing the range |
| | | | covered by the |
| | | | Explosive Mixtures. |
| | | | |
| | Per Cent. | Per Cent. | Per Cent. |
| Carbon monoxide | 16.50 | 74.95 | 58.45 |
| Hydrogen | 9.45 | 66.40 | 57.95 |
| Water-gas | | | |
| (uncarburetted) | 12.40 | 66.75 | 54.35 |
| ACETYLENE | 3.35 | 52.30 | 48.95 |
| Coal-gas | 7.90 | 19.10 | 11.20 |
| Ethylene | 4.10 | 14.60 | 10.50 |
| Methane | 6.10 | 12.80 | 6.70 |
| Benzene (vapour) | 2.65 | 6.50 | 3.85 |
| Pentane " | 2.40 | 4.90 | 2.50 |
| Benzoline " | 2.40 | 4.90 | 2.50 |

These figures are of great practical significance. They indicate that a
mixture of acetylene and air becomes explosive (_i.e._, will explode
if a light is applied to it) when only 3.35 per cent. of the mixture is
acetylene, while a similar mixture of coal-gas and air is not explosive
until the coal-gas reaches 7.9 per cent. of the mixture. And again, air
may be added to coal-gas, and it does not become explosive until the
coal-gas is reduced to 19.1 per cent. of the mixture, while, on the
contrary, if air is added to acetylene, the mixture becomes explosive as
soon as the acetylene has fallen to 52.3 per cent. Hence the immense
importance of taking precautions to avoid, on the one hand, the escape of
acetylene into the air of a room, and, on the other hand, the admixture
of air with the acetylene in any vessel containing it or any pipe through
which it passes. These precautions are far more essential with acetylene
than with coal-gas. The table shows further how great is the danger of
explosion if benzene, benzoline, or other similar highly volatile
hydrocarbons [Footnote: The nomenclature of the different volatile
spirits is apt to be very confusing. "Benzene" is the proper name for the
most volatile hydrocarbon derived from coal-tar, whose formula is C_6H_6.
Commercially, benzene is often known as "benzol" or "benzole"; but it
would be generally advantageous if those latter words were only used to
mean imperfectly rectified benzene, _i.e._, mixtures of benzene with
toluene, &c., such as are more explicitly understood by the terms "90.s
benzol" and "50.s benzol." "Gasoline," "carburine," "petroleum ether,"
"benzine," "benzoline," "petrol," and "petroleum spirit" all refer to
more or less volatile (the most volatile being mentioned first) and more
or less thoroughly rectified products obtained from petroleum. They are
mixtures of different hydrocarbons, the greater part of them having the
general chemical formula C_nH_2n+2 where n = 5 or more. None of them is a
definite chemical compound as is benzene; when n = 5 only the product is
pentane. These hydrocarbons are known to chemists as "paraffins,"
"naphthenes" being occasionally met with; while a certain proportion of
unsaturated hydrocarbons is also present in most petroleum spirits. The
hydrocarbons of coal-tar are "aromatic hydrocarbons," their generic
formula being C_nH_2^n-6, where n is never less than 6.] are allowed to
vaporise in a room in which a light may be introduced. Less of the vapour
of these hydrocarbons than of acetylene in the air of a room brings the
mixture to the lower explosive limit, and therewith subjects it to the
risk of explosion. This tact militates strongly against the use of such
hydrocarbons within a house, or against the use of air-gas, which, as
explained in Chapter I., is air more or less saturated with the vapour of
volatile hydrocarbons. Conversely, a combustible gas, such as acetylene,
may be safely "carburetted" by these hydrocarbons in a properly
constructed apparatus set up outside the dwelling-house, as explained in
Chapter X., because there would be no air (as in air-gas) in the pipes,
&c., and a relatively large escape of carburetted acetylene would be
required to produce an explosive atmosphere in a room. Moreover, the
odour of the acetylene itself would render the detection of a leak far
easier with carburetted acetylene than with air-gas.

N. Teclu has investigated the explosive limits of mixtures of air with
certain combustible gases somewhat in the same manner as Eitner, viz.: by
firing the mixture in an eudiometer tube by means of an electric spark.
He worked, however, with the mixture dry instead of saturated with
aqueous vapour, which doubtless helps to account for the difference
between his and Eitner's results.

_Table giving the Percentages by volume of Combustible Gas in a
Dehydrated Mixture of that Gas and Air between which the Explosive Limits
of such a Mixture lie._--(Teclu).

| | | |
| | Lower Explosive Limit. | Upper Explosive Limit. |
| Description of |________________________|________________________|
| Combustible Gas. | | |
| | Per Cent. of Gas. | Per Cent. of Gas. |
| | | |
| ACETYLENE | 1.53-1.77 | 57.95-58.65 |
| Hydrogen | 9.73-9.96 | 62.75-63.58 |
| Coal-gas | 4.36-4.82 | 23.35-23.63 |
| Methane | 3.20-3.67 | 7.46- 7.88 |

Experiments have been made at Lechbruch in Bavaria to ascertain directly
the smallest proportion of acetylene which renders the air of a room
explosive. Ignition was effected by the flame resulting when a pad of
cotton-wool impregnated with benzoline or potassium chlorate was fired by
an electrically heated wire. The room in which most of the tests were
made was 8 ft. 10 in. long, 6 ft. 7 in. wide, and 6 ft. 8 in. high, and
had two windows. When acetylene was generated in this room in normal
conditions of natural ventilation through the walls, the volume generated
could amount to 3 per cent. of the air-space of the room without
explosion ensuing on ignition of the wool, provided time elapsed for
equable diffusion, which, moreover, was rapidly attained. Further, it was
found that when the whole of the acetylene which 2 kilogrammes or 4.4 lb.
of carbide (the maximum permissible charge in many countries for a
portable lamp for indoor use) will yield was liberated in a room, a
destructive explosion could not ensue on ignition provided the air-space
exceeded 40 cubic metres or 1410 cubic feet, or, if the evolved gas were
uniformly diffused, 24 cubic metres or 850 cubic feet. When the walls of
the room were rendered impervious to air and gas, and acetylene was
liberated, and allowed time for diffusion, in the air of the room, an
explosion was observed with a proportion of only 2-1/2 per cent. of
acetylene in the air.

_Solubility of Acetylene in Various Liquids._

| | | | |
| | | Volumes of | |
| | Tem- | Acetylene | |
| Solvent. |perature.|dissolved by| Authority. |
| | | 100 Vols. | |
| | | of Solvent.| |
| | | | |
| | Degs. C | | |
| Acetone . . . . | 15 | 2500 | Claude and Hess |
| " . . . . | 50 | 1250 | " |
| Acetic acid; alcohol . | 18 | 600 | Berthelot |
| Benzoline; chloroform . | 18 | 400 | " |
| Paraffin oil . . . | 0 | 103.3 | E. Muller |
| " . . . | 18 | 150 | Berthelot |
| Olive oil . . . . | -- | 48 | Fuchs and Schiff |
| Carbon bisulphide . . | 18 | 100 | Berthelot |
| " tetrachloride . | 0 | 25 | Nieuwland |
| Water (at 4 65 atmospheres| | | |
| pressure) . . | 0 | 160 | Villard |
| " (at 755 mm. pressure)| 12 | 118 | Berthelot |
| " (760 mm. pressure) . | 12 | 106.6 | E. Mueller |
| " " . | 15 | 110 | Lewes |
| " " . | 18 | 100 | Berthelot |
| " " . | -- | 100 | E. Davy (in 1836)|
| " " . | 19.5 | 97.5 | E. Mueller |
| Milk of lime: about 10 | | | |
| grammes of calcium hy- | 5 | 112 | Hammerschmidt |
| droxide per 100 c.c. . | | | and Sandmann |
| " " " | 10 | 95 | " |
| " " " | 20 | 75 | " |
| " " " | 50 | 38 | " |
| " " " | 70 | 20 | " |
| " " " | 90 | 6 | " |
| Solution of common salt,5%| 19 | 67.9 | " |
| (sodium chloride) " | 25 | 47.7 | " |
| " 20%| 19 | 29.6 | " |
| " " | 25 | 12.6 | " |
| "(nearly saturated, | | | |
| 26%) . . | 15 | 20.6 | " |
| "(saturated, sp. gr.| | | |
| 1-21) . . | 0 | 22.0 | E. Mueller |
| " " " | 12 | 21.0 | " |
| " " " | 18 | 20.4 | " |
| Solution of calcium | | | Hammerschmidt |
| chloride (saturated) . | 15 | 6.0 | and Sandmann |
| Berge and Reychler's re- | | | |
| agent . . . . | -- | 95 | Nieuwland |

SOLUBILITY.--Acetylene is readily soluble in many liquids. It is
desirable, on the one hand, as indicated in Chapter III., that the liquid
in the seals of gasholders, &c., should be one in which acetylene is
soluble to the smallest degree practically attainable; while, on the
other hand, liquids in which acetylene is soluble in a very high degree
are valuable agents for its storage in the liquid state. Hence it is
important to know the extent of the solubility of acetylene in a number
of liquids. The tabular statement (p. 179) gives the most trustworthy
information in regard to the solubilities under the normal atmospheric
pressure of 760 mm. or thereabouts.

The strength of milk of lime quoted in the above table was obtained by
carefully allowing 50 grammes of carbide to interact with 550 c.c. of
water at 5 deg. C. A higher degree of concentration of the milk of lime
was found by Hammerschmidt and Sandmann to cause a slight decrease in the
amount of acetylene held in solution by it. Hammerschmidt and Sandmann's
figures, however, do not agree well with others obtained by Caro, who has
also determined the solubility of acetylene in lime-water, using first, a
clear saturated lime-water prepared at 20 deg. C. and secondly, a milk of
lime obtained by slaking 10 grammes of quicklime in 100 c.c. of water. As
before, the figures relate to the volumes of acetylene dissolved at
atmospheric pressure by 100 volumes of the stated liquid.

| | | |
| Temperature. | Lime-water. | Milk of Lime. |
| | | |
| Degs C. | | |
| 0 | 146.2 | 152.6 |
| 5 | 138.5 | -- |
| 15 | 122.8 | 134.8 |
| 50 | 43.9 | 62.6 |
| 90 | 6.2 | 9.2 |

Figures showing the solubility of acetylene in plain water at different
temperatures have been published in Landolt-Boernstein's Physico-
Chemical Tables. These are reproduced below. The "Coefficient of
Absorption" is the volume of the gas, measured at 0 deg. C. and a
barometric height of 760 mm. taken up by one volume of water, at the stated
temperature, when the gas pressure on the surface, apart from the vapour
pressure of the water itself, is 760 mm. The "Solubility" is the weight
of acetylene in grammes taken up by 100 grammes of water at the stated
temperature, when the total pressure on the surface, including that of
the vapour pressure of the water, is 760 mm.

| | | |
| Temperature. | Coefficient of | Solubility. |
| | Absorption. | |
| | | |
| Degs. C. | | |
| 0 | 1.73 | 0.20 |
| 1 | 1.68 | 0.19 |
| 2 | 1.63 | 0.19 |
| 3 | 1.58 | 0.18 |
| 4 | 1.53 | 0.18 |
| 5 | 1.49 | 0.17 |
| 6 | 1.45 | 0.17 |
| 7 | 1.41 | 0.16 |
| 8 | 1.37 | 0.16 |
| 9 | 1.34 | 0.15 |
| 10 | 1.31 | 0.15 |
| 11 | 1.27 | 0.15 |
| 12 | 1.24 | 0.14 |
| 13 | 1.21 | 0.14 |
| 14 | 1.18 | 0.14 |
| 15 | 1.15 | 0.13 |
| 16 | 1.13 | 0.13 |
| 17 | 1.10 | 0.13 |
| 18 | 1.08 | 0.12 |
| 19 | 1.05 | 0.12 |
| 20 | 1.03 | 0.12 |
| 21 | 1.01 | 0.12 |
| 22 | 0.99 | 0.11 |
| 23 | 0.97 | 0.11 |
| 24 | 0.95 | 0.11 |
| 25 | 0.93 | 0.11 |
| 26 | 0.91 | 0.10 |
| 27 | 0.89 | 0.10 |
| 28 | 0.87 | 0.10 |
| 29 | 0.85 | 0.10 |
| 30 | 0.84 | 0.09 |

Advantage is taken, as explained in Chapter XI., of the high degree of
solubility of acetylene in acetone, to employ a solution of the gas in
that liquid when acetylene is wanted in a portable condition. The
solubility increases very rapidly with the pressure, so that under a
pressure of twelve atmospheres acetone dissolves about 300 times its
original volume of the gas, while the solubility also increases greatly
with a reduction in the temperature, until at -80 deg. C. acetone takes up
2000 times its volume of acetylene under the ordinary atmospheric
pressure. Further details of the valuable qualities of acetone as a
solvent of acetylene are given in Chapter XI., but it may here be
remarked that the successful utilisation of the solvent power of acetone
depends to a very large extent on the absolute freedom from moisture of
both the acetylene and the acetone, so that acetone of 99 per cent.
strength is now used as the solvent.

Turning to the other end of the scale of solubility, the most valuable
liquids for serving as seals of gasholders, &c., are readily discernible.
Far superior to all others is a saturated solution of calcium chloride,
and this should be selected as the confining liquid whenever it is
important to avoid dissolution of acetylene in the liquid as far as may
be. Brine comes next in order of merit for this purpose, but it is
objectionable on account of its corrosive action on metals. Olive oil
should, according to Fuchs and Schiff, be of service where a saline
liquid is undesirable; mineral oil seems useless. Were they concordant,
the figures for milk of lime would be particularly useful, because this
material is naturally the confining liquid in the generating chambers of
carbide-to-water apparatus, and because the temperature of the liquid
rises through the heat evolved during the generation of the gas
(_vide_ Chapters II. and III.). It will be seen that these figures
would afford a means of calculating the maximum possible loss of gas by
dissolution when a known volume of sludge is run off from a carbide-to-
water generator at about any possible temperature.

According to Garelli and Falciola, the depression in the freezing-point of
water caused by the saturation of that liquid with acetylene is 0.08 deg.
C., the corresponding figure for benzene in place of water being 1.40 deg.
C. These figures indicate that 100 parts by weight of water should dissolve
0.1118 part by weight of acetylene at 0 deg. C., and that 100 parts of
benzene should dissolve about 0.687 part of acetylene at 5 deg. C. In other
words, 100 volumes of water at the freezing-point should dissolve 95
volumes of acetylene, and 100 volumes of benzene dissolve some 653
volumes of the gas. The figure calculated for water in this way is lower
than that which might be expected from the direct determinations at other
temperatures already referred to; that for benzene may be compared with
Berthelot's value of 400 volumes at 18 deg. C. Other measurements of the
solubility of acetylene in water at 0 deg. C. have given the figure 0.1162
per cent. by weight.

TOXICITY.--Many experiments have been made to determine to what extent
acetylene exercises a toxic action on animals breathing air containing a
large proportion of it; but they have given somewhat inconclusive
results, owing probably to varying proportions of impurities in the
samples of acetylene used. The sulphuretted hydrogen and phosphine which
are found in acetylene as ordinarily prepared are such powerful toxic
agents that they would always, in cases of "acetylene" poisoning, be
largely instrumental in bringing about the effects observed. Acetylene
_per se_ would appear to have but a small toxic action; for the
principal toxic ingredient in coal-gas is carbon monoxide, which does not
occur in sensible quantity in acetylene as obtained from calcium carbide.
The colour of blood is changed by inhalation of acetylene to a bright
cherry-red, just as in cases of poisoning by carbon monoxide; but this is
due to a more dissolution of the gas in the haemoglobin of the blood, so
that there is much more hope of recovery for a subject of acetylene
poisoning than for one of coal-gas poisoning. Practically the risk of
poisoning by acetylene, after it has been purified by one of the ordinary
means, is _nil_. The toxic action of the impurities of crude
acetylene is discussed in Chapter V.

Acetylene is an "endothermic" compound, as has been mentioned in Chapter
II., where the meaning of the expression endothermic is explained. It has
there been indicated that by reason of its endothermic nature it is
unsafe to have acetylene at either a temperature of 780 deg. C. and upwards,
or at a pressure of two atmospheres absolute, or higher. If that
temperature or that pressure is exceeded, dissociation (_i.e._,
decomposition into its elements), if initiated at any spot, will extend
through the whole mass of acetylene. In this sense, acetylene at or above
780 deg. C., or at two or more atmospheres pressure, is explosive in the
absence of air or oxygen, and it is thereby distinguished from the
majority of other combustible gases, such as the components of coal-gas.
But if, by dilution with another gas, the partial pressure of the
acetylene is reduced, then the mixture may be subjected to a higher
pressure than that of two atmospheres without acquiring explosiveness, as
is fully shown in Chapter XI. Thus it becomes possible safely to compress
mixtures of acetylene and oil-gas or coal-gas, whereas unadmixed
acetylene cannot be safely kept under a pressure of two atmospheres
absolute or more. In a series of experiments carried out by Dupre on
behalf of the British Home Office, and described in the Report on
Explosives for 1897, samples of moist acetylene, free from air, but
apparently not purified by any chemical process, were exposed to the
influence of a bright red-hot wire. When the gas was held in the
containing vessel at the atmospheric pressure then obtaining, viz., 30.34
inches (771 mm.) of mercury, no explosion occurred. When the pressure was
raised to 45.34 inches (1150 mm.), no explosion occurred; but when the
pressure was further raised to 59.34 inches (1505 mm., or very nearly two
atmospheres absolute) the acetylene exploded, or dissociated into its

Acetylene readily polymerises when heated, as has been stated in Chapter
II., where the meaning of the term "polymerisation" has been explained.
The effects of the products of the polymerisation of acetylene on the
flame produced when the gas is burnt at the ordinary acetylene burners
have been stated in Chapter VIII., where the reasons therefor have been
indicated. The chief primary product of the polymerisation of acetylene
by heat appears to be benzene. But there are also produced, in some cases
by secondary changes, ethylene, methane, naphthalene, styrolene,
anthracene, and homologues of several of these hydrocarbons, while carbon
and hydrogen are separated. The production of these bodies by the action
of heat on acetylene is attended by a reduction of the illuminative value
of the gas, while owing to the change in the proportion of air required
for combustion (_see_ Chapter VIII.), the burners devised for the
consumption of acetylene fail to consume properly the mixture of gases
formed by polymerisation from the acetylene. It is difficult to compare
the illuminative value of the several bodies, as they cannot all be
consumed economically without admixture, but the following table
indicates approximately the _maximum_ illuminative value obtainable
from them either by combustion alone or in admixture with some non-
illuminating or feebly-illuminating gas:

| | | |
| | | Candles per |
| | | Cubic Foot |
| | | |
| | | (say) |
| Acetylene | C_2H_2 | 50 |
| Hydrogen | H_2 | 0 |
| Methane | CH_4 | 1 |
| Ethane | C_2H_6 | 7 |
| Propane | C_3H_8 | 11 |
| Pentane | C_5H_12 (vapour) | 35 |
| Hexane | C_6H_14 " | 45 |
| Ethylene | C_2H_4 | 20 |
| Propylene | C_3H_6 | 25 |
| Benzene | C_6H_6 (vapour) | 200 |
| Toluene | C_7H_8 " | 250 |
| Naphthalene | C_10H_8 " | 400 |

It appears from this table that, with the exception of the three
hydrocarbons last named, no substance likely to be formed by the action
of heat on acetylene has nearly so high an illuminative value--volume for
volume--as acetylene itself. The richly illuminating vapours of benzene
and naphthalene (and homologues) cannot practically add to the
illuminative value of acetylene, because of the difficulty of consuming
them without smoke, unless they are diluted with a large proportion of
feebly- or non-illuminating gas, such as methane or hydrogen. The
practical effect of carburetting acetylene with hydrocarbon vapours will
be shown in Chapter X. to be disastrous so far as the illuminating
efficiency of the gas is concerned. Hence it appears that no conceivable
products of the polymerisation of acetylene by heat can result in its
illuminative value being improved--even presupposing that the burners
could consume the polymers properly--while practically a considerable
deterioration of its value must ensue.

The heat of combustion of acetylene was found by J. Thomson to be 310.57
large calories per gramme-molecule, and by Berthelot to be 321.00
calories. The latest determination, however, made by Berthelot and
Matignon shows it to be 315.7 calories at constant pressure. Taking the
heat of formation of carbon dioxide from diamond carbon at constant
pressure as 94.3 calories (Berthelot and Matignon), which is equal to
97.3 calories from amorphous carbon, and the heat of formation of liquid
water as 69 calories; this value for the heat of combustion of acetylene
makes its heat of formation to be 94.3 x 2 + 69 - 315.7 = -58.1 large
calories per gramme-molecule (26 grammes) from diamond carbon, or -52.1
from amorphous carbon. It will be noticed that the heat of combustion of
acetylene is greater than the combined heats of combustion of its
constituents; which proves that heat has been absorbed in the union of
the hydrogen and carbon in the molecule, or that acetylene is
endothermic, as elsewhere explained. These calculations, and others given
in Chapter IX., will perhaps be rendered more intelligible by the
following table of thermochemical phenomena:

| | | | |
| Reaction. | Diamond | Amorphous | |
| | Carbon. | Carbon. | |
| | | | |
| (1) C (solid) + O . . . | 26.1 | 29.1 | ... |
| (2) C (solid) + O_2 . . . | 94.3 | 97.3 | ... |
| (3) CO + O (2 - 1) . . . | ... | ... | 68.2 |
| (4) Conversion of solid carbon | | | |
| into gas (3 - 1) . . . | 42.1 | 39.1 | ... |
| (5) C (gas) + O (1 + 4) . . | ... | ... | 68.2 |
| (6) Conversion of amorphous | | | |
| carbon to diamond . . | ... | ... | 3.0 |
| (7) C_2 + H_2 . . . . | -58.1 | -52.1 | ... |
| (8) C_2H_2 + 2-1/2O_2 . . | ... | ... | 315.7 |

W. G. Mixter has determined the heat of combustion of acetylene to be
312.9 calories at constant volume, and 313.8 at constant pressure. Using
Berthelot and Matignon's data given above for amorphous carbon, this
represents the heat of formation to be -50.2 (Mixter himself calculates
it as -51.4) calories. By causing compressed acetylene to dissociate
under the influence of an electric spark, Mixter measured its heat of
formation as -53.3 calories. His corresponding heats of combustion of
ethylene are 344.6 calories (constant volume) and 345.8 (constant
pressure); for its heat of formation he deduces a value -7.8, and
experimentally found one of about -10.6 (constant pressure).

THE ACETYLENE FLAME.--It has been stated in Chapter I. that acetylene
burnt in self-luminous burners gives a whiter light than that afforded by
any other artificial illuminant, because the proportion of the various
spectrum colours in the light most nearly resembles the corresponding
proportion found in the direct rays of the sun. Calling the amount of
monochromatic light belonging to each of the five main spectrum colours
present in the sun's rays unity in succession, and comparing the amount
with that present in the light obtained from electricity, coal-gas, and
acetylene, Muensterberg has given the following table for the composition
of the several lights mentioned:

| | | | | |
| | Electricity | Coal-Gas | Acetylene | |
| |________________|__________________|_______________|_______|
| Colour | | | | | | | |
| in | | | | | | With | |
| Spectrum.| Arc. | Incan- | Lumin- | Incan- | Alone.| 3 per | Sun- |
| | | descent.| ous. | descent.| | Cent. | light.|
| | | | | | | Air. | |
| | | | | | | | |
| Red | 2.09 | 1.48 | 4.07 | 0.37 | 1.83 | 1.03 | 1 |
| Yellow | 1.00 | 1.00 | 1.00 | 0.90 | 1.02 | 1.02 | 1 |
| Green | 0.99 | 0.62 | 0.47 | 4.30 | 0.76 | 0.71 | 1 |
| Blue | 0.87 | 0.91 | 1.27 | 0.74 | 1.94 | 1.46 | 1 |
| Violet | 1.08 | 0.17 | 0.15 | 0.83 | 1.07 | 1.07 | 1 |
| Ultra- | | | | | | | |
| Violet | 1.21 | ... | ... | ... | ... | ... | 1 |

These figures lack something in explicitness; but they indicate the
greater uniformity of the acetylene light in its proportion of rays of
different wave-lengths. It does not possess the high proportion of green
of the Welsbach flame, or the high proportion of red of the luminous gas-
flame. It is interesting to note the large amount of blue and violet
light in the acetylene flame, for these are the colours which are chiefly
concerned in photography; and it is to their prominence that acetylene
has been found to be so very actinic. It is also interesting to note that
an addition of air to acetylene tends to make the light even more like
that of the sun by reducing the proportion of red and blue rays to nearer
the normal figure.

H. Erdmann has made somewhat similar calculation, comparing the light of
acetylene with that of the Hefner (amyl acetate) lamp, and with coal-gas
consumed in an Argand and an incandescent burner. Consecutively taking
the radiation of the acetylene flame as unity for each of the spectrum
colours, his results are:

| | | | |
| | | | Coal-Gas |
| Colour in | Wave-Lengths, | |_______________________|
| Spectrum | uu | Hefner Light | | |
| | | | Argand | Incandescent |
| | | | | |
| Red | 650 | 1.45 | 1.34 | 1.03 |
| Orange | 610 | 1.22 | 1.13 | 1.00 |
| Yellow | 590 | 1.00 | 1.00 | 1.00 |
| Green | 550 | 0.87 | 0.93 | 0.86 |
| Blue | 490 | 0.72 | 1.27 | 0.92 |
| Violet | 470 | 0.77 | 1.35 | 1.73 |

B. Heise has investigated the light of different flames, including
acetylene, by a heterochromatic photometric method; but his results
varied greatly according to the pressure at which the acetylene was
supplied to the burner and the type of burner used. Petroleum affords
light closely resembling in colour the Argand coal-gas flame; and
electric glow-lamps, unless overrun and thereby quickly worn out, give
very similar light, though with a somewhat greater preponderance of
radiation in the red and yellow.

| | | |
| | Percent of Total | |
| Light. | Energy manifested | Observer. |
| | as Light. | |
| | | |
| Candle, spermaceti . . | 2.1 | Thomsen |
| " paraffin . . . | 1.53 | Rogers |
| Moderator lamp . . . | 2.6 | Thomsen |
| Coal-gas . . . . . | 1.97 | Thomsen |
| " . . . . . | 2.40 | Langley |
| " batswing . . . | 1.28 | Rogers |
| " Argand . . . | 1.61 | Rogers |
| " incandesce . . | 2 to 7 | Stebbins |
| Electric glow-lamp . . | about 6 | Merritt |
| " " . . | 5.5 | Abney and Festing |
| Lime light (new) . . . | 14 | Orehore |
| " (old) . . . | 8.4 | Orehore |
| Electric arc . . . . | 10.4 | Tyndall; Nakano |
| " . . . . | 8 to 13 | Marks |
| Magnesium light . . . | 12.5 | Rogers |
| Acetylene . . . . | 10.5 | Stewart and Hoxie |
| " (No. 0 slit burner | 11.35 | Neuberg |
| " (No. 00000 . . | | |
| Bray fishtail) | 13.8 | Neuberg |
| " (No. 3 duplex) . | 14.7 | Neuberg |
| Geissler tube . . . | 32.0 | Staub |

Violle and Fery, also Erdmann, have proposed the use of acetylene as a
standard of light. As a standard burner Fery employed a piece of
thermometer tube, cut off smoothly at the end and having a diameter of
0.5 millimetre, a variation in the diameter up to 10 per cent. being of
no consequence. When the height of the flame ranged from 10 to 25
millimetres the burner passed from 2.02 to 4.28 litres per hour, and the
illuminating power of the light remained sensibly proportional to the
height of the jet, with maximum variations from the calculated value of
+-0.008. It is clear that for such a purpose as this the acetylene must be
prepared from very pure carbide and at the lowest possible temperature in
the generator. Further investigations in this direction should be
welcome, because it is now fairly easy to obtain a carbide of standard
quality and to purify the gas until it is essentially pure acetylene from
a chemical point of view.

L. W. Hartmann has studied the flame of a mixture of acetylene with
hydrogen. He finds that the flame of the mixture is richer in light of
short wave-lengths than that of pure acetylene, but that the colour of
the light does not appear to vary with the proportion of hydrogen

Numerous investigators have studied the optical or radiant efficiency of
artificial lights, _i.e._, the proportion of the total heat plus
light energy emitted by the flame which is produced in the form of
visible light. Some results are shown in the table on the previous page.

Figures showing the ratio of the visible light emitted by various
illuminants to the amount of energy expended in producing the light and
also the energy equivalent of each spherical Hefner unit evolved have
been published by H. Lux, whose results follow:

| | | | | |
| | Ratio of | Ratio of | Mean | Energy |
| | Light | Light | Spherical | Equiva- |
| Light. | emitted to | emitted to | Illuminat- | lent to 1 |
| | Total | Energy | ing Power. | Spherical |
| | Radiation. | Impressed. | Hefners. | Hefner in |
| | | | | Watts. |
| | | | | |
| | Per Cent. | Per Cent. | | |
| Hefner lamp | 0.89 | 0.103 | 0.825 | 0.108 |
| Paraffin lamp, 14" | 1.23 | 0.25 | 12.0 | 0.105 |
| ACETYLENE, 7.2 | | | | |
| litre burner | 6.36 | 0.65 | 6.04 | 0.103 |
| Coal-gas incandes- | | | | |
| cent, upturned | 2.26-2.92 | 0.46 | 89.6 | 0.037 |
| " incandes- | | | | |
| cent, inverted | 2.03-2.97 | 0.51 | 82.3 | 0.035 |
| Carbon filament | | | | |
| glow-lamp | 3.2-2.7 | 2.07 | 24.5 | 0.085 |
| Nernst lamp | 5.7 | 4.21-3.85 | 91.9 | 0.073 |
| Tantalum lamp | 8.5 | 4.87 | 26.7 | 0.080 |
| Osram lamp | 9.1 | 5.36 | 27.4 | 0.075 |
| Direct-current arc | 8.1 | 5.60 | 524 | 0.047 |
| " " enclosed | 2.0 | 1.16 | 295 | 0.021 |
| Flame arc, yellow | 15.7 | 13.20 | 1145 | 0.041 |
| " " white | 7.6 | 6.66 | 760 | 0.031 |
| Alternating- | | | | |
| current arc | 3.7 | 1.90 | 89 | 0.038 |
| Uviol mercury | | | | |
| vapour lamp | 5.8 | 2.24 | 344 | 0.015 |
| Quartz lamp | 17.6 | 6.00 | 2960 | 0.014 |

CHEMICAL PROPERTIES.--It is unnecessary for the purpose of this work to
give an exhaustive account of the general chemical reactions of acetylene
with other bodies, but a few of the more important must be referred to.
Since the gases are liable to unite spontaneously when brought into
contact, the reactions between, acetylene and chlorine require attention,
first, because of the accidents that have occurred when using bleaching-
powder (_see_ Chapter V.) as a purifying material for the crude gas;
secondly, because it has been proposed to manufacture one of the products
of the combination, viz., acetylene tetrachloride, on a large scale, and
to employ it as a detergent in place of carbon tetrachloride or carbon
disulphide. Acetylene forms two addition products with chlorine,
C_2H_2Cl_2, and C_2H_2Cl_4. These are known as acetylene dichloride and
tetrachloride respectively, or more systematically as dichlorethylene and
tetrachlorethane. One or both of the chlorides is apt to be produced when
acetylene comes into contact with free chlorine, and the reaction
sometimes proceeds with explosive violence. The earliest writers, such as
E. Davy, Woehler, and Berthelot, stated that an addition of chlorine to
acetylene was invariably followed by an explosion, unless the mixture was
protected from light; whilst later investigators thought the two gases
could be safely mixed if they were both pure, or if air was absent. Owing
to the conflicting nature of the statements made, Nieuwland determined in
1905 to study the problem afresh; and the annexed account is chiefly
based on his experiments, which, however, still fail satisfactorily to
elucidate all the phenomena observed. According to Nieuwland's results,
the behaviour of mixtures of acetylene and chlorine appears capricious,
for sometimes the gases unite quietly, although sometimes they explode.
Acetylene and chlorine react quite quietly in the dark and at low
temperatures; and neither a moderate increase in temperature, nor the
admission of diffused daylight, nor the introduction of small volumes of
air, is necessarily followed by an explosion. Doubtless the presence of
either light, air, or warmth increases the probability of an explosive
reaction, while it becomes more probable still in their joint presence;
but in given conditions the reaction may suddenly change from a gentle
formation of addition products to a violent formation of substitution
products without any warning or manifest cause. When the gases merely
unite quietly, tetrachlorethane, or acetylene tetrachloride, is produced

C_2H_2 + 2Cl_2 = C_2H_2Cl_4;

but when the reaction is violent some hexachlorethane is formed,
presumably thus:

2C_2H_2 + 5Cl_2 = 4HCl + C_2 + C_2Cl_6.

The heat evolved by the decomposition of the acetylene by the formation
of the hydrochloric acid in the last equation is then propagated amongst
the rest of the gaseous mixture, accelerating the action, and causing the
acetylene to react with the chlorine to form more hydrochloric acid and
free carbon thus;

C_2H_2 + Cl_2 = 2HCl + C_2.

It is evident that these results do not altogether explain the mechanism
of the reactions involved. Possibly the formation of substitution
products and the consequent occurrence of an explosion is brought about
by some foreign substance which acts as a catalytic agent. Such substance
may conceivably be one of the impurities in crude acetylene, or the solid
matter of a bleaching-powder purifying material. The experiments at least
indicate the direction in which safety may be sought when bleaching-
powder is employed to purify the crude gas, viz., dilution of the powder
with an inert material, absence of air from the gas, and avoidance of
bright sunlight in the place where a spent purifier is being emptied.
Unfortunately Nieuwland did not investigate the action on acetylene of
hypochlorites, which are presumably the active ingredients in bleaching-
powder. As will appear in due course, processes have been devised and
patented to eliminate all danger from the reaction between acetylene and
chlorine for the purpose of making tetrachlorethane in quantity.

Acetylene combines with hydrogen in the presence of platinum black, and
ethylene and then ethane result. It was hoped at one time that this
reaction would lead to the manufacture of alcohol from acetylene being
achieved on a commercial basis; but it was found that it did not proceed
with sufficient smoothness for the process to succeed, and a number of
higher or condensation products were formed at the same time. It has been
shown by Erdmann that the cost of production of alcohol from acetylene
through this reaction must prove prohibitive, and he has indicated
another reaction which he considered more promising. This is the
conversion of acetylene by means of dilute sulphuric acid (3 volumes of
concentrated acid to 7 volumes of water), preferably in the presence of
mercuric oxide, to acetaldehyde. The yield, however, was not
satisfactory, and the process does not appear to have passed beyond the
laboratory stage.

It has also been proposed to utilise the readiness with which acetylene
polymerises on heating to form benzene, for the production of benzene
commercially; but the relative prices of acetylene and benzene would have
to be greatly changed from those now obtaining to make such a scheme
successful. Acetylene also lends itself to the synthesis of phenol or
carbolic acid. If the dry gas is passed slowly into fuming sulphuric
acid, a sulpho-derivative results, of which the potash salt may be thrown
down by means of alcohol. This salt has the formula C_2H_4O_2,S_2O_6K_2,
and on heating it with caustic potash in an atmosphere of hydrogen,
decomposing with excess of sulphuric acid, and distilling, phenol results
and may be isolated. The product is, however, generally much contaminated
with carbon, and the process, which was devised by Berthelot, does not
appear to have been pursued commercially. Berthelot has also investigated
the action of ordinary concentrated sulphuric acid on acetylene, and
obtained various sulphonic derivatives. Schroeter has made similar
investigations on the action of strongly fuming sulphuric acid on
acetylene. These investigations have not yet acquired any commercial

If a mixture of acetylene with either of the oxides of carbon is led
through a red-hot tube, or if a similar mixture is submitted to the
action of electric sparks when confined within a closed vessel at some
pressure, a decomposition occurs, the whole of the carbon is liberated in
the free state, while the hydrogen and oxygen combine to form water.
Analogous reactions take place when either oxide of carbon is led over
calcium carbide heated to a temperature of 200 deg. or 250 deg. C., the
second product in this case being calcium oxide. The equations
representing these actions are:

C_2H_2 + CO = H_2O + 3C

2C_2H_2 + CO_2 = 2H_2O + 5C

CaC_2 + CO = CaO + 3C

2CaC_2 + CO_2 = 2CaO + 5C

By urging the temperature, or by increasing the pressure at which the
gases are led over the carbide, the free carbon appears in the graphitic
condition; at lower temperatures and pressures, it is separated in the
amorphous state. These reactions are utilised in Frank's process for
preparing a carbon pigment or an artificial graphite (_cf._ Chapter

Parallel decompositions occur between carbon bisulphide and either
acetylene or calcium carbide, all the carbon of both substances being
eliminated, while the by-product is either sulphuretted hydrogen or
calcium (penta) sulphide. Other organic bodies containing sulphur are
decomposed in the same fashion, and it has been suggested by Ditz that if
carbide could be obtained at a suitable price, the process might be made
useful in removing sulphur (_i.e._, carbon bisulphide and thiophen)
from crude benzol, in purifying the natural petroleum oil which contains
sulphur, and possibly in removing "sulphur compounds" from coal-gas.

COMPOUNDS WITH COPPER. By far the most important chemical reactions of
acetylene in connexion with its use as an illuminant or fuel are those
which it undergoes with certain metals, notably copper. It is known that
if acetylene comes in contact with copper or with one of its salts, in
certain conditions a compound is produced which, at least when dry, is
highly explosive, and will detonate either when warmed or when struck or
gently rubbed. The precise mechanism of the reaction, or reactions,
between acetylene and copper (or its compounds), and also the character
of the product, or products, obtained have been studied by numerous
investigators; but their results have been inconclusive and sometimes
rather contradictory, so that it can hardly be said that the conditions
which determine or preclude the formation of an explosive compound and
the composition of the explosive compound are yet known with certainty.
Copper is a metal which yields two series of compounds, cuprous and
cupric salts, the latter of which contain half the quantity of metal per
unit of acid constituent that is found in the former. It should follow,
therefore, that there are two compounds of copper with carbon, or copper
carbides: cuprous carbide, Cu_2C_2, and cupric carbide, CuC_2. Acetylene
reacts at ordinary temperatures with an ammoniacal solution of any cupric
salt, forming a black cupric compound of uncertain constitution which
explodes between 50 deg. and 70 deg. C. It is decomposed by dilute acids,
yielding some polymerised substances. At more elevated temperatures other
cupric compounds are produced which also give evidence of polymerisation.
Cuprous carbide or acetylide is the reddish brown amorphous precipitate
which is the ultimate product obtained when acetylene is led into an
ammoniacal solution of cuprous chloride. This body is decomposed by
hydrochloric acid, yielding acetylene; but of itself it is, in all
probability, not explosive. Cuprous carbide, however, is very unstable
and prone to oxidation; so that, given the opportunity, it combines with
oxygen or hydrogen, or both, until it produces the copper acetylide, or
acetylene-copper, which is explosive--a body to which Blochmann's formula
C_2H_2Cu_2O is generally ascribed. Thus it should happen that the exact
nature of the copper acetylene compound may vary according to the
conditions in which it has been formed, from a substance that is not
explosive at all at first, to one that is violently explosive; and the
degree of explosiveness should depend on the greater exposure of the
compound to air and moisture, or the larger amount of oxygen and moisture
in the acetylene during its contact with the copper or copper salt. For
instance, Mai has found that freshly made copper acetylide can be heated
to 60 deg. C. or higher without explosion; but that if the compound is
exposed to air for a few hours it explodes on warming, while if warmed
with oxygen it explodes on contact with acetylene. It is said by Mai and
by Caro to absorb acetylene when both substances are dry, becoming so hot
as to explode spontaneously. Freund and Mai have also observed that when
copper acetylide which has been dried in contact with air for four or
five hours at a temperature of 50 deg. or 60 deg. C. is allowed to explode
in the presence of a current of acetylene, an explosion accompanied by light
takes place; but it is always local and is not communicated to the gas,
whether the latter is crude or pure. In contact with neutral or acid
solutions of cuprous salts acetylene yields various double compounds
differing in colour and crystallising power; but according to Chavastelon
and to Caro they are all devoid of explosive properties. Sometimes a
yellowish red precipitate is produced in solutions of copper salts
containing free acid, but the deposit is not copper acetylide, and is
more likely to be, at least in part, a copper phosphide--especially if
the gas is crude. Hence acid solutions or preparations of copper salts
may safely be used for the purification of acetylene, as is done in the
case of frankoline, mentioned in Chapter V. It is clear that the amount
of free acid in such a material is much more than sufficient to
neutralise all the ammonia which may accompany the crude acetylene into
the purifier until the material is exhausted in other respects; and
moreover, in the best practice, the gas would have been washed quite or
nearly free from ammonia before entering the purifier.

From a practical aspect the possible interaction of acetylene and
metallic copper has been investigated by Gerdes and by Grittner, whose
results, again, are somewhat contradictory. Gerdes exposed neat acetylene
and mixtures of acetylene with oil-gas and coal-gas to a pressure of nine
or ten atmospheres for ten months at ordinary summer and winter
temperatures in vessels made of copper and various alloys. Those metals
and alloys which resisted oxidation in air resisted the attack of the
gases, but the more corrodible substances were attacked superficially;
although in no instance could an explosive body be detected, nor could an
explosion be produced by heating or hammering. In further experiments the
acetylene contained ammonia and moisture and Gerdes found that where
corrosion took place it was due exclusively to the ammonia, no explosive
compounds being produced even then. Grittner investigated the question by
leading acetylene for months through pipes containing copper gauze. His
conclusions are that a copper acetylide is always produced if impure
acetylene is allowed to pass through neutral or ammoniacal solutions of
copper; that dry acetylene containing all its natural impurities except
ammonia acts to an equal extent on copper and its alloys, yielding the
explosive compound; that pure and dry gas does not act upon copper or its
alloys, although it is possible that an explosive compound may be
produced after a great length of time. Grittner has asserted that an
explosive compound may be produced when acetylene is brought into contact
with such alloys of copper as ordinary brass containing 64.66 per cent.
of copper, or red brass containing 74.46 per cent. of copper, 20.67 per
cent. of zinc, and 4.64 per cent. of tin; whereas none is obtained when
the metal is either "alpaca" containing 64.44 per cent. of copper, 18.79
per cent. of nickel, and 16.33 per cent. of zinc, or britannia metal
composed of 91.7 per cent. of copper and 8.3 per cent. of tin. Caro has
found that when pure dry acetylene is led for nine months over sheets or
filings of copper, brass containing 63.2 per cent. of copper, red brass
containing 73.8 per cent., so-called "alpaca-metal" containing 65.3 per
cent., and britannia metal containing 90.2 per cent. of copper, no action
whatever takes place at ordinary temperatures; if the gas is moist very
small quantities of copper acetylide are produced in six months, whatever
metal is tested, but the yield does not increase appreciably afterwards.
At high temperatures condensation occurs between acetylene and copper or
its alloys, but explosive bodies are not formed.

Grittner's statement that crude acetylene, with or without ammonia, acts
upon alloys of copper as well as upon copper itself, has thus been
corroborated by Caro; but experience renders it tolerably certain that
brass (and presumably gun-metal) is not appreciably attacked in practical
conditions. Gerdes' failure to obtain an explosive compound in any
circumstances may very possibly be explained by the entire absence of any
oxygen from his cylinders and gases, so that any copper carbide produced
remained unoxidised. Grittner's gas was derived, at least partially, from
a public acetylene supply, and is quite likely to have been contaminated
with air in sufficient quantity to oxidise the original copper compound,
and to convert it into the explosive modification.

For the foregoing reasons the use of unalloyed copper in the construction
of acetylene generators or in the subsidiary items of the plant, as well
as in burner fittings, is forbidden by statute or some quasi-legal
enactment in most countries, and in others the metal has been abandoned
for one of its alloys, or for iron or steel, as the case may be.
Grittner's experiments mentioned above, however, probably explain why
even alloys of copper are forbidden in Hungary. (_Cf._ Chapter IV.,
page 127.)

When acetylene is passed over finely divided copper or iron (obtained by
reduction of the oxide by hydrogen) heated to from 130 deg. C. to 250 deg.
C., the gas is more or less completely decomposed, and various products,
among which hydrogen predominates, result. Ethane and ethylene are
undoubtedly formed, and certain homologues of them and of acetylene, as
well as benzene and a high molecular hydrocarbon (C_7H_6)_n termed
"cuprene," have been found by different investigators. Nearly the same
hydrocarbons, and others constituting a mixture approximating in
composition to some natural petroleums, are produced when acetylene is
passed over heated nickel (or certain other metals) obtained by the
reduction of the finely divided oxide. These observations are at present
of no technical importance, but are interesting scientifically because
they have led up to the promulgation of a new theory of the origin of
petroleum, which, however, has not yet found universal acceptance.



The process by which acetylene is produced, and the methods employed for
purifying it and rendering it fit for consumption in dwelling-rooms,
having been dealt with in the preceding pages, the present chapter will
be devoted to a brief account of those items in the plant which lie
between the purifier outlet and the actual burner, including the meter,
governor, and pressure gauge; the proper sizes of pipe for acetylene;
methods of laying it, joint-making, quality of fittings, &c.; while
finally a few words will be said about the precautions necessary when
bringing a new system of pipes into use for the first time.

THE METER.--A meter is required either to control the working of a
complete acetylene installation or to measure the volume of gas passing
through one particular pipe, as when a number of consumers are supplied
through separate services under agreement from a central supply plant.
The control which may be afforded by the inclusion of a meter in the
equipment of a domestic acetylene generating plant is valuable, but in
practice will seldom be exercised. The meter records check the yield of
gas from the carbide consumed in a simple and trustworthy manner, and
also serve to indicate when the material in the purifier is likely to be
approaching exhaustion. The meter may also be used experimentally to
check the soundness of the service-pipes or the consumption of a
particular burner or group of burners. Altogether it may be regarded as a
useful adjunct to a domestic lighting plant, provided full advantage is
taken of it. If, however, there is no intention to pay systematic
attention to the records of the meter, it is best to omit it from such an
installation, and so save its initial cost and the slight loss of
pressure which its use involves on the gas passing through it. A domestic
acetylene lighting plant can be managed quite satisfactorily without a
meter, and as a multiplication of parts is undesirable in an apparatus
which will usually be tended by someone not versed in technical
operations, it is on the whole better to omit the meter in such an
installation. Where the plant is supervised by a technical man, a meter
may advisedly be included in the equipment. Its proper position in the
train of apparatus is immediately after the purifier. A meter must not be
used for unpurified or imperfectly purified acetylene, because the
impurities attack the internal metallic parts and ultimately destroy
them. The supply of acetylene to various consumers from a central
generating station entails the fixing of a meter on each consumer's
service-pipe, so that the quantity consumed by each may be charged for
accordingly, just as in the case of public coal-gas supplies.

There are two types of gas-meter in common use, either of which may,
without essential alteration, be employed for measuring the volume of
acetylene passing through a pipe. It is unnecessary to refer here at
length to their internal mechanism, because their manufacture by other
than firms of professed meter-makers is out of the question, and the user
will be justified in accepting the mechanism as trustworthy and durable.
Meters can always be had stamped with the seal of a local authority or
other body having duly appointed inspectors under the Sales of Gas Act,
and the presence of such a stamp on a meter implies that it has been
officially examined and found to register quantities accurately, or not
varying beyond 2 per cent. in favour of the seller, or 3 per cent, in
favour of the consumer. [Footnote: It may be remarked that when a meter--
wet or dry--begins to register incorrectly by reason of old age or want
of adjustment, its error is very often in the direction that benefits the
customer, _i.e._, more gas passes through it than the dials record.]
Hence a "stamped" meter may be regarded for practical purposes as
affording a correct register of the quantities of gas passing through it.

Except that the use of unalloyed copper in any part of the meter where it
may come in contact with the gas must be wholly avoided, for the reason
that copper is inadmissible in acetylene apparatus (_see_ Chapter
VI.), the meters ordinarily employed for coal-gas serve quite well for
acetylene. Obviously, however, since so very much less acetylene than
coal-gas is consumed per burner, comparatively small meters only will be
required even for large installations of acetylene lighting. This fact is
now recognised by meter-makers, and meters of all suitable sizes can be
obtained. It is desirable, if an ordinary coal-gas meter is being bought
for use with acetylene, to have it subjected to a somewhat more rigorous
test for soundness than is customary before "stamping" but the makers
would readily be able to carry out this additional test.

The two types of gas-meter are known as "wet" and "dry." The case of the
wet meter is about hall-filled with water or other liquid, the level of
which has to be maintained nearly constant. Several ingenious devices are
in use for securing this constancy of level over a more or less extended
period, but the necessity for occasional inspection and adjustment of the
water-level, coupled with the stoppage of the passage of gas in the event
of the water becoming frozen, are serious objections to the employment of
the wet meter in many situations. The trouble of freezing may be avoided
by substituting for the simple water an aqueous solution of glycerin, or
mixture of glycerin with water, suitable strengths for which may be
deduced from the table relating to the use of glycerin in holder seals
given at the close of Chapter III. The dry meter, on the other hand, is
very convenient, because it is not obstructed by the effects of frost,
and because it acts for years without requiring attention. It is not
susceptible of adjustment for measuring with so high a degree of accuracy
as a good wet meter, but its indications are sufficiently correct to fall
well within the legalised deviations already mentioned. Such errors,
perhaps, are somewhat large for so costly and powerful a gas as
acetylene, and they would be better reduced; but it is not so very often
that a dry meter reaches its limit of inaccuracy. Whether wet or dry, the
meter should be fixed in a place where the temperature is tolerably
uniform, otherwise the volumes registered at different times will not
bear the same ratio to the mass of gas (or volume at normal temperature),
and the registrations will be misleading unless troublesome corrections
to compensate for changes of temperature are applied.

THE GOVERNOR, which can be dispensed with in most ordinary domestic
acetylene lighting installations provided with a good gasholder of the
rising-bell type, is designed to deliver the acetylene to a service-pipe
at a uniform pressure, identical with that under which the burners
develop their maximum illuminating efficiency. It must therefore both
cheek the pressure anterior to it whenever that is above the determined
limit to which it is set, and deliver to the efferent service-pipe
acetylene at a constant pressure whether all or any number of the burners
down to one only are in use. Moreover, when the pressure anterior to the
governor falls to or below the determined limit, the governor should
offer no resistance--entailing a loss of pressure to the passage of the
acetylene. These conditions, which a perfect governor should fulfil, are
not absolutely met by any simple apparatus at present in use, but so far
as practical utility is concerned service governors which are readily
obtainable are sufficiently good. They are broadly of two types, viz.,
those having a bell floating in a mercury seal, and those having a
diaphragm of gas-tight leather or similar material, either the bell or
the diaphragm being raised by the pressure of the gas. The action is
essentially the same in both cases: the bell or the diaphragm is so
weighted that when the pressure of the gas exceeds the predetermined
limit the diaphragm or bell is lifted, and, through an attached rod and
valve, brings about a partial closure of the orifice by which the gas
flows into the bell or the diaphragm chamber. The valve of the governor,
therefore, automatically throttles the gas-way more or less according to
the difference in pressure before and after the apparatus, until at any
moment the gas-way is just sufficient in area to pass the quantity of gas
which any indefinite number of burners require at their fixed working
pressure; passing it always at that fixed working pressure irrespective
of the number of burners, and maintaining it constant irrespective of the
amount of pressure anterior to the governor, or of any variations in that
anterior pressure. In most patterns of service governor weights may be
added when it is desired to increase the pressure of the effluent gas. It
is necessary, in ordering a governor for an acetylene-supply, to state
the maximum number of cubic feet per hour it will be required to pass,
and approximately the pressure at which it will be required to deliver
the gas to the service-pipe. This will usually be between 3 and 5 inches
(instead of about 1 inch in the case of coal-gas), and if the anterior
pressure is likely to exceed 10 inches, this fact should be stated also.
The mercury-seal governors are usually the more trustworthy and durable,
but they are more costly than those with leather diaphragms. The seal
should have twice or thrice the depth it usually has for coal-gas. The
governor should be placed where it is readily accessible to the man in
charge of the installation, but where it will not be interfered with by
irresponsible persons. In large installations, where a number of separate
buildings receive service-pipes from one long main, each service-pipe
should be provided with a governor.

GASHOLDER PRESSURE.--In drawing up the specification or scheme of an
acetylene installation, it is frequently necessary either to estimate the
pressure which a bell gasholder of given diameter and weight will throw,
or to determine what should be the weight of the bell of a gasholder of
given diameter when the gas is required to be delivered from it at a
particular pressure. The gasholder of an acetylene installation serves
not only to store the gas, but also to give the necessary pressure for
driving it through the posterior apparatus and distributing mains and
service-pipes. In coal-gas works this office is generally given over
wholly or in part to a special machine, known as the exhauster, but this
machine could not be advantageously employed for pumping acetylene unless
the installation were of very great magnitude. Since, therefore,
acetylene is in practice always forced through mains and service-pipes in
virtue of the pressure imparted to it by the gasholder and since, for
reasons already given, only the rising-bell type of gasholder can be
regarded as satisfactory, it becomes important to know the relations
which subsist between the dimensions and weight of a gasholder bell and
the pressure which it "throws" or imparts to the contained gas.

The bell must obviously be a vessel of considerable weight if it is to
withstand reasonable wear and tear, and this weight will give a certain
hydrostatic pressure to the contained gas. If the weight of the bell is
known, the pressure which it will give can be calculated according to the
general law of hydrostatics, that the weight of the water displaced must
be equal to the weight of the floating body. Supposing for the moment
that there are no other elements which will have to enter into the
calculation, then if _d_ is the diameter in inches of the
(cylindrical) bell, the surface of the water displaced will have an area
of _d^2_ x 0.7854. If the level of the water is depressed _p_
inches, then the water displaced amounts to _p_(_d^2_ x 0.7854)
cubic inches, and its weight will be (at 62 deg. F.):

(0.7854_pd^2_ x 0.03604) = 0.028302_pd^2_ lb.

Consequently a bell which is _d_ inches in diameter, and gives a
pressure of _p_ inches of water, will weigh 0.028302_pd^2_ lb.
Or, if W = the weight of the bell in lb., the pressure thrown by it will
be W/0.028302_d^2_ or 35.333W/_d^2_. This is the fundamental
formula, which is sometimes given as _p_ = 550W/_d^2_, in which
W = the weight of the bell in tons, and _d_ the diameter in feet.
This value of _p_, however, is actually higher than the holder would
give in practice. Reductions have to be made for two influences, viz.,
the lifting power of the contained gas, which is lighter than air, and
the diminution in the effective weight of so much of the bell as is
immersed in water. The effect of these influences was studied by Pole,
who in 1839 drew up some rules for calculating the pressure thrown by a
gasholder of given dimensions and weight. These rules form the basis of
the formula which is commonly used in the coal-gas industry, and they may
be applied, _mutatis mutandis_, to acetylene holders. The
corrections for both the influences mentioned vary with the height at
which the top of the gasholder bell stands above the level of the water
in the tank. Dealing first with the correction for the lifting power of
the gas, this, according to Pole, is a deduction of _h_(1 -
_d_)/828 where _d_ is the specific gravity of the gas and
_h_ the height (in inches) of the top of the gasholder above the
water level. This strictly applies only to a flat-topped bell, and hence
if the bell has a crown with a rise equal to about 1/20 of the diameter
of the bell, the value of _h_ here must be taken as equal to the
height of the top of the sides above the water-level (= _h'_), plus
the height of a cylinder having the same capacity as the crown, and the
same diameter as the bell, that is to say, _h_=_h'_ +
_d_/40 where _d_ = the diameter of the bell. The specific
gravity of commercially made acetylene being constantly very nearly 0.91,
the deduction for the lifting power of the gas becomes, for acetylene
gasholders, 0.0001086_h_ + 0.0000027_d_, where _h_ is the
height in inches of the top of the sides of the bell above the water-
level, and _d_ is the diameter of the bell. Obviously this is a
negligible quantity, and hence this correction may be disregarded for all
acetylene gasholders, whereas it is of some importance with coal-gas and
other gases of lower specific gravity. It is therefore wrong to apply to
acetylene gasholders formulae in which a correction for the lifting power
of the gas has been included when such correction is based on the average
specific gravity of coal-gas, as is the case with many abbreviated
gasholder pressure formulae.

The correction for the immersion of the sides of the bell is of greater
magnitude, and has an important practical significance. Let H be the
total height in inches of the side of the gasholder, _h_ the height
in inches of the top of the sides of the gasholder above the water-level,
and _w_ = the weight of the sides of the gasholder in lb.; then, for
any position of the bell, the proportion of the total height of the sides
immersed (H - _h_)/H, and the buoyancy is (H - _h_)/H x
_w_/S + pi/4_d^2_, in which S = the specific gravity of the
material of which the bell is made. Assuming the material to be mild
steel or wrought iron, having a specific gravity of 7.78, the buoyancy is
(4_w_(H - _h_)) / (7.78Hpi_d^2_) lb. per square inch
(_d_ being inches and _w_ lb.), which is equivalent to
(4_w_(H - _h_)) / (0.03604 x 7.78Hpi_d^2_) =
(4.54_w_(H - _h_)) / (H_d^2_) inches of water. Hence the
complete formula for acetylene gasholders is:

_p_ = 35.333W / _d^2_ - 4.54_w_(H - _h_) /

It follows that _p_ varies with the position of the bell, that is to
say, with the extent to which it is filled with gas. It will be well to
consider how great this variation is in the case of a typical acetylene
holder, as, if the variation should be considerable, provision must be
made, by the employment of a governor on the outlet main or otherwise, to
prevent its effects being felt at the burners.

Now, according to the rules of the "Acetylen-Verein" (_cf._ Chapter
IV.), the bells of holders above 53 cubic feet in capacity should have
sides 1.5 mm. thick, and crowns 0.5 mm. thicker. Hence for a holder from
150 to 160 cubic feet capacity, supposing it to be 4 feet in diameter and
about 12 feet high, the weight of the sides (say of steel No. 16 S.W.G. =
2.66 lb. per square foot) will be not less than 12 x 4pi x 2.66 = 401 lb.
The weight of the crown (say of steel No. 14 S.W.G. = 3.33 lb. per square
foot) will be not less than about 12.7 x 3.33 = about 42 lb. Hence the
total weight of holder = 401 + 42 = 443 lb. Then if the holder is full,
_h_ is very nearly equal to H, and _p_ = (35.333 x 443) / 48^2
= 6.79 inches. If the holder stands only 1 foot above the water-level,
then _p_ = 6.79 - (4.54 x 401 (144 - 12)) / (144 x 48^2) = 6.79 -
0.72 = 6.07 inches. The same result can be arrived at without the direct
use of the second member of the formula:

For instance, the weight of the sides immersed is 11 x 4pi x 2.66 = 368
lb., and taking the specific gravity of mild steel at 7.78, the weight of
water displaced is 368 / 7.78 = 47.3 lb. Hence the total effective weight
of the bell is 443 - 47.3 = 395.7 lb., and _p_ = (35.333 x 395.7) /
48^2 = 6.07 inches. [Footnote: If the sealing liquid in the gasholder
tank is other than simple water, the correction for the immersion of the
sides of the bell requires modification, because the weight of liquid
displaced will be _s'_ times as great as when the liquid is water,
if _s'_ is the specific gravity of the sealing liquid. For instance,
in the example given, if the sealing liquid were a 16 per cent. solution
of calcium chloride, specific gravity 1.14 (_vide_ p. 93) instead of
water, the weight of liquid displaced would be 1.14 (368 / 7.78) = 53.9
lb., and the total effective weight of the bell = 443 - 53.9 = 389.1 lb.
Therefore _p_ becomes = (35.333 x 389.1) / 48^2 = 5.97 inches,
instead of 6.07 inches.]

The value of _p_ for any position of the bell can thus be arrived
at, and if the difference between its values for the highest and for the
lowest positions of the bell exceeds 0.25 inch, [Footnote: This figure is
given as an example merely. The maximum variation in pressure must be
less than one capable of sensibly affecting the silence, steadiness, and
economy of the burners and stoves, &c., connected with the installation.]
a governor should be inserted in the main leading from the holder to the
burners, or one of the more or less complicated devices for equalising
the pressure thrown by a holder as it rises and falls should be added to
the holder. Several such devices were at one time used in connexion with
coal-gas holders, and it is unnecessary to describe them in this work,
especially as the governor is practically the better means of securing
uniform pressure at the burners.

It is frequently necessary to add weight to the bell of a small gasholder
in order to obtain a sufficiently high pressure for the distribution of
acetylene. It is best, having regard to the steadiness of the bell, that
any necessary weighting of it should be done near its bottom rim, which
moreover is usually stiffened by riveting to it a flange or curb of
heavier gauge metal. This flange may obviously be made sufficiently stout
to give the requisite additional weighting. As the flange is constantly
immersed, its weight must not be added to that of the sides in computing
the value of _w_ for making the correction of pressure in respect of
the immersion of the bell. Its effective weight in giving pressure to the
contained gas is its actual weight less its actual weight divided by its
specific gravity (say 7.2 for cast iron, 7.78 for wrought iron or mild
steel, or 11.4 for lead). Thus if _x_ lb. of steel is added to the
rim its weight in computing the value of W in the formula _p_ =
35.333W / _d_^2 should be taken as x - x / 7.78. If the actual
weight is 7.78 lb., the weight taken for computing W is 7.78 - 1 = 6.78

THE PRESSURE GAUGE.--The measurement of gas pressure is effected by means
of a simple instrument known as a pressure gauge. It comprises a glass U-
tube filled to about half its height with water. The vacant upper half of
one limb is put in communication with the gas-supply of which the
pressure is to be determined, while the other limb remains open to the
atmosphere. The difference then observed, when the U-tube is held
vertical, between the levels of the water in the two limbs of the tube
indicates the difference between the pressure of the gas-supply and the
atmospheric pressure. It is this _difference_ that is meant when the
_pressure_ of a gas in a pipe or piece of apparatus is spoken of,
and it must of necessity in the case of a gas-supply have a positive
value. That is to say, the "pressure" of gas in a service-pipe expresses
really by how much the pressure in the pipe _exceeds_ the
atmospheric pressure. (Pressures less than the atmospheric pressure will
not occur in connexion with an acetylene installation, unless the
gasholder is intentionally manipulated to that end.) Gas pressures are
expressed in terms of inches head or pressure of water, fractions of an
inch being given in decimals or "tenths" of an inch. The expression
"tenths" is often used alone, thus a pressure of "six-tenths" means a
pressure equivalent to 0.6 inch head of water.

The pressure gauge is for convenience provided with an attached scale on
which the pressures may be directly read, and with a connexion by which
the one limb is attached to the service-pipe or cock where the pressure
is to be observed. A portable gauge of this description is very useful,
as it can be attached by means of a short piece of flexible tubing to any
tap or burner. Several authorities, including the British Acetylene
Association, have recommended that pressure gauges should not be directly
attached to generators, because of the danger that the glass might be
fractured by a blow or by a sudden access of heat. Such breakage would be
followed by an escape of gas, and might lead to an accident. Fixed
pressure gauges, however, connected with every item of a plant are
extremely useful, and should be employed in all large installations, as
they afford great aid in observing and controlling the working, and in
locating the exact position of any block. All danger attending their use
can be obviated by having a stopcock between the gauge inlet and the
portion of the plant to which it is attached; the said stopcock being
kept closed except when it is momentarily opened to allow of a reading
being taken. As an additional precaution against its being left open, the
stopcock may be provided with a weight or spring which automatically
closes the gas-way directly the observer's hand is removed from the tap.
In the best practice all the gauges will be collected together on a board
fastened in some convenient spot on the wall of the generator-house, each
gauge being connected with its respective item of the plant by means of a
permanent metallic tube. The gauges must be filled with pure water, or
with a liquid which does not differ appreciably in specific gravity from
pure water, or the readings will be incorrect. Greater legibility will be
obtained by staining the water with a few drops of caramel solution, or
of indigo sulphate (indigo carmine); or, in the absence of these dyes,
with a drop or two of common blue-black writing ink. If they are not
erected in perfectly frost-free situations, the gauges may be filled with
a mixture of glycerin and pure alcohol (not methylated spirit), with or
without a certain proportion of water, which will not freeze at any
winter temperature. The necessary mixture, which must have a density of
exactly 1.00, could be procured from any pharmacist.

It is the pressure as indicated by the pressure gauge which is referred
to in this book in all cases where the term "pressure of the gas" or the
like is used. The quantity of acetylene which will flow in a given time
from the open end of a pipe is a function of this pressure, while the
quantity of acetylene escaping through a tiny hole or crack or a burner
orifice also depends on this total pressure, though the ratio in this
instance is not a simple one, owing to the varying influence of friction
between the issuing gas and the sides of the orifice. Where, however,
acetylene or other gas is flowing through pipes or apparatus there is a
loss of energy, indicated by a falling off in the pressure due to
friction, or to the performance of work, such as actuating a gas-meter.
The extent of this loss of energy in a given length of pipe or in a meter
is measured by the difference between the pressures of the gas at the two
ends of the pipe or at the inlet and outlet of the meter. This difference
is the "loss" or "fall" of pressure, due to friction or work performed,
and is spoken of as the "actuating" pressure in regard to the passage of
gas through the stretch of pipe or meter. It is a measure of the energy
absorbed in actuating the meter or in overcoming the friction. (Cf.
footnote, Chapter II., page 54.)

DIMENSIONS OF MAINS.--The diameter of the mains and service-pipes for an
acetylene installation must be such that the main or pipe will convey the
maximum quantity of the gas likely to be required to feed all the burners
properly which are connected to it, without an excessive actuating
pressure being called for to drive the gas through the main or pipe. The
flow of all gases through pipes is of course governed by the same general
principles; and it is only necessary in applying these principles to a
particular gas, such as acetylene, to know certain physical properties of
the gas and to make due allowance for their influence. The general
principles which govern the flow of a gas through pipes have been
exhaustively studied on account of their importance in relation to the
distribution of coal-gas and the supply of air for the ventilation of
places where natural circulation is absent or deficient. It will be
convenient to give a very brief reference to the way in which these
principles have been ascertained and applied, and then to proceed to the
particular case of the distribution of acetylene through mains and

The subject of "The Motion of Fluids in Pipes" was treated in a lucid and
comprehensive manner in an Essay by W. Pole in the _Journal of Gas
Lighting_ during 1852, and his conclusions have been generally adopted
by gas engineers ever since. He recapitulated the more important points
of this essay in the course of some lectures delivered in 1872, and one
or other of these two sources should be consulted for further
information. Briefly, W. Pole treated the question in the following

The practical question in gas distribution is, what quantity of gas will
a given actuating pressure cause to flow along a pipe of given length and
given diameter? The solution of this question allows of the diameters of
pipes being arranged so that they will carry a required quantity of gas a
given distance under the actuating pressure that is most convenient or
appropriate. There are five quantities to be dealt with, viz.:

(1) The length of pipe = _l_ feet.

(2) The internal diameter of the pipe = _d_ inches.

(3) The actuating pressure = _h_ inches of head of water. (4) The
specific gravity or density of the gas = _d_ times that of air.

(5) The quantity of gas passing through the pipe--Q cubic feet per hour.
This quantity is the product of the mean velocity of the gas in the pipe
and the area of the pipe.

The only work done in maintaining the flow of gas along a pipe is that
required to overcome the friction of the gas on the walls of the pipe,
or, rather, the consequential friction of the gas on itself, and the laws
which regulate such friction have not been very exhaustively
investigated. Pole pointed out, however, that the existing knowledge on
the point at the time he wrote would serve for the purpose of determining
the proper sizes of gas-mains. He stated that the friction (1) is
proportional to the area of rubbing surface (viz., pi_ld_); (2)
varies with the velocity, in some ratio greater than the first power, but
usually taken as the square; and (3) is assumed to be proportional to the
specific gravity of the fluid (viz., _s_).

Thus the force (_f_) necessary to maintain the motion of the gas in
the pipe is seen to vary (1) as pi_ld_, of which pi is a constant;
(2) as _v^2_, where _v_ = the velocity in feet per hour; and
(3) as _s_. Hence, combining these and deleting the constant pi, it
appears that

_f_ varies as _ldsv^2_.

Now the actuating force is equal to _f_, and is represented by the
difference of pressure at the two ends of the pipe, _i.e._, the
initial pressure, viz., that at the place whence gas is distributed or
issues from a larger pipe will be greater by the quantity _f_ than
the terminal pressure, viz., that at the far end of the pipe where it
branches or narrows to a pipe or pipes of smaller size, or terminates in
a burner. The terminal pressure in the case of service-pipes must be
settled, as mentioned in Chapter II., broadly according to the pressure
at which the burners in use work best, and this is very different in the
case of flat-flame burners for coal-gas and burners for acetylene. The
most suitable pressure for acetylene burners will be referred to later,
but may be taken as equal to p_0 inches head of water. Then, calling the
initial pressure (_i.e._, at the inlet head of service-pipe) p_1, it
follows that p_1 - p_0 = _f_. Now the cross-section of the pipe has
an area (pi/4)_d^2_, and if _h_ represents the difference of
pressure between the two ends of the pipe per square inch of its area, it
follows that _f_ = _h(pi/4)d^2_. But since _f_ has been
found above to vary as _ldsv^2_ , it is evident that

_h(pi/4)d^2_ varies as _ldsv^2_.


_v^2_ varies as _hd/ls_,

and putting in some constant M, the value of which must be determined by
experiment, this becomes

_v^2_ = M_hd/ls_.

The value of M deduced from experiments on the friction of coal-gas in
pipes was inserted in this equation, and then taking Q = pi/4_d^2v_,
it was found that for coal-gas Q = 780(_hd/sl_)^(1/2)

This formula, in its usual form, is

Q = 1350_d^2_(_hd/sl_)^(1/2)

in which _l_ = the length of main in yards instead of in feet. This
is known as Pole's formula, and has been generally used for determining
the sizes of mains for the supply of coal-gas.

For the following reasons, among others, it becomes prudent to revise
Pole's formula before employing it for calculations relating to
acetylene. First, the friction of the two gases due to the sides of a
pipe is very different, the coefficient for coal-gas being 0.003, whereas
that of acetylene, according to Ortloff, is 0.0001319. Secondly, the
mains and service-pipes required for acetylene are smaller, _cateria
paribus_, than those needed for coal-gas. Thirdly, the observed
specific gravity of acetylene is 0.91, that of air being unity, whereas
the density of coal-gas is about 0.40; and therefore, in the absence of
direct information, it would be better to base calculations respecting
acetylene on data relating to the flow of air in pipes rather than upon
such as are applicable to coal-gas. Bernat has endeavoured to take these
and similar considerations into account, and has given the following
formula for determining the sizes of pipes required for the distribution
of acetylene:

Q = 0.001253_d^2_(_hd/sl_)^(1/2)

in which the symbols refer to the same quantities as before, but the
constant is calculated on the basis of Q being stated in cubic metres, l
in metres, and d and h in millimetres. It will be seen that the equation
has precisely the same shape as Pole's formula for coal-gas, but that the
constant is different. The difference is not only due to one formula
referring to quantities stated on the metric and the other to the same
quantities stated on the English system of measures, but depends partly
on allowance having been made for the different physical properties of
the two gases. Thus Bernat's formula, when merely transposed from the
metric system of measures to the English (_i.e._, Q being cubic feet
per hour, _l_ feet, and _d_ and _h_ inches) becomes

Q = 1313.5_d^2_(_hd/sl_)^(1/2)

or, more simply,

Q = 1313.4(_hd^5/sl_)^(1/2)

But since the density of commercially-made acetylene is practically the
same in all cases, and not variable as is the density of coal-gas, its
value, viz., 0.91, may be brought into the constant, and the formula then

Q = 1376.9(_hd^5/l_)^(1/2)

Bernat's formula was for some time generally accepted as the most
trustworthy for pipes supplying acetylene, and the last equation gives it
in its simplest form, though a convenient transposition is

d = 0.05552(Q^2_l/h_)^(1/5)

Bernat's formula, however, has now been generally superseded by one given
by Morel, which has been found to be more in accordance with the actual
results observed in the practical distribution of acetylene. Morel's
formula is

D = 1.155(Q^2_l/h_)^(1/5)

in which D = the diameter of the pipe in centimetres, Q = the number of
cubic metres of gas passing per hour, _l_ = the length of pipe in
metres, and _h_ = the loss of pressure between the two ends of the
pipe in millimetres. On converting tins formula into terms of the English
system of measures (_i.e._, _l_ feet, Q cubic feet, and
_h_ and _d_ inches) it becomes

(i) d = 0.045122(Q^2_l/h_)^(1/5)

At first sight this formula does not appear to differ greatly from
Bernat's, the only change being that the constant is 0.045122 instead of
0.05552, but the effect of this change is very great--for instance, other
factors remaining unaltered, the value of Q by Morel's formula will be
1.68 times as much as by Bernat's formula. Transformations of Morel's
formula which may sometimes be more convenient to apply than (i) are:

(ii) Q = 2312.2(_hd^5/l_)^(1/2)

(iii) _h_ = 0.000000187011(Q^2_l/d^5_)

and (iv) _l_ = 5,346,340(_hd^5_/Q^2)

In order to avoid as far as possible expenditure of time and labour in
repeating calculations, tables have been drawn up by the authors from
Morel's formulae which will serve to give the requisite information as to
the proper sizes of pipes to be used in those cases which are likely to
be met with in ordinary practice. These tables are given at the end of
this chapter.

When dealing with coal-gas, it is highly important to bear in mind that
the ordinary distributing formulae apply directly only when the pipe or
main is horizontal, and that a rise in the pipe will be attended by an
increase of pressure at the upper end. But as the increase is greater the
lower the density of the gas, the disturbing influence of a moderate rise
in a pipe is comparatively small in the case of a gas of so high a
density as acetylene. Hence in most instances it will be unnecessary to
make any allowance for increase of pressure due to change of level. Where
the change is very great, however, allowance may advisedly be made on the
following basis: The pressure of acetylene in pipes increases by about
one-tenth of an inch (head of water) for every 75 feet rise in the pipe.
Hence where acetylene is supplied from a gasholder on the ground-level to
all floors of a house 75 feet high, a burner at the top of the house will
ordinarily receive its supply at a pressure greater by one-tenth of an
inch than a burner in the basement. Such a difference, with the
relatively high pressures used in acetylene supplies, is of no practical
moment. In the case of an acetylene-supply from a central station to
different parts of a mountainous district, the variations of pressure
with level should be remembered.

The distributing formulae also assume that the pipe is virtually straight;
bends and angles introduce disturbing influences. If the bend is sharp,
or if there is a right-angle, an allowance should be made if it is
desired to put in pipes of the smallest permissible dimensions. In the
case of the most usual sizes of pipes employed for acetylene mains or
services, it will suffice to reckon that each round or square elbow is
equivalent in the resistance it offers to the flow of gas to a length of
5 feet of pipe of the same diameter. Hence if 5 feet is added to the
actual length of pipe to be laid for every bond or elbow which will occur
in it, and the figure so obtained is taken as the value of _l_ in
formulae (i), (ii), or (iii), the values then found for Q, _d_, or
_h_ will be trustworthy for all practical purposes.

It may now be useful to give an example of the manner of using the
foregoing formulae when the tables of sizes of pipes are not available.
Let it be supposed that an institution is being equipped for acetylene
lighting; that 50 burners consuming 0.70 cubic foot, and 50 consuming
1.00 cubic foot of acetylene per hour may be required in use
simultaneously; that a pressure of at least 2-1/2 inches is required at
all the burners; that for sufficient reasons it is considered undesirable
to use a higher distributing pressure than 4 inches at the gasholder,
outlet of the purifiers, or initial governor (whichever comes last in the
train of apparatus); that the gasholder is located 100 feet from the main
building of the institution, and that the trunk supply-pipe through the
latter must be 250 feet in length, and the supplies to the burners,
either singly or in groups, be taken from this trunk pipe through short
lengths of tubing of ample size. What should be the diameter of the trunk
pipe, in which it will be assumed that ten bonds or elbows are necessary?

In the first instance, it is convenient to suppose that the trunk pipe
may be of uniform diameter throughout. Then the value of _l_ will be
100 (from gasholder to main building) + 250 (within the building) + 50
(equivalent of 10 elbows) = 400. The maximum value of Q will be (50 x
0.7) + (50 x 1.0) = 85; and the value of _h_ will be 1 - 2.5 - 1.5.
Then using formula (i), we have:

d = 0.045122((85^2 x 400)/1.5)^(1/5) = 0.045122(1,926,667)^(1/5)

= 0.045122 x 18.0713 = 0.8154.

The formula, therefore, shows that the pipe should have an internal
diameter of not less than 0.8154 inch, and consequently 1 inch (the next
size above 0.8154 inch) barrel should be used. If the initial pressure
(i.e., at outlet of purifiers) could be conveniently increased from 4 to
4.8 inches, 3/4 inch barrel could be employed for the service-pipe. But
if connexions for burners were made immediately the pipe entered the
building, these burners would then be supplied at a pressure of 4.2
inches, while those on the extremity of the pipe would, when all burners
were in use, be supplied at a pressure of only 2.5 inches. Such a great
difference of pressure is not permissible at the several burners, as no
type of burner retains its proper efficiency over more than a very
limited range of pressure. It is highly desirable in the case of the
ordinary Naphey type of burner that all the burners in a house should be
supplied at pressures which do not differ by more than half an inch;
hence the pipes should, wherever practicable, be of such a size that they
will pass the maximum quantity of gas required for all the burners which
will ever be in use simultaneously, when the pressure at the first burner
connected to the pipe after it enters the house is not more than half an
inch above the pressure at the burner furthermost removed from the first
one, all the burner-taps being turned on at the time the pressures are
observed. If the acetylene generating plant is not many yards from the
building to be supplied, it is a safe rule to calculate the size of pipes
required on the basis of a fall of pressure of only half an inch from the
outlet of the purifiers or initial governor to the farthermost burner.
The extra cost of the larger size of pipe which the application of this
rule may entail will be very slight in all ordinary house installations.

VELOCITY OF FLOW IN PIPES.--For various purposes, it is often desirable
to know the mean speed at which acetylene, or any other gas, is passing
through a pipe. If the diameter of the pipe is _d_ inches, its
cross-sectional area is _d^2_ x 0.7854 square inches; and since
there are 1728 cubic inches in 1 cubic foot, that quantity of gas will
occupy in a pipe whose diameter is _d_ inches a length of

1728/(_d^2_ x 0.7854) linear inches or 183/_d^2_^ linear feet.

If the gas is in motion, and the pipe is delivering Q cubic feet per
hour, since there are 3600 seconds of time in one hour, the mean speed of
the gas becomes

183/_d^2_ x Q/3600 = Q/(19 x 7_d^2_) linear feet per second.

This value is interesting in several ways. For instance, taking a rough
average of Le Chatelier's results, the highest speed at which the
explosive wave proceeds in a mixture of acetylene and air is 7 metres or
22 feet per second. Now, even if a pipe is filled with an acetylene-air
mixture of utmost explosibility, an explosion cannot travel backwards
from B to A in that pipe, if the gas is moving from A to B at a speed of
over 22 feet per second. Hence it may be said that no explosion can occur
in a pipe provided

Q/(19.7_d^2_) = 22 or more;

_i.e._, Q/_d^2_=433.4

In plain language, if the number of cubic feet passing through the pipe
per hour divided by the square of the diameter of the pipe is at least
433.4, no explosion can take place within that pipe, even if the gas is
highly explosive and a light is applied to its exit.

In Chapter VI. are given the explosive limits of acetylene-air mixtures
as influenced by the diameter of the tube containing them. If we
possessed a similar table showing the speed of the explosive wave in
mixtures of known composition, the foregoing formulae would enable us to
calculate the minimum speed which would insure absence of explosibility
in a supply-pipe of any given diameter throughout its length, or at its
narrowest part. It would not, however, be possible simply by increasing
the forward speed of an explosive mixture of acetylene and air to a point
exceeding that of its explosion velocity to prevent all danger of firing
back in an atmospheric burner tube. A much higher pressure than is
usually employed in gas-burners, other than blowpipes, would be needed to
confer a sufficient degree of velocity upon the gas, a pressure which
would probably fracture any incandescent mantle placed in the flame.

SERVICE-PIPES AND MAINS.--The pipes used for the distribution of
acetylene must be sound in themselves, and their joints perfectly tight.
Higher pressures generally prevail in acetylene service-pipes within a
house than in coal-gas service-pipes, while slight leaks are more
offensive and entail a greater waste of resources. Therefore it is
uneconomical, as well as otherwise objectionable, to employ service-pipes
or fittings for acetylene which are in the least degree unsound.
Unfortunately ordinary gas-barrel is none too sound, nor well-threaded,
and the taps and joints of ordinary gas-fittings are commonly leaky.
Hence something better should invariably be used for acetylene. What is
known as "water" barrel, which is one gauge heavier than gas-barrel of
the same size, may be adopted for the service-pipes, but it is better to
incur a slight extra initial expense and to use "steam" barrel, which is
of still heavier gauge and is sounder than either gas or water-pipe. All
elbows, tees, &c., should be of the same quality. The fitters' work in
making the joints should be done with the utmost care, and the sloppy
work often passed in the case of coal-gas services must on no account be
allowed. It is no exaggeration to say that the success of an acetylene
installation, from the consumer's point of view, will largely, if not
principally, depend on the tightness of the pipes in his house. The
statement has been made that the "paint" used by gas-fitters,
_i.e._, the mixture of red and white lead ground in "linseed" oil,
is not suitable for employment with acetylene, and it has been proposed
to adopt a similar material in which the vehicle is castor-oil. No good
reason has been given for the preference for castor-oil, and the troubles
which have arisen after using ordinary paint may be explained partly on
the very probable assumption that the oil was not genuine linseed, and so
did not dry, and partly on the fact that almost entire reliance was
placed on the paint for keeping the joint sound. Joints for acetylene,
like those for steam and high-pressure water, must be made tight by using
well-threaded fittings, so as to secure metallic contact between pipe and
socket, &c.; the paint or spun-yarn is only an additional safeguard. In
making a faced joint, washers of (say, 7 lb) lead, or coils of lead-wire
arc extremely convenient and quite trustworthy; the packing can be used

LEAKAGE.--Broadly speaking, it may be said that the commercial success of
any village acetylene-supply--if not that of all large installations--
depends upon the leakage being kept within moderate limits. It follows
from what was stated in Chapter VI. about the diffusion of acetylene,
that from pipes of equal porosity acetylene and coal-gas will escape at
equal rates when the effective pressure in the pipe containing acetylene
is double that in the pipe containing coal-gas. The loss of coal-gas by
leakage is seldom less than 5 per cent. of the volume passed into the
main at the works; and provided a village main delivering acetylene is
not unduly long in proportion to the consumption of gas--or, in other
words, provided the district through which an acetylene distributing main
passes is not too sparsely populated--the loss of acetylene should not
exceed the same figure. Caro holds that the loss of gas by leakage from a
village installation should be quoted in absolute figures and not as a
percentage of the total make as indicated by the works meter, because
that total make varies so largely at different periods of the year, while
the factors which determine the magnitude of the leakage are always
identical; and therefore whereas the actual loss of gas remains the same,
it is represented to be more serious in the summer than in the winter.
Such argument is perfectly sound, but the method of returning leakage as
a percentage of the make has been employed in the coal-gas industry for
many years, and as it does not appear to have led to any misunderstanding
or inconvenience, there is no particular reason for departing from the
usual practice in the case of acetylene where the conditions as to
uniform leakage and irregular make are strictly analogous.

Caro has stated that a loss of 15 to 20 litres per kilometre per hour
(_i.e._, of 0.85 to 1.14 cubic feet per mile per hour) from an
acetylene distributing main is good practice; but it should be noted that
much lower figures have been obtained when conditions are favourable and
when due attention has been devoted to the fitters' work. In one of the
German village acetylene installations where the matter has been
carefully investigated (Doese, near Cuxhaven), leakage originally occurred
at the rate of 7.3 litres per kilometre per hour in a main 8.5
kilometres, or 5.3 miles, long and 4 to 2 inches in diameter; but it was
reduced to 5.2 litres, and then to 3.12 litres by tightening the plugs of
the street lantern and other gas cocks. In British units, these figures
are 0.415, 0.295, and 0.177 cubic foot per mile per hour. By calculation,
the volume of acetylene generated in this village would appear to have
been about 23,000 cubic feet per mile of main per year, and therefore it
may be said that the proportion of gas lost was reduced by attending to
the cocks from 15.7 per cent, to 11.3 per cent, and then to 6.8 per cent.
At another village where the main was 2.5 kilometres long, tests
extending over two months, when the public lamps were not in use, showed
the leakage to be 4.4 litres per kilometre per hour, _i.e._, 1.25
cubic foot per mile per hour, when the annual make was roughly 46,000
cubic feet per mile of main. Here, the loss, calculated from the direct
readings of the works motor, was 4.65 per cent.

When all the fittings, burners excepted, have been connected, the whole
system of pipes must be tested by putting it under a gas (or air)
pressure of 9 or 12 inches of water, and observing on an attached
pressure gauge whether any fall in pressure occurs within fifteen minutes
after the main inlet tap has been shut. The pressure required for this
purpose can be obtained by temporarily weighting the holder, or by the

Facebook Google Reddit Twitter Pinterest