fireroom, which they applied to their own vessels, was afterwards adopted by all navies. Robert designed and projected an ironclad battleship, the first one in the world. This vessel, called the Stevens Battery, was begun by authority of the Government in 1842; but, owing to changes in the design and inadequate appropriations by Congress, it was never launched. It lay for many years in the basin at Hoboken an unfinished hulk. Robert died in 1856. On the outbreak of the Civil War, Edwin tried to revive the interest of the Government, but by that time the design of the Stevens Battery was obsolete, and Edwin Stevens was an old man. So the honors for the construction of the first ironclad man-of-war to fight and win a battle went to John Ericsson, that other great inventor, who built the famous Monitor for the Union Government.
Carlyle’s oft-quoted term, “Captains of Industry,” may fittingly be applied to the Stevens family. Strong, masterful, and farseeing, they used ideas, their own and those of others, in a large way, and were able to succeed where more timorous inventors failed. Without the stimulus of poverty they achieved success, making in their shops that combination of men and material which not only added to their own fortunes but also served the world.
We left Eli Whitney defeated in his efforts to divert to himself some adequate share of the untold riches arising from his great invention of the cotton gin. Whitney, however, had other sources of profit in his own character and mechanical ability. As early as 1798 he had turned his talents to the manufacture of firearms. He had established his shops at Whitneyville, near New Haven; and it was there that he worked out another achievement quite as important economically as the cotton gin, even though the immediate consequences were less spectacular: namely, the principle of standardization or interchangeability in manufacture.
This principle is the very foundation today of all American large-scale production. The manufacturer produces separately thousands of copies of every part of a complicated machine, confident that an equal number of the complete machine will be assembled and set in motion. The owner of a motor car, a reaper, a tractor, or a sewing machine, orders, perhaps by telegraph or telephone, a broken or lost part, taking it for granted that the new part can be fitted easily and precisely into the place of the old.
Though it is probable that this idea of standardization, or interchangeability, originated independently in Whitney’s mind, and though it is certain that he and one of his neighbors, who will be mentioned presently, were the first manufacturers in the world to carry it out successfully in practice, yet it must be noted that the idea was not entirely new. We are told that the system was already in operation in England in the manufacture of ship’s blocks. From no less an authority than Thomas Jefferson we learn that a French mechanic had previously conceived the same idea.* But, as no general result whatever came from the idea in either France or England, the honors go to Whitney and North, since they carried it to such complete success that it spread to other branches of manufacturing. And in the face of opposition. When Whitney wrote that his leading object was “to substitute correct and effective operations of machinery for that skill of the artist which is acquired only by long practice and experience,” in order to make the same parts of different guns “as much like each other as the successive impressions of a copper-plate engraving,” he was laughed to scorn by the ordnance officers of France and England. “Even the Washington officials,” says Roe, “were sceptical and became uneasy at advancing so much money without a single gun having been completed, and Whitney went to Washington, taking with him ten pieces of each part of a musket. He exhibited these to the Secretary of War and the army officers interested, as a succession of piles of different parts. Selecting indiscriminately from each of the piles, he put together ten muskets, an achievement which was looked on with amazement.”**
* See the letter from Jefferson to John Jay, of April 30, 1785, cited in Roe, “English and American Tool Builders”, p. 129.
** Roe, “English and American Tool Builders”, p. 133.
While Whitney worked out his plans at Whitneyville, Simeon North, another Connecticut mechanic and a gunmaker by trade, adopted the same system. North’s first shop was at Berlin. He afterwards moved to Middletown. Like Whitney, he used methods far in advance of the time. Both Whitney and North helped to establish the United States Arsenals at Springfield, Massachusetts, and at Harper’s Ferry, Virginia, in which their methods were adopted. Both the Whitney and North plants survived their founders. Just before the Mexican War the Whitney plant began to use steel for gun barrels, and Jefferson Davis, Colonel of the Mississippi Rifles, declared that the new guns were “the best rifles which had ever been issued to any regiment in the world.” Later, when Davis became Secretary of War, he issued to the regular army the same weapon.
The perfection of Whitney’s tools and machines made it possible to employ workmen of little skill or experience. “Indeed so easy did Mr. Whitney find it to instruct new and inexperienced workmen, that he uniformly preferred to do so, rather than to combat the prejudices of those who had learned the business under a different system.”* This reliance upon the machine for precision and speed has been a distinguishing mark of American manufacture. A man or a woman of little actual mechanical skill may make an excellent machine tender, learning to perform a few simple motions with great rapidity.
* Denison Olmstead, “Memoir”, cited by Roe, p. 159.
Whitney married in 1817 Miss Henrietta Edwards, daughter of Judge Pierpont Edwards, of New Haven, and granddaughter of Jonathan Edwards. His business prospered, and his high character, agreeable manners, and sound judgment won. for him the highest regard of all who knew him; and he had a wide circle of friends. It is said that he was on intimate terms with every President of the United States from George Washington to John Quincy Adams. But his health had been impaired by hardships endured in the South, in the long struggle over the cotton gin, and he died in 1825, at the age of fifty-nine. The business which he founded remained in his family for ninety years. It was carried on after his death by two of his nephews and then by his son, until 1888, when it was sold to the Winchester Repeating Arms Company of New Haven.
Here then, in these early New England gunshops, was born the American system of interchangeable manufacture. Its growth depended upon the machine tool, that is, the machine for making machines. Machine tools, of course, did not originate in America. English mechanics were making machines for cutting metal at least a generation before Whitney. One of the earliest of these English pioneers was John Wilkinson, inventor and maker of the boring machine which enabled Boulton and Watt in 1776 to bring their steam engine to the point of practicability. Without this machine Watt found it impossible to bore his cylinders with the necessary degree of accuracy.* From this one fact, that the success of the steam engine depended upon the invention of a new tool, we may judge of what a great part the inventors of machine tools, of whom thousands are unnamed and unknown, have played in the industrial world.
* Roe, “English and American Tool Builders”, p. 1 et seq.
So it was in the shops of the New England gunmakers that machine tools were first made of such variety and adaptability that they could be applied generally to other branches of manufacturing; and so it was that the system of interchangeable manufacture arose as a distinctively American development. We have already seen how England’s policy of keeping at home the secrets of her machinery led to the independent development of the spindles and looms of New England. The same policy affected the tool industry in America in the same way and bred in the new country a race of original and resourceful mechanics.
One of these pioneers was Thomas Blanchard, born in 1788 on a farm in Worcester County, Massachusetts, the home also of Eli Whitney and Elias Howe. Tom began his mechanical career at the age of thirteen by inventing a device to pare apples. At the age of eighteen he went to work in his brother’s shop, where tacks were made by hand, and one day took to his brother a mechanical device for counting the tacks to go into a single packet. The invention was adopted and was found to save the labor of one workman. Tom’s next achievement was a machine to make tacks, on which he spent six years and the rights of which he sold for five thousand dollars. It was worth far more, for it revolutionized the tack industry, but such a sum was to young Blanchard a great fortune.
The tack-making machine gave Blanchard a reputation, and he was presently sought out by a gun manufacturer, to see whether he could improve the lathe for turning the barrels of the guns. Blanchard could; and did. His next problem was to invent a lathe for turning the irregular wooden stocks. Here he also succeeded and produced a lathe that would copy precisely and rapidly any pattern. It is from this invention that the name of Blanchard is best known. The original machine is preserved in the United States Armory at Springfield, to which Blanchard was attached for many years, and where scores of the descendants of his copying lathe may be seen in action today.
Turning gunstocks was, of course, only one of the many uses of Blanchard’s copying lathe. Its chief use, in fact, was in the production of wooden lasts for the shoemakers of New England, but it was applied to many branches of wood manufacture, and later on the same principle was applied to the shaping of metal.
Blanchard was a man of many ideas. He built a steam vehicle for ordinary roads and was an early advocate of railroads; he built steamboats to ply upon the Connecticut and incidentally produced in connection with these his most profitable invention, a machine to bend ship’s timbers without splintering them. The later years of his life were spent in Boston, and he often served as a patent expert in the courts, where his wide knowledge, hard common sense, incisive speech, and homely wit made him a welcome witness.
We now glance at another New England inventor, Samuel Colt, the man who carried Whitney’s conceptions to transcendent heights, the most dashing and adventurous of all the pioneers of the machine shop in America. If “the American frontier was Elizabethan in quality,” there was surely a touch of the Elizabethan spirit on the man whose invention so greatly affected the character of that frontier. Samuel Colt was born at Hartford in 1814 and died there in 1862 at the age of forty-eight, leaving behind him a famous name and a colossal industry of his own creation. His father was a small manufacturer of silk and woolens at Hartford, and the boy entered the factory at a very early age. At school in Amherst a little later, he fell under the displeasure of his teachers. At thirteen he took to sea, as a boy before the mast, on the East India voyage to Calcutta. It was on this voyage that he conceived the idea of the revolver and whittled out a wooden model. On his return he went into his father’s works and gained a superficial knowledge of chemistry from the manager of the bleaching and dyeing department. Then he took to the road for three years and traveled from Quebec to New Orleans lecturing on chemistry under the name of “Dr. Coult.” The main feature of his lecture was the administration of nitrous oxide gas to volunteers from the audience, whose antics and the amusing showman’s patter made the entertainment very popular.
Colt’s ambition, however, soared beyond the occupation of itinerant showman, and he never forgot his revolver. As soon as he had money enough, he made models of the new arm and took out his patents; and, having enlisted the interest of capital, he set up the Patent Arms Company at Paterson, New Jersey, to manufacture the revolver. He did not succeed in having the revolver adopted by the Government, for the army officers for a long time objected to the percussion cap (an invention, by the way, then some twenty years old, which was just coming into use and without which Colt’s revolver would not have been practicable) and thought that the new weapon might fail in an emergency. Colt found a market in Texas and among the frontiersmen who were fighting the Seminole War in Florida, but the sales were insufficient, and in 1842 the company was obliged to confess insolvency and close down the plant. Colt bought from the company the patent of the revolver, which was supposed to be worthless.
Nothing more happened until after the outbreak of the Mexican War in 1846. Then came a loud call from General Zachary Taylor for a supply of Colt’s revolvers. Colt had none. He had sold the last one to a Texas ranger. He had not even a model. Yet he took an order from the Government for a thousand and proceeded to construct a model. For the manufacture of the revolvers he arranged with the Whitney plant at Whitneyville. There he saw and scrutinized every detail of the factory system that Eli Whitney had established forty years earlier. He resolved to have a plant of his own on the same system and one that would far surpass Whitney’s. Next year (1848) he rented premises in Hartford. His business prospered and increased. At last the Government demanded his revolvers. Within five years he had procured a site of two hundred and fifty acres fronting the Connecticut River at Hartford, and had there begun the erection of the greatest arms factory in the world.
Colt was a captain of captains. The ablest mechanic and industrial organizer in New England at that time was Elisha K. Root. Colt went after him, outbidding every other bidder for his services, and brought him to Hartford to supervise the erection of the new factory and set up its machinery. Root was a great superintendent, and the phenomenal success of the Colt factory was due in a marked degree to him. He became president of the company after Colt’s death in 1862, and under him were trained a large number of mechanics and inventors of new machine tools, who afterwards became celebrated leaders and officers in the industrial armies of the country.
The spectacular rise of the Colt factory at Hartford drew the attention of the British Government, and in 1854 Colt was invited to appear in London before a Parliamentary Committee on Small Arms. He lectured the members of the committee as if they had been school boys, telling them that the regular British gun was so bad that he would be ashamed to have it come from his shop. Speaking of a plant which he had opened in London the year before he criticized the supposedly skilled British mechanic, saying: “I began here by employing the highest-priced men that I could find to do difficult things, but I had to remove the whole of these high-priced men. Then I tried the cheapest I could find, and the more ignorant a man was, the more brains he had for my purpose; and the result was this: I had men now in my employ that I started with at two shillings a day, and in one short year I can not spare them at eight shillings a day.”* Colt’s audacity, however, did not offend the members of the committee and they decided to visit his American factory at Hartford. They did; and were so impressed that the British Government purchased in America a full set of machines for the manufacture of arms in the Royal Small Arms factory at Enfield, England, and took across the sea American workmen and foremen to set up and run these . machines. A demand sprang up in Europe for Blanchard copying lathes and a hundred other American tools, and from this time on the manufacture of tools and appliances for other manufacturers, both at home and abroad, became an increasingly important industry of New England.
* Henry Barnard, “Armsmear”, p. 371.
The system which the gunmakers worked out and developed to meet their own requirements was capable of indefinite expansion. It was easily adapted to other kinds of manufacture. So it was that as new inventions came in the manufacturers of these found many of the needed tools ready for them, and any special modifications could be quickly made. A manufacturer, of machine tools will produce on demand a device to perform any operation, however difficult or intricate. Some of the machines are so versatile that specially designed sets of cutting edges will adapt them to almost any work.
Standardization, due to the machine tool, is one of the chief glories of American manufacturing. Accurate watches and clocks, bicycles and motor cars, innumerable devices to save labor in the home, the office, the shop, or on the farm, are within the reach of all, because the machine tool, tended by labor comparatively unskilled, does the greater part of the work of production. In the crisis of the World War, American manufacturers, turning from the arts of peace, promptly adapted their plants to the manufacture of the most complicated engines of destruction, which were produced in Europe only by skilled machinists of the highest class.
CHAPTER IX. THE FATHERS OF ELECTRICITY
It may startle some reader to be told that the foundations of modern electrical science were definitely established in the Elizabethan Age. The England of Elizabeth, of Shakespeare, of Drake and the sea-dogs, is seldom thought of as the cradle of the science of electricity. Nevertheless, it was; just as surely as it was the birthplace of the Shakespearian drama, of the Authorized Version of the Bible, or of that maritime adventure and colonial enterprise which finally grew and blossomed into the United States of America.
The accredited father of the science of electricity and magnetism is William Gilbert, who was a physician and man of learning at the court of Elizabeth. Prior to him, all that was known of these phenomena was what the ancients knew, that the lodestone possessed magnetic properties and that amber and jet, when rubbed, would attract bits of paper or other substances of small specific gravity. Gilbert’s great treatise “On the Magnet”, printed in Latin in 1600, containing the fruits of his researches and experiments for many years, indeed provided the basis for a new science.
On foundations well and truly laid by Gilbert several Europeans, like Otto von Guericke of Germany, Du Fay of France, and Stephen Gray of England, worked before Benjamin Franklin and added to the structure of electrical knowledge. The Leyden jar, in which the mysterious force could be stored, was invented in Holland in 1745 and in Germany almost simultaneously.
Franklin’s important discoveries are outlined in the first chapter of this book. He found out, as we have seen, that electricity and lightning are one and the same, and in the lightning rod he made the first practical application of electricity. Afterwards Cavendish of England, Coulomb of France, Galvani of Italy, all brought new bricks to the pile. Following them came a group of master builders, among whom may be mentioned: Volta of Italy, Oersted of Denmark, Ampere of France, Ohm of Germany, Faraday of England, and Joseph Henry of America.
Among these men, who were, it should be noted, theoretical investigators, rather than practical inventors like Morse, or Bell, or Edison, the American Joseph Henry ranks high. Henry was born at Albany in 1799 and was educated at the Albany Academy. Intending to practice medicine, he studied the natural sciences. He was poor and earned his daily bread by private tutoring. He was an industrious and brilliant student and soon gave evidence of being endowed with a powerful mind. He was appointed in 1824 an assistant engineer for the survey of a route for a State road, three hundred miles long, between the Hudson River and Lake Erie. The experience he gained in this work changed the course of his career; he decided to follow civil and mechanical engineering instead of medicine. Then in 1826 he became teacher of mathematics and natural philosophy in the Albany Academy.
It was in the Albany Academy that he began that wide series of experiments and investigations which touched so many phases of the great problem of electricity. His first discovery was that a magnet could be immensely strengthened by winding it with insulated wire. He was the first to employ insulated wire wound as on a spool and was able finally to make a magnet which would lift thirty-five hundred pounds. He first showed the difference between “quantity” magnets composed of short lengths of wire connected in parallel, excited by a few large cells, and “intensity” magnets wound with a single long wire and excited by a battery composed of cells in series. This was an original discovery, greatly increasing both the immediate usefulness of the magnet and its possibilities for future experiments.
The learned men of Europe, Faraday, Sturgeon, and the rest, were quick to recognize the value of the discoveries of the young Albany schoolmaster. Sturgeon magnanimously said: “Professor Henry has been enabled to produce a magnetic force which totally eclipses every other in the whole annals of magnetism; and no parallel is to be found since the miraculous suspension of the celebrated Oriental imposter in his iron coffin.”*
* Philosophical Magazine, vol. XI, p. 199 (March, 1832).
Henry also discovered the phenomena of self induction and mutual induction. A current sent through a wire in the second story of the building induced currents through a similar wire in the cellar two floors below. In this discovery Henry anticipated Faraday though his results as to mutual induction were not published until he had heard rumors of Faraday’s discovery, which he thought to be something different.
The attempt to send signals by electricity had been made many times before Henry became interested in the problem. On the invention of Sturgeon’s magnet there had been hopes in England of a successful solution, but in the experiments that followed the current became so weak after a few hundred feet that the idea was pronounced impracticable. Henry strung a mile of fine wire in the Academy, placed an “intensity” battery at one end, and made the armature strike a bell at the other. Thus he discovered the essential principle of the electric telegraph. This discovery was made in 1831, the year before the idea of a working electric telegraph flashed on the mind of Morse. There was no occasion for the controversy which took place later as to who invented the telegraph. That was Morse’s achievement, but the discovery of the great fact, which startled Morse into activity, was Henry’s achievement. In Henry’s own words: “This was the first discovery of the fact that a galvanic current could be transmitted to a great distance with so little a diminution of force as to produce mechanical effects, and of the means by which the transmission could be accomplished. I saw that the electric telegraph was now practicable.” He says further, however: “I had not in mind any particular form of telegraph, but referred only to the general fact that it was now demonstrated that a galvanic current could be transmitted to great distances, with sufficient power to produce mechanical effects adequate to the desired object.”*
* Deposition of Joseph Henry, September 7, 1849, printed in Morse, “The Electra-Magnetic Telegraph”, p. 91.
Henry next turned to the possibility of a magnetic engine for the production of power and succeeded in making a reciprocating-bar motor, on which he installed the first automatic pole changer, or commutator, ever used with an electric battery. He did not succeed in producing direct rotary motion. His bar oscillated like the walking beam of a steamboat.
Henry was appointed in 1839. Professor of Natural Philosophy in the College of New Jersey, better known today as Princeton University. There he repeated his old experiments on a larger scale, confirmed Steinheil’s experiment of using the earth as return conductor, showed how a feeble current would be strengthened, and how a small magnet could be used as a circuit maker and breaker. Here were the principles of the telegraph relay and the dynamo.
Why, then, if the work of Henry was so important, is his name almost forgotten, except by men of science, and not given to any one of the practical applications of electricity? The answer is plain. Henry was an investigator, not an inventor. He states his position very clearly: “I never myself attempted to reduce the principles to practice, or to apply any of my discoveries to processes in the arts. My whole attention exclusive of my duties to the College, was devoted to original scientific investigations, and I left to others what I considered in a scientific view of subordinate importance–the application of my discoveries to useful purposes in the arts. Besides this I partook of the feeling common to men of science, which disinclines them to secure to themselves the advantages of their discoveries by a patent.”
Then, too, his talents were soon turned to a wider field. The bequest of James Smithson, that farsighted Englishman, who left his fortune to the United States to found “the Smithsonian Institution, for the increase and diffusion of knowledge among men,” was responsible for the diffusion of Henry’s activities. The Smithsonian Institution was founded at Washington in 1846, and Henry was fittingly chosen its Secretary, that is, its chief executive officer. And from that time until his death in 1878, over thirty years, he devoted himself to science in general.
He studied terrestrial magnetism and building materials. He reduced meteorology to a science, collecting reports by telegraph, made the first weather map, and issued forecasts of the weather based upon definite knowledge rather than upon signs. He became a member of the Lighthouse Board in 1852 and was the head after 1871. The excellence of marine illuminants and fog signals today is largely due to his efforts. Though he was later drawn into a controversy with Morse over the credit for the invention of the telegraph, he used his influence to procure the renewal of Morse’s patent. He listened with attention to Alexander Graham Bell, who had the idea that electric wires might be made to carry the human voice, and encouraged him to proceed with his experiments. “He said,” Bell writes, “that he thought it was the germ of a great invention and advised me to work at it without publishing. I said that I recognized the fact that there were mechanical difficulties in the way that rendered the plan impracticable at the present time. I added that I felt that I had not the electrical knowledge necessary to overcome the difficulties. His laconic answer was, ‘GET IT!’ I cannot tell you how much these two words have encouraged me.”
Henry had blazed the way for others to work out the principles of the electric motor, and a few experimenters attempted to follow his lead. Thomas Davenport, a blacksmith of Brandon, Vermont, built an electric car in 1835, which he was able to drive on the road, and so made himself the pioneer of the automobile in America. Twelve years later Moses G. Farmer exhibited at various places in New England an electric-driven locomotive, and in 1851 Charles Grafton Page drove an electric car, on the tracks of the Baltimore and Ohio Railroad, from Washington to Bladensburg, at the rate of nineteen miles an hour. But the cost of batteries was too great and the use of the electric motor in transportation not yet practicable.
The great principle of the dynamo, or electric generator, was discovered by Faraday and Henry but the process of its development into an agency of practical power consumed many years; and without the dynamo for the generation of power the electric motor had to stand still and there could be no practicable application of electricity to transportation, or manufacturing, or lighting. So it was that, except for the telegraph, whose story is told in another chapter, there was little more American achievement in electricity until after the Civil War.
The arc light as a practical illuminating device came in 1878. It was introduced by Charles F. Brush, a young Ohio engineer and graduate of the University of Michigan. Others before him had attacked the problem of electric lighting, but lack of suitable carbons stood in the way of their success. Brush overcame the chief difficulties and made several lamps to burn in series from one dynamo. The first Brush lights used for street illumination were erected in Cleveland, Ohio, and soon the use of arc lights became general. Other inventors improved the apparatus, but still there were drawbacks. For outdoor lighting and for large halls they served the purpose, but they could not be used in small rooms. Besides, they were in series, that is, the current passed through every lamp in turn, and an accident to one threw the whole series out of action. The whole problem of indoor lighting was to be solved by one of America’s most famous inventors.
The antecedents of Thomas Alva Edison in America may be traced back to the time when Franklin was beginning his career as a printer in Philadelphia. The first American Edisons appear to have come from Holland about 1730 and settled on the Passaic River in New Jersey. Edison’s grandfather, John Edison, was a Loyalist in the Revolution who found refuge in Nova Scotia and subsequently moved to Upper Canada. His son, Samuel Edison, thought he saw a moral in the old man’s exile. His father had taken the King’s side and had lost his home; Samuel would make no such error. So, when the Canadian Rebellion of 1837 broke out, Samuel Edison, aged thirty-three, arrayed himself on the side of the insurgents. This time, however, the insurgents lost, and Samuel was obliged to flee to the United States, just as his father had fled to Canada. He finally settled at Milan, Ohio, and there, in 1847, in a little brick house, which is still standing, Thomas Alva Edison was born.
When the boy was seven the family moved to Port Huron, Michigan. The fact that he attended school only three months and soon became self-supporting was not due to poverty. His mother, an educated woman of Scotch extraction, taught him at home after the schoolmaster reported that he was “addled.” His desire for money to spend on chemicals for a laboratory which he had fitted up in the cellar led to his first venture in business. “By a great amount of persistence,” he says, “I got permission to go on the local train as newsboy. The local train from Port Huron to Detroit, a distance of sixty-three miles, left at 7 A.M. and arrived again at 9.30 P.M. After being on the train for several months I started two stores in Port Huron–one for periodicals, and the other for vegetables, butter, and berries in the season. They were attended by two boys who shared in the profits.” Moreover, young Edison bought produce from the farmers’ wives along the line which he sold at a profit. He had several newsboys working for him on other trains; he spent hours in the Public Library in Detroit; he fitted up a laboratory in an unused compartment of one of the coaches, and then bought a small printing press which he installed in the car and began to issue a newspaper which he printed on the train. All before he was fifteen years old.
But one day Edison’s career as a traveling newsboy came to a sudden end. He was at work in his moving laboratory when a lurch of the train jarred a stick of burning phosphorus to the floor and set the car on fire. The irate conductor ejected him at the next station, giving him a violent box on the ear, which permanently injured his hearing, and dumped his chemicals and printing apparatus on the platform.
Having lost his position, young Edison soon began to dabble in telegraphy, in which he had already become interested, “probably,” as he says, “from visiting telegraph offices with a chum who had tastes similar to mine.” He and this chum strung a line between their houses and learned the rudiments of writing by wire. Then a station master on the railroad, whose child Edison had saved from danger, took Edison under his wing and taught him the mysteries of railway telegraphy. The boy of sixteen held positions wt small stations near home for a few months and then began a period of five years of apparently purposeless wandering as a tramp telegrapher. Toledo, Cincinnati, Indianapolis, Memphis, Louisville, Detroit, were some of the cities in which he worked, studied, experimented, and played practical jokes on his associates. He was eager to learn something of the principles of electricity but found few from whom he could learn.
Edison arrived in Boston in 1868, practically penniless, and applied for a position as night operator. “The manager asked me when I was ready to go to work. ‘Now,’ I replied.” In Boston he found men who knew something of electricity, and, as he worked at night and cut short his sleeping hours, he found time for study. He bought and studied Faraday’s works. Presently came the first of his multitudinous inventions, an automatic vote recorder, for which he received a patent in 1868. This necessitated a trip to Washington, which he made on borrowed money, but he was unable to arouse any interest in the device. “After the vote recorder,” he says, “I invented a stock ticker, and started a ticker service in Boston; had thirty or forty subscribers and operated from a room over the Gold Exchange.” This machine Edison attempted to sell in New York, but he returned to Boston without having succeeded. He then invented a duplex telegraph by which two messages might be sent simultaneously, but at a test the machine failed because of the stupidity of the assistant.
Penniless and in debt, Edison arrived again in New York in 1869. But now fortune favored him. The Gold Indicator Company was a concern furnishing to its subscribers by telegraph the Stock Exchange prices of gold. The company’s instrument was out of order. By a lucky chance Edison was on the spot to repair it, which he did successfully, and this led to his appointment as superintendent at a salary of three hundred dollars a month. When a change in the ownership of the company threw him out of the position he formed, with Franklin L. Pope, the partnership of Pope, Edison, and Company, the first firm of electrical engineers in the United States.
Not long afterwards Edison brought out the invention which set him on the high road to great achievement. This was the improved stock ticker, for which the Gold and Stock Telegraph Company paid him forty thousand dollars. It was much more than he had expected. “I had made up my mind,” he says, “that, taking into consideration the time and killing pace I was working at, I should be entitled to $5000, but could get along with $3000.” The money, of course, was paid by check. Edison had never received a check before and he had to be told how to cash it.
Edison immediately set up a shop in Newark and threw himself into many and various activities. He remade the prevailing system of automatic telegraphy and introduced it into England. He experimented with submarine cables and worked out a system of quadruplex telegraphy by which one wire was made to do the work of four. These two inventions were bought by Jay Gould for his Atlantic and Pacific Telegraph Company. Gould paid for the quadruplex system thirty thousand dollars, but for the automatic telegraph he paid nothing. Gould presently acquired control of the Western Union; and, having thus removed competition from his path, “he then,” says Edison, “repudiated his contract with the automatic telegraph people and they never received a cent for their wires or patents, and I lost three years of very hard labor. But I never had any grudge against him because he was so able in his line, and as long as my part was successful the money with me was a secondary consideration. When Gould got the Western Union I knew no further progress in telegraphy was possible, and I went into other lines.”*
* Quoted in Dyer and Martin. “Edison”, vol. 1, p. 164.
In fact, however, the need of money forced Edison later on to resume his work for the Western Union Telegraph Company, both in telegraphy and telephony. His connection with the telephone is told in another volume of this series.* He invented a carbon transmitter and sold it to the Western Union for one hundred thousand dollars, payable in seventeen annual installments of six thousand dollars. He made a similar agreement for the same sum offered him for the patent of the electro-motograph. He did not realize that these installments were only simple interest upon the sums due him. These agreements are typical of Edison’s commercial sense in the early years of his career as an inventor. He worked only upon inventions for which there was a possible commercial demand and sold them for a trifle to get the money to meet the pay rolls of his different shops. Later the inventor learned wisdom and associated with himself keen business men to their common profit.
* Hendrick, “The Age of Big Business”.
Edison set up his laboratories and factories at Menlo Park, New Jersey, in 1876, and it was there that he invented the phonograph, for which he received the first patent in 1878. It was there, too, that he began that wonderful series of experiments which gave to the world the incandescent lamp. He had noticed the growing importance of open arc lighting, but was convinced that his mission was to produce an electric lamp for use within doors. Forsaking for the moment his newborn phonograph, Edison applied himself in earnest to the problem of the lamp. His first search was for a durable filament which would burn in a vacuum. A series of experiments with platinum wire and with various refractory metals led to no satisfactory results. Many other substances were tried, even human hair. Edison concluded that carbon of some sort was the solution rather than a metal. Almost coincidently, Swan, an Englishman, who had also been wrestling with this problem, came to the same conclusion. Finally, one day in October, 1879, after fourteen months of hard work and the expenditure of forty thousand dollars, a carbonized cotton thread sealed in one of Edison’s globes lasted forty hours. “If it will burn forty hours now,” said Edison, “I know I can make it burn a hundred.” And so he did. A better filament was needed. Edison found it in carbonized strips of bamboo.
Edison developed his own type of dynamo, the largest ever made up to that time, and, along with the Edison incandescent lamps, it was one of the wonders of the Paris Electrical Exposition of 1881. The installation in Europe and America of plants for service followed. Edison’s first great central station, supplying power for three thousand lamps, was erected at Holborn Viaduct, London, in 1882, and in September of that year the Pearl Street Station in New York City, the first central station in America, was put into operation.
The incandescent lamp and the central power station, considered together, may be regarded as one of the most fruitful conceptions in the history of applied electricity. It comprised a complete generating, distributing, and utilizing system, from the dynamo to the very lamp at the fixture, ready for use. It even included a meter to determine the current actually consumed. The success of the system was complete, and as fast as lamps and generators could be produced they were installed to give a service at once recognized as superior to any other form of lighting. By 1885 the Edison lighting system was commercially developed in all its essentials, though still subject to many improvements and capable of great enlargement, and soon Edison. sold out his interests in it and turned his great mind to other inventions.
The inventive ingenuity of others brought in time better and more economical incandescent lamps. From the filaments of bamboo fiber the next step was to filaments of cellulose in the form of cotton, duly prepared and carbonized. Later (1905) came the metalized carbon filament and finally the employment of tantalum or tungsten. The tungsten lamps first made were very delicate, and it was not until W. D. Coolidge, in the research laboratories of the General Electric Company at Schenectady, invented a process for producing ductile tungsten that they became available for general use.
The dynamo and the central power station brought the electric motor into action. The dynamo and the motor do precisely opposite things. The dynamo converts mechanical energy into electric energy. The motor transforms electric energy into mechanical energy. But the two work in partnership and without the dynamo to manufacture the power the motor could not thrive. Moreover, the central station was needed to distribute the power for transportation as well as for lighting.
The first motors to use Edison station current were designed by Frank J. Sprague, a graduate of the Naval Academy, who had worked with Edison, as have many of the foremost electrical engineers of America and Europe. These small motors possessed several advantages over the big steam engine. They ran smoothly and noiselessly on account of the absence of reciprocating parts. They consumed current only when in use. They could be installed and connected with a minimum of trouble and expense. They emitted neither smell nor smoke. Edison built an experimental electric railway line at Menlo Park in 1880 and proved its practicability. Meanwhile, however, as he worked on his motors and dynamos, he was anticipated by others in some of his inventions. It would not be fair to say that Edison and Sprague alone developed the electric railway, for there were several others who made important contributions. Stephen D. Field of Stockbridge, Massachusetts, had a patent which the Edison interests found it necessary to acquire; C. J. Van Depoele and Leo Daft made important contributions to the trolley system. In Cleveland in 1884 an electric railway on a small scale was opened to the public. But Sprague’s first electric railway, built at Richmond, Virginia, in 1887, as a complete system, is generally hailed as the true pioneer of electric transportation in the United States. Thereafter the electric railway spread quickly over the land, obliterating the old horsecars and greatly enlarging the circumference of the city. Moreover, on the steam roads, at all the great terminals, and wherever there were tunnels to be passed through, the old giant steam engine in time yielded place to the electric motor.
The application of the electric motor to the “vertical railway,” or elevator, made possible the steel skyscraper. The elevator, of course, is an old device. It was improved and developed in America by Elisha Graves Otis, an inventor who lived and died before the Civil War and whose sons afterward erected a great business on foundations laid by him. The first Otis elevators were moved by steam or hydraulic power. They were slow, noisy, and difficult of control. After the electric motor came in; the elevator soon changed its character and adapted itself to the imperative demands of the towering, skeleton-framed buildings which were rising in every city.
Edison, already famous as “the Wizard of Menlo Park,” established his factories and laboratories at West Orange, New Jersey, in 1887, whence he has since sent forth a constant stream of inventions, some new and startling, others improvements on old devices. The achievements of several other inventors in the electrical field have been only less noteworthy than his. The new profession of electrical engineering called to its service great numbers of able men. Manufacturers of electrical machinery established research departments and employed inventors. The times had indeed changed since the day when Morse, as a student at Yale College, chose art instead of electricity as his calling, because electricity afforded him no means of livelihood.
From Edison’s plant in 1903 came a new type of the storage battery, which he afterwards improved. The storage battery, as every one knows, is used in the propulsion of electric vehicles and boats, in the operation of block-signals, in the lighting of trains, and in the ignition and starting of gasoline engines. As an adjunct of the gas-driven automobile, it renders the starting of the engine independent of muscle and so makes possible the general use of the automobile by women as well as men.
The dynamo brought into service not only light and power but heat; and the electric furnace in turn gave rise to several great metallurgical and chemical industries. Elihu Thomson’s process of welding by means of the arc furnace found wide and varied applications. The commercial production of aluminum is due to the electric furnace and dates from 1886. It was in that year that H. Y. Castner of New York and C. M. Hall of Pittsburgh both invented the methods of manufacture which gave to the world the new metal, malleable and ductile, exceedingly light, and capable of a thousand uses. Carborundum is another product of the electric furnace. It was the invention of Edward B. Acheson, a graduate of the Edison laboratories. Acheson, in 1891, was trying to make artificial diamonds and produced instead the more useful carborundum, as well as the Acheson graphite, which at once found its place in industry. Another valuable product of the electric furnace was the calcium carbide first produced in 1892 by Thomas L. Wilson of Spray, North Carolina. This calcium carbide is the basis of acetylene gas, a powerful illuminant, and it is widely used in metallurgy, for welding and other purposes.
At the same time with these developments the value of the alternating current came to be recognized. The transformer, an instrument developed on foundations laid by Henry and Faraday, made it possible to transmit electrical energy over great distances with little loss of power. Alternating currents were transformed by means of this instrument at the source, and were again converted at the point of use to a lower and convenient potential for local distribution and consumption. The first extensive use of the alternating current was in arc lighting, where the higher potentials could be employed on series lamps. Perhaps the chief American inventor in the domain of the alternating current is Elihu Thomson, who began his useful career as Professor of Chemistry and Mechanics in the Central High School of Philadelphia. Another great protagonist of the alternating current was George Westinghouse, who was quite as much an improver and inventor as a manufacturer of machinery. Two other inventors, at least, should not be forgotten in this connection: Nicola Tesla and Charles S. Bradley. Both of them had worked for Edison.
The turbine (from the Latin turbo, meaning a whirlwind) is the name of the motor which drives the great dynamos for the generation of electric energy. It may be either a steam turbine or a water turbine. The steam turbine of Curtis or Parsons is today the prevailing engine. But the development of hydro-electric power has already gone far. It is estimated that the electric energy produced in the United States by the utilization of water powers every year equals the power product of forty million tons of coal, or about one-tenth of the coal which is consumed in the production of steam. Yet hydro-electricity is said to be only in its beginnings, for not more than a tenth of the readily available water power of the country is actually in use.
The first commercial hydro-station for the transmission of power in America was established in 1891 at Telluride, Colorado. It was practically duplicated in the following year at Brodie, Colorado. The motors and generators for these stations came from the Westinghouse plant in Pittsburgh, and Westinghouse also supplied the turbo-generators which inaugurated, in 1895, the delivery of power from Niagara Falls.
CHAPTER X. THE CONQUEST OF THE AIR
The most popular man in Europe in the year 1783 was still the United States Minister to France. The figure of plain Benjamin Franklin, his broad head, with the calm, shrewd eyes peering through the bifocals of his own invention, invested with a halo of great learning and fame, entirely captivated the people’s imagination.
As one of the American Commissioners busy with the extraordinary problems of the Peace, Franklin might have been supposed too occupied for excursions into the paths of science and philosophy. But the spaciousness and orderly furnishing of his mind provided that no pursuit of knowledge should be a digression for him. So we find him, naturally, leaving his desk on several days of that summer and autumn and posting off to watch the trials of a new invention; nothing less indeed than a ship to ride the air. He found time also to describe the new invention in letters to his friends in different parts of the world.
On the 21st of November Franklin set out for the gardens of the King’s hunting lodge in the Bois de Boulogne, on the outskirts of Paris, with a quickened interest, a thrill of excitement, which made him yearn to be young again with another long life to live that he might see what should be after him on the earth. What bold things men would attempt! Today two daring Frenchmen, Pilatre de Rozier of the Royal Academy and his friend the Marquis d’Arlandes, would ascend in a balloon freed from the earth–the first men in history to adventure thus upon the wind. The crowds gathered to witness the event opened a lane for Franklin to pass through.
At six minutes to two the aeronauts entered the car of their balloon; and, at a height of two hundred and seventy feet, doffed their hats and saluted the applauding spectators. Then the wind carried them away toward Paris. Over Passy, about half a mile from the starting point, the balloon began to descend, and the River Seine seemed rising to engulf them; but when they fed the fire under their sack of hot air with chopped straw they rose to the elevation of five hundred feet. Safe across the river they dampened the fire with a sponge and made a gentle descent beyond the old ramparts of Paris.
At five o’clock that afternoon, at the King’s Chateau in the Bois de Boulogne, the members of the Royal Academy signed a memorial of the event. One of the spectators accosted Franklin.
“What does Dr. Franklin conceive to be the use of this new invention?”
“What is the use of a new-born child?” was the retort.
A new-born child, a new-born republic, a new invention: alike dim beginnings of development which none could foretell. The year that saw the world acknowledge a new nation, freed of its ancient political bonds, saw also the first successful attempt to break the supposed bonds that held men down to the ground. Though the invention of the balloon was only five months old, there were already two types on exhibition: the original Montgolfier, or fireballoon, inflated with hot air, and a modification by Charles, inflated with hydrogen gas. The mass of the French people did not regard these balloons with Franklin’s serenity. Some weeks earlier the danger of attack had necessitated a balloon’s removal from the place of its first moorings to the Champ de Mars at dead of night. Preceded by flaming torches, with soldiers marching on either side and guards in front and rear, the great ball was borne through the darkened streets. The midnight cabby along the route stopped his nag, or tumbled from sleep on his box, to kneel on the pavement and cross himself against the evil that might be in that strange monster. The fear of the people was so great that the Government saw fit to issue a proclamation, explaining the invention. Any one seeing such a globe, like the moon in an eclipse, so read the proclamation, should be aware that it is only a bag made of taffeta or light canvas covered with paper and “cannot possibly cause any harm and which will some day prove serviceable to the wants of society.”
Franklin wrote a description of the Montgolfier balloon to Sir Joseph Banks, President of the Royal Society of London:
“Its bottom was open and in the middle of the opening was fixed a kind of basket grate, in which faggots and sheaves of straw were burnt. The air, rarefied in passing through this flame, rose in the balloon, swelled out its sides, and filled it. The persons, who were placed in the gallery made of wicker and attached to the outside near the bottom, had each of them a port through which they could pass sheaves of straw into the grate to keep up the flame and thereby keep the balloon full . . . . One of these courageous philosophers, the Marquis d’Arlandes, did me the honor to call upon me in the evening after the experiment, with Mr. Montgolfier, the very ingenious inventor. I was happy to see him safe. He informed me that they lit gently, without the least shock, and the balloon was very little damaged.”
Franklin writes that the competition between Montgolfier and Charles has already resulted in progress in the construction and management of the balloon. He sees it as a discovery of great importance, one that “may possibly give a new turn to human affairs. Convincing sovereigns of the folly of war may perhaps be one effect of it, since it will be impracticable for the most potent of them to guard his dominions.” The prophecy may yet be fulfilled. Franklin remarks that a short while ago the idea of “witches riding through the air upon a broomstick and that of philosophers upon a bag of smoke would have appeared equally impossible and ridiculous.” Yet in the space of a few months he has seen the philosopher on his smoke bag, if not the witch on her broom. He wishes that one of these very ingenious inventors would immediately devise means of direction for the balloon, a rudder to steer it; because the malady from which he is suffering is always increased by a jolting drive in a fourwheeler and he would gladly avail himself of an easier way of locomotion.
The vision of man on the wing did not, of course, begin .with the invention of the balloon. Perhaps the dream of flying man came first to some primitive poet of the Stone Age, as he watched, fearfully, the gyrations of the winged creatures of the air; even as in a later age it came to Langley and Maxim, who studied the wing motions of birds and insects, not in fear but in the light and confidence of advancing science.
Crudely outlined by some ancient Egyptian sculptor, a winged human figure broods upon the tomb of Rameses III. In the Hebrew parable of Genesis winged cherubim guarded the gates of Paradise against the man and woman who had stifled aspiration with sin. Fairies, witches, and magicians ride the wind in the legends and folklore of all peoples. The Greeks had gods and goddesses many; and one of these Greek art represents as moving earthward on great spreading pinions. Victory came by the air. When Demetrius, King of Macedonia, set up the Winged Victory of Samothrace to commemorate the naval triumph of the Greeks over the ships of Egypt, Greek art poetically foreshadowed the relation of the air service to the fleet in our own day.
Man has always dreamed of flight; but when did men first actually fly? We smile at the story of Daedalus, the Greek architect, and his son, Icarus, who made themselves wings and flew from the realm of their foes; and the tale of Simon, the magician, who pestered the early Christian Church by exhibitions of flight into the air amid smoke and flame in mockery of the ascension. But do the many tales of sorcerers in the Middle Ages, who rose from the ground with their cloaks apparently filled with wind, to awe the rabble, suggest that they had deduced the principle of the aerostat from watching the action of smoke as did the Montgolfiers hundreds of years later? At all events one of these alleged exhibitions about the year 800 inspired the good Bishop Agobard of Lyons to write a book against superstition, in which he proved conclusively that it was impossible for human beings to rise through the air. Later, Roger Bacon and Leonardo da Vinci, each in his turn ruminated in manuscript upon the subject of flight. Bacon, the scientist, put forward a theory of thin copper globes filled with liquid fire, which would soar. Leonardo, artist, studied the wings of birds. The Jesuit Francisco Lana, in 1670, working on Bacon’s theory sketched an airship made of four copper balls with a skiff attached; this machine was to soar by means of the lighter-than-air globes and to be navigated aloft by oars and sails.
But while philosophers in their libraries were designing airships on paper and propounding their theories, venturesome men, “crawling, but pestered with the thought of wings,” were making pinions of various fabrics and trying them upon the wind. Four years after Lana suggested his airship with balls and oars, Besnier, a French locksmith, made a flying machine of four collapsible planes like book covers suspended on rods. With a rod over each shoulder, and moving the two front planes with his arms and the two back ones by his feet, Besnier gave exhibitions of gliding from a height to the earth. But his machine could not soar. What may be called the first patent on a flying machine was recorded in 1709 when Bartholomeo de Gusmao, a friar, appeared before the King of Portugal to announce that he had invented a flying machine and to request an order prohibiting other men from making anything of the sort. The King decreed pain of death to all infringers; and to assist the enterprising monk in improving his machine, he appointed him first professor of mathematics in the University of Coimbra with a fat stipend. Then the Inquisition stepped in. The inventor’s suave reply, to the effect that to show men how to soar to Heaven was an essentially religious act, availed him nothing. He was pronounced a sorcerer, his machine was destroyed, and he was imprisoned till his death. Many other men fashioned unto themselves wings; but, though some of them might glide earthward, none could rise upon the wind.
While the principle by which the balloon, father of the dirigible, soars and floats could be deduced by men of natural powers of observation and little science from the action of clouds and smoke, the airplane, the Winged Victory of our day, waited upon two things–the scientific analysis of the anatomy of bird wings and the internal combustion engine.
These two things necessary to convert man into a rival of the albatross did not come at once and together. Not the dream of flying but the need for quantity and speed in production to take care of the wants of a modern civilization compelled the invention of the internal combustion engine. Before it appeared in the realm of mechanics, experimenters were applying in the construction of flying models the knowledge supplied by Cayley in 1796, who made an instrument of whalebone, corks, and feathers, which by the action of two screws of quill feathers, rotating in opposite directions, would rise to the ceiling; and the full revelation of the structure and action of bird wings set forth by Pettigrew in 1867.
“The wing, both when at rest and when in motion,” Pettigrew declared, “may not inaptly be compared to the blade of an ordinary screw propeller as employed in navigation. Thus the general outline of the wing corresponds closely with the outline of the propeller, and the track described by the wing in space IS TWISTED UPON ITSELF propeller fashion.” Numerous attempts to apply the newly discovered principles to artificial birds failed, yet came so close to success that they fed instead of killing the hope that a solution of the problem would one day ere long be reached.
“Nature has solved it, and why not man?”
From his boyhood days Samuel Pierpont Langley, so he tells us, had asked himself that question, which he was later to answer. Langley, born in Roxbury, Massachusetts, in 1834, was another link in the chain of distinguished inventors who first saw the light of day in Puritan New England. And, like many of those other inventors, he numbered among his ancestors for generations two types of men–on the one hand, a line of skilled artisans and mechanics; on the other, the most intellectual men of their time such as clergymen and schoolmasters, one of them being Increase Mather. We see in Langley, as in some of his brother New England inventors, the later flowering of the Puritan ideal stripped of its husk of superstition and harshness–a high sense of duty and of integrity, an intense conviction that the reason for a man’s life here is that he may give service, a reserved deportment which did not mask from discerning eyes the man’s gentle qualities of heart and his keen love of beauty in art and Nature.
Langley first chose as his profession civil engineering and architecture and the years between 1857 and 1864 were chiefly spent in prosecuting these callings in St. Louis and Chicago. Then he abandoned them; for the bent of his mind was definitely towards scientific inquiry. In 1867 he was appointed director of the Allegheny Observatory at Pittsburgh. Here he remained until 1887, when, having made for himself a world-wide reputation as an astronomer, he became Secretary of the Smithsonian Institution at Washington.
It was about this time that he began his experiments in “aerodynamics.” But the problem of flight had long been a subject of interested speculation with him. Ten years later he wrote:
“Nature has made her flying-machine in the bird, which is nearly a thousand times as heavy as the air its bulk displaces, and only those who have tried to rival it know how inimitable her work is, for the “way of a bird in the air” remains as wonderful to us as it was to Solomon, and the sight of the bird has constantly held this wonder before men’s minds, and kept the flame of hope from utter extinction, in spite of long disappointment. I well remember how, as a child, when lying in a New England pasture, h watched a hawk soaring far up in the blue, and sailing for a long time without any motion of its wings, as though it needed no work to sustain it, but was kept up there by some miracle. But, however sustained, I saw it sweep in a few seconds of its leisurely flight, over a distance that to me was encumbered with every sort of obstacle, which did not exist for it . . . . How wonderfully easy, too, was its flight! There was not a flutter of its pinions as it swept over the field, in a motion which seemed as effortless as that of its shadow. After many years and in mature life, I was brought to think of these things again, and to. ask myself whether the problem of artificial flight was as hopeless and as absurd as it was then thought to be”… In three or four years Langley made nearly forty models. “The primary difficulty lay in making the model light enough and sufficiently strong to support its power,” he says. “This difficulty continued to be fundamental through every later form; but, beside this, the adjustment of the center of gravity to the center of pressure of the wings, the disposition of the wings themselves, the size of the propellers, the inclination and number of the blades, and a great number of other details, presented themselves for examination.”
By 1891 Langley had a model light enough to fly, but proper balancing had not been attained. He set himself anew to find the practical conditions of equilibrium and of horizontal flight. His experiments convinced him that “mechanical sustenation of heavy bodies in the air, combined with very great speeds, is not only possible, but within the reach of mechanical means we actually possess.”
After many experiments with new models Langley at length fashioned a steam-driven machine which would fly horizontally. It weighed about thirty pounds; it was some sixteen feet in length, with two sets of wings, the pair in front measuring forty feet from tip to tip. On May 6, 1896, this model was launched over the Potomac River. It flew half a mile in a minute and a half. When its fuel and water gave out, it descended gently to the river’s surface. In November Langley launched another model which flew for three-quarters of a mile at a speed of thirty miles an hour. These tests demonstrated the practicability of artificial flight.
The Spanish-American War found the military observation balloon doing the limited work which it had done ever since the days of Franklin. President McKinley was keenly interested in Langley’s design to build a power-driven flying machine which would have innumerable advantages over the balloon. The Government provided the funds and Langley took up the problem of a flying machine large enough to carry a man. His initial difficulty was the engine. It was plain at once that new principles of engine construction must be adopted before a motor could be designed of high power yet light enough to be borne in the slender body of an airplane. The internal combustion engine had now come into use. Langley went to Europe in 1900, seeking his motor, only to be told that what he sought was impossible.
His assistant, Charles M. Manly, meanwhile found a builder of engines in America who was willing to make the attempt. But, after two years of waiting for it, the engine proved a failure. Manly then had the several parts of it, which he deemed hopeful, transported to Washington, and there at the Smithsonian Institution he labored and experimented until he evolved a light and powerful gasoline motor. In October, 1903, the test was made, with Manly aboard of the machine. The failure which resulted was due solely to the clumsy launching apparatus. The airplane was damaged as it rushed forward before beginning to soar; and, as it rose, it turned over and plunged into the river. The loyal and enthusiastic Manly, who was fortunately a good diver and swimmer, hastily dried himself and gave out a reassuring statement to the representatives of the press and to the officers of the Board of Ordnance gathered to witness the flight.
A second failure in December convinced spectators that man was never intended to fly. The newspapers let loose such a storm of ridicule upon Langley and his machine, with charges as to the waste of public funds, that the Government refused to assist him further. Langley, at that time sixty-nine years of age, took this defeat so keenly to heart that it hastened his death, which occurred three years later. “Failure in the aerodrome itself,” he wrote, “or its engines there has been none; and it is believed that it is at the moment of success, and when the engineering problems have been solved, that a lack of means has prevented a continuance of the work.”
It was truly “at the moment of success” that Langley’s work was stopped. On December 17, 1903, the Wright brothers made the first successful experiment in which a machine carrying a man rose by its own power, flew naturally and at even speed, and descended without damage. These brothers, Wilbur and Orville, who at last opened the long besieged lanes of the air, were born in Dayton, Ohio. Their father, a clergyman and later a bishop, spent his leisure in scientific reading and in the invention of a typewriter which, however, he never perfected. He inspired an interest in scientific principles in his boys’ minds by giving them toys which would stimulate their curiosity. One of these toys was a helicopter, or Cayley’s Top, which would rise and flutter awhile in the air.
After several helicopters of their own, the brothers made original models of kites, and Orville, the younger, attained an exceptional skill in flying them. Presently Orville and Wilbur were making their own bicycles and astonishing their neighbors by public appearances on a specially designed tandem. The first accounts which they read of experiments with flying machines turned their inventive genius into the new field. In particular the newspaper accounts at that time of Otto Lilienthal’s exhibitions with his glider stirred their interest and set them on to search the libraries for literature on the subject of flying. As they read of the work of Langley and others they concluded that the secret of flying could not be mastered theoretically in a laboratory; it must be learned in the air. It struck these young men, trained by necessity to count pennies at their full value, as “wasteful extravagance” to mount delicate and costly machinery on wings which no one knew how to manage. They turned from the records of other inventors’ models to study the one perfect model, the bird. Said Wilbur Wright, speaking before the Society of Western Engineers, at Chicago:
“The bird’s wings are undoubtedly very well designed indeed, but it is not any extraordinary efficiency that strikes with astonishment, but rather the marvelous skill with which they are used. It is true that I have seen birds perform soaring feats of almost incredible nature in positions where it was not possible to measure the speed and trend of the wind, but whenever it was possible to determine by actual measurements the conditions under which the soaring was performed it was easy to account for it on the basis of the results obtained with artificial wings. The soaring problem is apparently not so much one of better wings as of better operators.”*
* Cited in Turner, “The Romance of Aeronautics”.
When the Wrights determined to fly, two problems which had beset earlier experimenters had been partially solved. Experience had brought out certain facts regarding the wings; and invention had supplied an engine. But the laws governing the balancing and steering of the machine were unknown. The way of a man in the air had yet to be discovered.
The starting point of their theory of flight seems to have been that man was endowed with an intelligence at least equal to that of the bird; and, that with practice he could learn to balance himself in the air as naturally and instinctively as on the ground. He must and could be, like the bird, the controlling intelligence of his machine. To quote Wilbur Wright again:
“It seemed to us that the main reason why the problem had remained so long unsolved was that no one had been able to obtain any adequate practice. Lilienthal in five years of time had spent only five hours in actual gliding through the air. The wonder was not that he had done so little but that he had accomplished so much. It would not be considered at all safe for a bicycle rider to attempt to ride through a crowded city street after only five hours’ practice spread out in bits of ten seconds each over a period of five years, yet Lilienthal with his brief practice was remarkably successful in meeting the fluctuations and eddies of wind gusts. We thought that if some method could be found by which it would be possible to practice by the hour instead of by the second, there would be a hope of advancing the solution of a very difficult problem.”
The brothers found that winds of the velocity they desired for their experiments were common on the coast of North Carolina. They pitched their camp at Kitty Hawk in October, 1900, and made a brief and successful trial of their gliding machine. Next year, they returned with a much larger machine; and in 1902 they continued their experiments with a model still further improved from their first design. Having tested their theories and become convinced that they were definitely on the right track, they were no longer satisfied merely to glide. They set about constructing a power machine. Here a new problem met them. They had decided on two screw propellers rotating in opposite directions on the principle of wings in flight; but the proper diameter, pitch, and area of blade were not easily arrived at.
On December 17, 1903, the first Wright biplane was ready to navigate the air and made four brief successful flights. Subsequent flights in 1904 demonstrated that the problem of equilibrium had not been fully solved; but the experiments of 1905 banished this difficulty.
The responsibility which the Wrights placed upon the aviator for maintaining his equilibrium, and the tailless design of their machine, caused much headshaking among foreign flying men when Wilbur Wright appeared at the great aviation meet in France in 1908. But he won the Michelin Prize of eight hundred pounds by beating previous records for speed and for the time which any machine had remained in the air. He gave exhibitions also in Germany and Italy and instructed Italian army officers in the flying of Wright machines. At this time Orville was giving similar demonstrations in America. Transverse control, the warping device invented by the Wright brothers for the preservation of lateral balance and for artificial inclination in making turns, has been employed in a similar or modified form in most airplanes since constructed.
There was no “mine” or “thine” in the diction of the Wright brothers; only “we” and “ours.” They were joint inventors; they shared their fame equally and all their honors and prizes also until the death of Wilbur in 1912. They were the first inventors to make the ancient dream of flying man a reality and to demonstrate that reality to the practical world.
When the NC flying boats of the United States navy lined up at Trepassey in May, 1919, for their Atlantic venture, and the press was full of pictures of them, how many hasty readers, eager only for news of the start, stopped to think what the initials NC stood for?
The seaplane is the chief contribution of Glenn Hammond Curtiss to aviation, and the Navy Curtiss Number Four, which made the first transatlantic flight in history, was designed by him. The spirit of cooperation, expressed in pooling ideas and fame, which the Wright brothers exemplified, is seen again in the association of Curtiss with the navy during the war. NC is a fraternity badge signifying equal honors.
Curtiss, in 1900, was–like the Wrights–the owner of a small bicycle shop. It was at Hammondsport, New York. He was an enthusiastic cyclist, and speed was a mania with him. He evolved a motor cycle with which he broke all records for speed over the ground. He started a factory and achieved a reputation for excellent motors. He designed and made the engine for the dirigible of Captain Thomas S. Baldwin; and for the first United States army dirigible in 1905.
Curtiss carried on some of his experiments in association with Alexander Graham Bell, who was trying to evolve a stable flying machine on the principle of the cellular kite. Bell and Curtiss, with three others, formed in 1907, the Aerial Experimental Association at Bell’s country house in Canada, which was fruitful of results, and Curtiss scored several notable triumphs with the craft they designed. But the idea of a machine which could descend and propel itself on water possessed his mind, and in 1911 he exhibited at the aviation meet in Chicago the hydroaeroplane. An incident there set him dreaming of the life-saving systems on great waters. His hydroaeroplane had just returned to its hangar, after a series of maneuvers, when a monoplane in flight broke out of control and plunged into Lake Michigan. The Curtiss machine left its hangar on the minute, covered the intervening mile, and alighted on the water to offer aid. The presence of boats made the good offices of the hydroaeroplane unnecessary on that occasion; but the incident opened up to the mind of Curtiss new possibilities.
In the first years of the World War Curtiss built airplanes and flying boats for the Allies. The United States entered the arena and called for his services. The Navy Department called for the big flying boat; and the NC type was evolved, which, equipped with four Liberty Motors, crossed the Atlantic after the close of the war.
The World War, of course, brought about the magical development of all kinds of air craft. Necessity not only mothered invention but forced it to cover a normal half century of progress in four years. While Curtiss worked with the navy, the Dayton-Wright factory turned out the famous DH fighting planes under the supervision of Orville Wright. The second initial here stands for Havilland, as the DH was designed by Geoffrey de Havilland, a British inventor.
The year 1919 saw the first transatlantic flights. The NC4, with Lieutenant Commander Albert Cushing Read and crew, left Trepassey, Newfoundland, on the 16th of May and in twelve hours arrived at Horta, the Azores, more than a thousand miles away. All along the course the navy had strung a chain of destroyers, with signaling apparatus and searchlights to guide the aviators. On the twenty-seventh, NC4 took off from San Miguel, Azores, and in nine hours made Lisbon–Lisbon, capital of Portugal, which sent out the first bold mariners to explore the Sea of Darkness, prior to Columbus. On the thirtieth, NC4 took off for Plymouth, England, and arrived in ten hours and twenty minutes. Perhaps a phantom ship, with sails set and flags blowing, the name Mayflower on her hull, rode in Plymouth Harbor that day to greet a New England pilot.
On the 14th of June the Vickers-Vimy Rolls-Royce biplane, piloted by John Alcock and with Arthur Whitten Brown as observer-navigator, left St. John’s, Newfoundland, and arrived at Clifden, Ireland, in sixteen hours twelve minutes, having made the first non-stop transatlantic flight. Hawker and Grieve meanwhile had made the same gallant attempt in a single-engined Sopwith machine; and had come down in mid-ocean, after flying fourteen and a half hours, owing to the failure of their water circulation. Their rescue by slow Danish Mary completed a fascinating tale of heroic adventure. The British dirigible R34, with Major G. H. Scott in command, left East Fortune, Scotland, on the 2d of July, and arrived at Mineola, New York, on the sixth. The R34 made the return voyage in seventy-five hours. In November, 1919, Captain Sir Ross Smith set off from England in a biplane to win a prize of ten thousand pounds offered by the Australian Commonwealth to the first Australian aviator to fly from England to Australia in thirty days. Over France, Italy, Greece, over the Holy Land, perhaps over the Garden of Eden, whence the winged cherubim drove Adam and Eve, over Persia, India, Siam, the Dutch East Indies to Port Darwin in northern Australia; and then southeastward across Australia itself to Sydney, the biplane flew without mishap. The time from Hounslow, England, to Port Darwin was twenty-seven days, twenty hours, and twenty minutes. Early in 1920 the Boer airman Captain Van Ryneveld made the flight from Cairo to the Cape.
Commercial development of the airplane and the airship commenced after the war. The first air service for United States mails was, in fact, inaugurated during the war, between New York and Washington. The transcontinental service was established soon afterwards, and a regular line between Key West and Havana. French and British companies began to operate daily between London and Paris carrying passengers and mail. Airship companies were formed in Australia, South Africa, and India. In Canada airplanes were soon being used in prospecting the Labrador timber regions, in making photographs and maps of the northern wilderness, and by the Northwest Mounted Police.
It is not for history to prophesy. “Emblem of much, and of our Age of Hope itself,” Carlyle called the balloon of his time, born to mount majestically but “unguidably” only to tumble “whither Fate will.” But the aircraft of our day is guidable, and our Age of Hope is not rudderless nor at the mercy of Fate.
BIBLIOGRAPHICAL NOTE
GENERAL
A clear, non-technical discussion of the basis of all industrial progress is “Power”, by Charles E. Lucke (1911), which discusses the general principle of the substitution of power for the labor of men. Many of the references given in “Colonial Folkways”, by C. M. Andrews (“The Chronicles of America”, vol. IX), are valuable for an understanding of early industrial conditions. The general course of industry and commerce in the United States is briefly told by Carroll D. Wright in “The Industrial Evolution of the United States” (1907), by E. L. Bogart in “The Economic History of the United States” (1920), and by Katharine Coman in “The Industrial History of the United States” (1911). “A Documentary History of American Industrial Society”, 10 vols. (1910-11), edited by John R. Commons, is a mine of material. See also Emerson D. Fite, “Social and Industrial Conditions in the North During the Civil War” (1910). The best account of the inventions of the nineteenth century is “The Progress of Invention in the Nineteenth Century” by Edward W. Byrn (1900). George Iles in “Leading American Inventors” (1912) tells the story of several important inventors and their work. The same author in “Flame, Electricity and the Camera” (1900) gives much valuable information.
CHAPTER I
The primary source of information on Benjamin Franklin is contained in his own writings. These were compiled and edited by Jared Sparks, “The Works of . . . Franklin . . . with Notes and a Life of the Author”, 10 vols. (1836-40); and later by John Bigelow, “The Complete Works of Benjamin Franklin; including His Private as well as His Official and Scientific Correspondence, and Numerous Letters and Documents Now for the First Time Printed, with Many Others not included in Any Former Collection, also, the Unmutilated and Correct Version of His Autobiography”, 10 vols. (1887-88). Consult also James Parton, “The Life and Times of Benjamin Franklin”, 2 vols. (1864); S. G. Fisher, “The True Benjamin Franklin” (1899); Paul Leicester Ford, “The Many-Sided Franklin” (1899); John T. Morse, “Benjamin Franklin” (1889) in the “American Statesmen” series; and Lindsay Swift, “Benjamin Franklin” (1910) in “Beacon Biographies. On the Patent Office: Henry L. Ellsworth, A Digest of Patents Issued by the United States from 1790 to January 1, 1839” (Washington, 1840); also the regular Reports and publications of the United States Patent Office.
CHAPTER II
The first life of Eli Whitney is the “Memoir” by Denison Olmsted (1846), and a collection of Whitney’s letters about the cotton gin may be found in “The American Historical Review”, vol. III (1897). “Eli Whitney and His Cotton Gin,” by M. F. Foster, is included in the “Transactions of the New England Cotton Manufacturers’ Association”, no. 67 (October, 1899). See also Dwight Goddard, “A Short Story of Eli Whitney” (1904); D. A. Tompkins, “Cotton and Cotton Oil” (1901); James A. B. Scherer, “Cotton as a World Power” (1916); E. C. Bates, “The Story of the Cotton Gin” (1899), reprinted from “The New England Magazine”, May, 1890; and Eugene Clyde Brooks, “The Story of Cotton and the Development of the Cotton States” (1911).
CHAPTER III
For an account of James Watt’s achievements, see J. Cleland, “Historical Account of the Steam Engine” (1825) and John W. Grant, “Watt and the Steam Age” (1917). On Fulton: R. H. Thurston, “Robert Fulton” (1891) in the “Makers of America” series; A. C. Sutcliffe, “Robert Fulton and the ‘Clermont'” (1909); H. W. Dickinson, “Robert Fulton, Engineer and Artist; His Life and Works” (1913). For an account of John Stevens, see George Iles, “Leading American Inventors” (1912), and Dwight Goddard, “A Short Story of John Stevens and His Sons in Eminent Engineers” (1905). See also John Stevens, “Documents Tending to Prove the Superior Advantages of Rail-Ways and Steam-Carriages over Canal Navigation” (1819.), reprinted in “The Magazine of History with Notes and Queries”, Extra Number 54 (1917). On Evans: “Oliver Evans and His Inventions,” by Coleman Sellers, in “The Journal of the Franklin Institute”, July, 1886, vol. CXXII.
CHAPTER IV
On the general subject of cotton manufacture and machinery, see: J. L. Bishop, “History of American Manufactures from 1608 to 1860”, 3 vols. (1864-67); Samuel Batchelder, “Introduction and Early Progress of the Cotton Manufacture in the United States” (1863); James Montgomery, “A Practical Detail of the Cotton Manufacture of the United States of America” (1840); Melvin T. Copeland, “The Cotton Manufacturing Industry of the United States” (1912); and John L. Hayes, “American Textile Machinery” (1879). Harriet H. Robinson, “Loom and Spindle” (1898), is a description of the life of girl workers in the early factories written by one of them. Charles Dickens, “American Notes”, Chapter IV, is a vivid account of the life in the Lowell mills. See also Nathan Appleton, “Introduction of the Power Loom and Origin of Lowell” (1858); H. A. Miles, “Lowell, as It Was, and as It Is” (1845), and G. S. White, “Memoir of Samuel Slater” (1836). On Elias Howe, see Dwight Goddard, “A Short Story of Elias Howe in Eminent Engineers” (1905).
CHAPTER V
The story of the reaper is told in: Herbert N. Casson, “Cyrus Hall McCormick; His Life and Work” (1909), and “The Romance of the Reaper” (1908), and Merritt F. Miller, “Evolution of Reaping Machines” (1902), U. S. Experiment Stations Office, Bulletin 103. Other farm inventions are covered in: William Macdonald, “Makers of Modern Agriculture” (1913); Emile Guarini, “The Use of Electric Power in Plowing” in The “Electrical Review”, vol. XLIII; A. P. Yerkes, “The Gas Tractor in Eastern Farming” (1918), U. S. Department of Agriculture, Farmer’s Bulletin 1004; and Herbert N. Casson and others, “Horse, Truck and Tractor; the Coming of Cheaper Power for City and Farm” (1913).
CHAPTER VI
An account of an early “agent of communication” is given by W. F. Bailey, article on the “Pony Express” in “The Century Magazine”, vol. XXXIV (1898). For the story of the telegraph and its inventors, see: S. I. Prime, “Life of Samuel F. B. Morse” (1875); S. F. B. Morse, “The Electro-Magnetic Telegraph” (1858) and “Examination of the Telegraphic Apparatus and the Process in Telegraphy” (1869); Guglielmo Marconi, “The Progress of Wireless Telegraphy” (1912) in the “Transactions of the New York Electrical Society”, no. 15; and Ray Stannard Baker, “Marconi’s Achievement” in McClure’s Magazine, vol. XVIII (1902). On the telephone, see Herbert N. Casson, “History of the Telephone” (1910); and Alexander Graham Bell, “The Telephone” (1878). On the cable: Charles Bright, “The Story of the Atlantic Cable” (1903). For facts in the history of printing and descriptions of printing machines, see: Edmund G. Gress, “American Handbook of Printing” (1907); Robert Hoe, “A Short History of the Printing Press and of the Improvements in Printing Machinery” (1902); and Otto Schoenrich, “Biography of Ottmar Mergenthaler and History of the Linotype” (1898), written under Mr. Mergenthaler’s direction. On the best-known New York newspapers, see: H. Hapgood and A. B. Maurice, “The Great Newspapers of the United States; the New York Newspapers,” in “The Bookman”, vols. XIV and XV (1902). On the typewriter, see Charles Edward Weller, “The Early History of the Typewriter” (1918). On the camera, Paul Lewis Anderson, “The Story of Photography” (1918) in “The Mentor”, vol. vi, no. 19.; and on the motion picture, Colin N. Bennett, “The Handbook of Kinematography”; “The History, Theory and Practice of Motion Photography and Projection”, London: “Kinematograph Weekly” (1911).
CHAPTER VII
For information on the subject of rubber and the life of Charles Goodyear, see: H. Wickham, “On the Plantation, Cultivation and Curing of Para Indian Rubber”, London (1908); Francis Ernest Lloyd, “Guayule, a Rubber Plant of the Chihuahuan Desert”, Washington (1911), Carnegie Institute publication no. 139; Charles Goodyear, “Gum Elastic and Its Varieties” (1853) ; James Parton, “Famous Americans of Recent Times” (1867); and “The Rubber Industry, Being the Official Report of the Proceedings of the International Rubber Congress” (London, 1911), edited by Joseph Torey and A. Staines Manders.
CHAPTER VIII
J. W. Roe, “English and American Tool Builders” (1916), and J. V. Woodworth, “American Tool Making and Interchangeable Manufacturing” (1911), give general accounts of great American mechanics.
For an account of John Stevens and Robert L. and E. A. Stevens, see George Iles, “Leading American Inventors” (1912); Dwight Goddard, “A Short Story of John Stevens and His Sons” in “Eminent Engineers” (1905), and R. H. Thurston, “The Messrs. Stevens, of Hoboken, as Engineers, Naval Architects and Philanthropists” (1874), “Journal of the Franklin Institute”, October, 1874. For Whitney’s contribution to machine shop methods, see Olmsted’s “Memoir” already cited and Roe and Woodworth, already cited. For Blanchard, see Dwight Goddard, “A Short Story of Thomas Blanchard” in “Eminent Engineers” (1905), and for Samuel Colt, see his own “On the Application of Machinery to the Manufacture of Rotating Chambered-Breech Fire Arms, and Their Peculiarities” (1855), an excerpt from the “Minutes of Proceedings of the Institute of Civil Engineers”, vol. XI (1853), and Henry Barnard, “Armsmear; the Home, the Arm, and the Armory of Samuel Colt” (1866).
CHAPTER IX
“The Story of Electricity” (1919) is a popular history edited by T. C. Martin and S. L. Coles. A more specialized account of electrical inventions may be found in George Bartlett Prescott’s “The Speaking Telephone, Electric Light, and Other Recent Electrical Inventions” (1879).
For Joseph Henry’s achievements, see his own “Contributions to Electricity and Galvanism” (1835-42) and “On the Application of the Principle of the Galvanic Multiplier to Electromagnetic Apparatus” (1831), and the accounts of others in Henry C. Cameron’s “Reminiscences of Joseph Henry” and W. B. Taylor’s “Historical Sketch of Henry’s Contribution to the Electro-Magnetic Telegraph” (1879), Smithsonian Report, 1878.
“A List of References on the Life and Inventions of Thomas A. Edison ” may be found in the Division of Bibliography, U. S. Library of Congress (1916). See also F. L. Dyer and T. C. Martin, “Edison; His Life and Inventions” (1910), and “Mr. Edison’s Reminiscences of the First Central Station” in “The Electrical Review”, vol. XXXVIII. On other special topics see: F. E. Leupp, “George Westinghouse, His Life and Achievements” (1918); Elihu Thomson, “Induction of Electric Currents and Induction Coils” (1891), “Journal of the Franklin Institute”, August, 1891; and Alex Dow, “The Production of Electricity by Steam Power” (1917).
CHAPTER X
Charles C. Turner, “The Romance of Aeronautics” (1912); “The Curtiss Aviation Book”, by Glenn H. Curtiss and Augustus Post (1912); Samuel Pierpont Langley and Charles M. Manly, “Langley Memoir on Mechanical Flight” (Smithsonian Institution, 1911); “Our Atlantic Attempt”, by H. G. Hawker and K. Mackenzie Grieve (1919); “Flying the Atlantic in Sixteen Hours”, by Sir Arthur Whitten Brown (1920); “Practical Aeronautics”, by Charles B. Hayward, with an Introduction by Orville Wright (1912); “Aircraft; Its Development in War and Peace”, by Evan J. David (1919). Accounts of the flights across the Atlantic are given in “The Aerial Year Book and Who’s Who in the Air” (1920), and the story of NC4 is told in “The Flight Across the Atlantic”, issued by the Department of Education, Curtiss Aeroplane and Motor Corporation (1919).