Full Text Archive logoFull Text Archive — Free Classic E-books

The Descent of Man and Selection in Relation to Sex by Charles Darwin

Part 4 out of 17

Adobe PDF icon
Download this document as a .pdf
File size: 2.0 MB
What's this? light bulb idea Many people prefer to read off-line or to print out text and read from the real printed page. Others want to carry documents around with them on their mobile phones and read while they are on the move. We have created .pdf files of all out documents to accommodate all these groups of people. We recommend that you download .pdfs onto your mobile phone when it is connected to a WiFi connection for reading off-line.

comfort, were to select, as they often do, women in the prime of life, the
rate of increase in the better class would be only slightly lessened.

It was established from an enormous body of statistics, taken during 1853,
that the unmarried men throughout France, between the ages of twenty and
eighty, die in a much larger proportion than the married: for instance,
out of every 1000 unmarried men, between the ages of twenty and thirty,
11.3 annually died, whilst of the married, only 6.5 died. (23. Dr. Farr,
ibid. The quotations given below are extracted from the same striking
paper.) A similar law was proved to hold good, during the years 1863 and
1864, with the entire population above the age of twenty in Scotland: for
instance, out of every 1000 unmarried men, between the ages of twenty and
thirty, 14.97 annually died, whilst of the married only 7.24 died, that is
less than half. (24. I have taken the mean of the quinquennial means,
given in 'The Tenth Annual Report of Births, Deaths, etc., in Scotland,'
1867. The quotation from Dr. Stark is copied from an article in the 'Daily
News,' Oct. 17, 1868, which Dr. Farr considers very carefully written.)
Dr. Stark remarks on this, "Bachelorhood is more destructive to life than
the most unwholesome trades, or than residence in an unwholesome house or
district where there has never been the most distant attempt at sanitary
improvement." He considers that the lessened mortality is the direct
result of "marriage, and the more regular domestic habits which attend that
state." He admits, however, that the intemperate, profligate, and criminal
classes, whose duration of life is low, do not commonly marry; and it must
likewise be admitted that men with a weak constitution, ill health, or any
great infirmity in body or mind, will often not wish to marry, or will be
rejected. Dr. Stark seems to have come to the conclusion that marriage in
itself is a main cause of prolonged life, from finding that aged married
men still have a considerable advantage in this respect over the unmarried
of the same advanced age; but every one must have known instances of men,
who with weak health during youth did not marry, and yet have survived to
old age, though remaining weak, and therefore always with a lessened chance
of life or of marrying. There is another remarkable circumstance which
seems to support Dr. Stark's conclusion, namely, that widows and widowers
in France suffer in comparison with the married a very heavy rate of
mortality; but Dr. Farr attributes this to the poverty and evil habits
consequent on the disruption of the family, and to grief. On the whole we
may conclude with Dr. Farr that the lesser mortality of married than of
unmarried men, which seems to be a general law, "is mainly due to the
constant elimination of imperfect types, and to the skilful selection of
the finest individuals out of each successive generation;" the selection
relating only to the marriage state, and acting on all corporeal,
intellectual, and moral qualities. (25. Dr. Duncan remarks ('Fecundity,
Fertility, etc.' 1871, p. 334) on this subject: "At every age the healthy
and beautiful go over from the unmarried side to the married, leaving the
unmarried columns crowded with the sickly and unfortunate.") We may,
therefore, infer that sound and good men who out of prudence remain for a
time unmarried, do not suffer a high rate of mortality.

If the various checks specified in the two last paragraphs, and perhaps
others as yet unknown, do not prevent the reckless, the vicious and
otherwise inferior members of society from increasing at a quicker rate
than the better class of men, the nation will retrograde, as has too often
occurred in the history of the world. We must remember that progress is no
invariable rule. It is very difficult to say why one civilised nation
rises, becomes more powerful, and spreads more widely, than another; or why
the same nation progresses more quickly at one time than at another. We
can only say that it depends on an increase in the actual number of the
population, on the number of men endowed with high intellectual and moral
faculties, as well as on their standard of excellence. Corporeal structure
appears to have little influence, except so far as vigour of body leads to
vigour of mind.

It has been urged by several writers that as high intellectual powers are
advantageous to a nation, the old Greeks, who stood some grades higher in
intellect than any race that has ever existed (26. See the ingenious and
original argument on this subject by Mr. Galton, 'Hereditary Genius,' pp.
340-342.), ought, if the power of natural selection were real, to have
risen still higher in the scale, increased in number, and stocked the whole
of Europe. Here we have the tacit assumption, so often made with respect
to corporeal structures, that there is some innate tendency towards
continued development in mind and body. But development of all kinds
depends on many concurrent favourable circumstances. Natural selection
acts only tentatively. Individuals and races may have acquired certain
indisputable advantages, and yet have perished from failing in other
characters. The Greeks may have retrograded from a want of coherence
between the many small states, from the small size of their whole country,
from the practice of slavery, or from extreme sensuality; for they did not
succumb until "they were enervated and corrupt to the very core." (27.
Mr. Greg, 'Fraser's Magazine,' Sept. 1868, p. 357.) The western nations of
Europe, who now so immeasurably surpass their former savage progenitors,
and stand at the summit of civilisation, owe little or none of their
superiority to direct inheritance from the old Greeks, though they owe much
to the written works of that wonderful people.

Who can positively say why the Spanish nation, so dominant at one time, has
been distanced in the race. The awakening of the nations of Europe from
the dark ages is a still more perplexing problem. At that early period, as
Mr. Galton has remarked, almost all the men of a gentle nature, those given
to meditation or culture of the mind, had no refuge except in the bosom of
a Church which demanded celibacy (28. 'Hereditary Genius,' 1870, pp. 357-
359. The Rev. F.W. Farrar ('Fraser's Magazine,' Aug. 1870, p. 257)
advances arguments on the other side. Sir C. Lyell had already
('Principles of Geology,' vol. ii. 1868, p. 489), in a striking passage
called attention to the evil influence of the Holy Inquisition in having,
through selection, lowered the general standard of intelligence in
Europe.); and this could hardly fail to have had a deteriorating influence
on each successive generation. During this same period the Holy
Inquisition selected with extreme care the freest and boldest men in order
to burn or imprison them. In Spain alone some of the best men--those who
doubted and questioned, and without doubting there can be no progress--were
eliminated during three centuries at the rate of a thousand a year. The
evil which the Catholic Church has thus effected is incalculable, though no
doubt counterbalanced to a certain, perhaps to a large, extent in other
ways; nevertheless, Europe has progressed at an unparalleled rate.

The remarkable success of the English as colonists, compared to other
European nations, has been ascribed to their "daring and persistent
energy"; a result which is well illustrated by comparing the progress of
the Canadians of English and French extraction; but who can say how the
English gained their energy? There is apparently much truth in the belief
that the wonderful progress of the United States, as well as the character
of the people, are the results of natural selection; for the more
energetic, restless, and courageous men from all parts of Europe have
emigrated during the last ten or twelve generations to that great country,
and have there succeeded best. (29. Mr. Galton, 'Macmillan's Magazine,'
August 1865, p. 325. See also, 'Nature,' 'On Darwinism and National Life,'
Dec. 1869, p. 184.) Looking to the distant future, I do not think that the
Rev. Mr. Zincke takes an exaggerated view when he says (30. 'Last Winter
in the United States,' 1868, p. 29.): "All other series of events--as that
which resulted in the culture of mind in Greece, and that which resulted in
the empire of Rome--only appear to have purpose and value when viewed in
connection with, or rather as subsidiary to...the great stream of Anglo-
Saxon emigration to the west." Obscure as is the problem of the advance of
civilisation, we can at least see that a nation which produced during a
lengthened period the greatest number of highly intellectual, energetic,
brave, patriotic, and benevolent men, would generally prevail over less
favoured nations.

Natural selection follows from the struggle for existence; and this from a
rapid rate of increase. It is impossible not to regret bitterly, but
whether wisely is another question, the rate at which man tends to
increase; for this leads in barbarous tribes to infanticide and many other
evils, and in civilised nations to abject poverty, celibacy, and to the
late marriages of the prudent. But as man suffers from the same physical
evils as the lower animals, he has no right to expect an immunity from the
evils consequent on the struggle for existence. Had he not been subjected
during primeval times to natural selection, assuredly he would never have
attained to his present rank. Since we see in many parts of the world
enormous areas of the most fertile land capable of supporting numerous
happy homes, but peopled only by a few wandering savages, it might be
argued that the struggle for existence had not been sufficiently severe to
force man upwards to his highest standard. Judging from all that we know
of man and the lower animals, there has always been sufficient variability
in their intellectual and moral faculties, for a steady advance through
natural selection. No doubt such advance demands many favourable
concurrent circumstances; but it may well be doubted whether the most
favourable would have sufficed, had not the rate of increase been rapid,
and the consequent struggle for existence extremely severe. It even
appears from what we see, for instance, in parts of S. America, that a
people which may be called civilised, such as the Spanish settlers, is
liable to become indolent and to retrograde, when the conditions of life
are very easy. With highly civilised nations continued progress depends in
a subordinate degree on natural selection; for such nations do not supplant
and exterminate one another as do savage tribes. Nevertheless the more
intelligent members within the same community will succeed better in the
long run than the inferior, and leave a more numerous progeny, and this is
a form of natural selection. The more efficient causes of progress seem to
consist of a good education during youth whilst the brain is impressible,
and of a high standard of excellence, inculcated by the ablest and best
men, embodied in the laws, customs and traditions of the nation, and
enforced by public opinion. It should, however, be borne in mind, that the
enforcement of public opinion depends on our appreciation of the
approbation and disapprobation of others; and this appreciation is founded
on our sympathy, which it can hardly be doubted was originally developed
through natural selection as one of the most important elements of the
social instincts. (31. I am much indebted to Mr. John Morley for some
good criticisms on this subject: see, also Broca, 'Les Selections,' 'Revue
d'Anthropologie,' 1872.)


The present subject has been treated in so full and admirable a manner by
Sir J. Lubbock (32. 'On the Origin of Civilisation,' 'Proceedings of the
Ethnological Society,' Nov. 26, 1867.), Mr. Tylor, Mr. M'Lennan, and
others, that I need here give only the briefest summary of their results.
The arguments recently advanced by the Duke of Argyll (33. 'Primeval Man,'
1869.) and formerly by Archbishop Whately, in favour of the belief that man
came into the world as a civilised being, and that all savages have since
undergone degradation, seem to me weak in comparison with those advanced on
the other side. Many nations, no doubt, have fallen away in civilisation,
and some may have lapsed into utter barbarism, though on this latter head I
have met with no evidence. The Fuegians were probably compelled by other
conquering hordes to settle in their inhospitable country, and they may
have become in consequence somewhat more degraded; but it would be
difficult to prove that they have fallen much below the Botocudos, who
inhabit the finest parts of Brazil.

The evidence that all civilised nations are the descendants of barbarians,
consists, on the one side, of clear traces of their former low condition in
still-existing customs, beliefs, language, etc.; and on the other side, of
proofs that savages are independently able to raise themselves a few steps
in the scale of civilisation, and have actually thus risen. The evidence
on the first head is extremely curious, but cannot be here given: I refer
to such cases as that of the art of enumeration, which, as Mr. Tylor
clearly shews by reference to the words still used in some places,
originated in counting the fingers, first of one hand and then of the
other, and lastly of the toes. We have traces of this in our own decimal
system, and in the Roman numerals, where, after the V, which is supposed to
be an abbreviated picture of a human hand, we pass on to VI, etc., when the
other hand no doubt was used. So again, "when we speak of three-score and
ten, we are counting by the vigesimal system, each score thus ideally made,
standing for 20--for 'one man' as a Mexican or Carib would put it." (34.
'Royal Institution of Great Britain,' March 15, 1867. Also, 'Researches
into the Early History of Mankind,' 1865.) According to a large and
increasing school of philologists, every language bears the marks of its
slow and gradual evolution. So it is with the art of writing, for letters
are rudiments of pictorial representations. It is hardly possible to read
Mr. M'Lennan's work (35. 'Primitive Marriage,' 1865. See, likewise, an
excellent article, evidently by the same author, in the 'North British
Review,' July 1869. Also, Mr. L.H. Morgan, 'A Conjectural Solution of the
Origin of the Class, System of Relationship,' in 'Proc. American Acad. of
Sciences,' vol. vii. Feb. 1868. Prof. Schaaffhausen ('Anthropolog.
Review,' Oct. 1869, p. 373) remarks on "the vestiges of human sacrifices
found both in Homer and the Old Testament.") and not admit that almost all
civilised nations still retain traces of such rude habits as the forcible
capture of wives. What ancient nation, as the same author asks, can be
named that was originally monogamous? The primitive idea of justice, as
shewn by the law of battle and other customs of which vestiges still
remain, was likewise most rude. Many existing superstitions are the
remnants of former false religious beliefs. The highest form of religion--
the grand idea of God hating sin and loving righteousness--was unknown
during primeval times.

Turning to the other kind of evidence: Sir J. Lubbock has shewn that some
savages have recently improved a little in some of their simpler arts.
From the extremely curious account which he gives of the weapons, tools,
and arts, in use amongst savages in various parts of the world, it cannot
be doubted that these have nearly all been independent discoveries,
excepting perhaps the art of making fire. (36. Sir J. Lubbock,
'Prehistoric Times,' 2nd edit. 1869, chaps. xv. and xvi. et passim. See
also the excellent 9th Chapter in Tylor's 'Early History of Mankind,' 2nd
edit., 1870.) The Australian boomerang is a good instance of one such
independent discovery. The Tahitians when first visited had advanced in
many respects beyond the inhabitants of most of the other Polynesian
islands. There are no just grounds for the belief that the high culture of
the native Peruvians and Mexicans was derived from abroad (37. Dr. F.
Muller has made some good remarks to this effect in the 'Reise der Novara:
Anthropolog. Theil,' Abtheil. iii. 1868, s. 127.); many native plants were
there cultivated, and a few native animals domesticated. We should bear in
mind that, judging from the small influence of most missionaries, a
wandering crew from some semi-civilised land, if washed to the shores of
America, would not have produced any marked effect on the natives, unless
they had already become somewhat advanced. Looking to a very remote period
in the history of the world, we find, to use Sir J. Lubbock's well-known
terms, a paleolithic and neolithic period; and no one will pretend that the
art of grinding rough flint tools was a borrowed one. In all parts of
Europe, as far east as Greece, in Palestine, India, Japan, New Zealand, and
Africa, including Egypt, flint tools have been discovered in abundance; and
of their use the existing inhabitants retain no tradition. There is also
indirect evidence of their former use by the Chinese and ancient Jews.
Hence there can hardly be a doubt that the inhabitants of these countries,
which include nearly the whole civilised world, were once in a barbarous
condition. To believe that man was aboriginally civilised and then
suffered utter degradation in so many regions, is to take a pitiably low
view of human nature. It is apparently a truer and more cheerful view that
progress has been much more general than retrogression; that man has risen,
though by slow and interrupted steps, from a lowly condition to the highest
standard as yet attained by him in knowledge, morals and religion.



Position of man in the animal series--The natural system genealogical--
Adaptive characters of slight value--Various small points of resemblance
between man and the Quadrumana--Rank of man in the natural system--
Birthplace and antiquity of man--Absence of fossil connecting links--Lower
stages in the genealogy of man, as inferred, firstly from his affinities
and secondly from his structure--Early androgynous condition of the

Even if it be granted that the difference between man and his nearest
allies is as great in corporeal structure as some naturalists maintain, and
although we must grant that the difference between them is immense in
mental power, yet the facts given in the earlier chapters appear to
declare, in the plainest manner, that man is descended from some lower
form, notwithstanding that connecting-links have not hitherto been

Man is liable to numerous, slight, and diversified variations, which are
induced by the same general causes, are governed and transmitted in
accordance with the same general laws, as in the lower animals. Man has
multiplied so rapidly, that he has necessarily been exposed to struggle for
existence, and consequently to natural selection. He has given rise to
many races, some of which differ so much from each other, that they have
often been ranked by naturalists as distinct species. His body is
constructed on the same homological plan as that of other mammals. He
passes through the same phases of embryological development. He retains
many rudimentary and useless structures, which no doubt were once
serviceable. Characters occasionally make their re-appearance in him,
which we have reason to believe were possessed by his early progenitors.
If the origin of man had been wholly different from that of all other
animals, these various appearances would be mere empty deceptions; but such
an admission is incredible. These appearances, on the other hand, are
intelligible, at least to a large extent, if man is the co-descendant with
other mammals of some unknown and lower form.

Some naturalists, from being deeply impressed with the mental and spiritual
powers of man, have divided the whole organic world into three kingdoms,
the Human, the Animal, and the Vegetable, thus giving to man a separate
kingdom. (1. Isidore Geoffroy St.-Hilaire gives a detailed account of the
position assigned to man by various naturalists in their classifications:
'Hist. Nat. Gen.' tom. ii. 1859, pp. 170-189.) Spiritual powers cannot be
compared or classed by the naturalist: but he may endeavour to shew, as I
have done, that the mental faculties of man and the lower animals do not
differ in kind, although immensely in degree. A difference in degree,
however great, does not justify us in placing man in a distinct kingdom, as
will perhaps be best illustrated by comparing the mental powers of two
insects, namely, a coccus or scale-insect and an ant, which undoubtedly
belong to the same class. The difference is here greater than, though of a
somewhat different kind from, that between man and the highest mammal. The
female coccus, whilst young, attaches itself by its proboscis to a plant;
sucks the sap, but never moves again; is fertilised and lays eggs; and this
is its whole history. On the other hand, to describe the habits and mental
powers of worker-ants, would require, as Pierre Huber has shewn, a large
volume; I may, however, briefly specify a few points. Ants certainly
communicate information to each other, and several unite for the same work,
or for games of play. They recognise their fellow-ants after months of
absence, and feel sympathy for each other. They build great edifices, keep
them clean, close the doors in the evening, and post sentries. They make
roads as well as tunnels under rivers, and temporary bridges over them, by
clinging together. They collect food for the community, and when an
object, too large for entrance, is brought to the nest, they enlarge the
door, and afterwards build it up again. They store up seeds, of which they
prevent the germination, and which, if damp, are brought up to the surface
to dry. They keep aphides and other insects as milch-cows. They go out to
battle in regular bands, and freely sacrifice their lives for the common
weal. They emigrate according to a preconcerted plan. They capture
slaves. They move the eggs of their aphides, as well as their own eggs and
cocoons, into warm parts of the nest, in order that they may be quickly
hatched; and endless similar facts could be given. (2. Some of the most
interesting facts ever published on the habits of ants are given by Mr.
Belt, in his 'Naturalist in Nicaragua,' 1874. See also Mr. Moggridge's
admirable work, 'Harvesting Ants,' etc., 1873, also 'L'Instinct chez les
Insectes,' by M. George Pouchet, 'Revue des Deux Mondes,' Feb. 1870, p.
682.) On the whole, the difference in mental power between an ant and a
coccus is immense; yet no one has ever dreamed of placing these insects in
distinct classes, much less in distinct kingdoms. No doubt the difference
is bridged over by other insects; and this is not the case with man and the
higher apes. But we have every reason to believe that the breaks in the
series are simply the results of many forms having become extinct.

Professor Owen, relying chiefly on the structure of the brain, has divided
the mammalian series into four sub-classes. One of these he devotes to
man; in another he places both the marsupials and the Monotremata; so that
he makes man as distinct from all other mammals as are these two latter
groups conjoined. This view has not been accepted, as far as I am aware,
by any naturalist capable of forming an independent judgment, and therefore
need not here be further considered.

We can understand why a classification founded on any single character or
organ--even an organ so wonderfully complex and important as the brain--or
on the high development of the mental faculties, is almost sure to prove
unsatisfactory. This principle has indeed been tried with hymenopterous
insects; but when thus classed by their habits or instincts, the
arrangement proved thoroughly artificial. (3. Westwood, 'Modern
Classification of Insects,' vol. ii. 1840, p. 87.) Classifications may, of
course, be based on any character whatever, as on size, colour, or the
element inhabited; but naturalists have long felt a profound conviction
that there is a natural system. This system, it is now generally admitted,
must be, as far as possible, genealogical in arrangement,--that is, the co-
descendants of the same form must be kept together in one group, apart from
the co-descendants of any other form; but if the parent-forms are related,
so will be their descendants, and the two groups together will form a
larger group. The amount of difference between the several groups--that is
the amount of modification which each has undergone--is expressed by such
terms as genera, families, orders, and classes. As we have no record of
the lines of descent, the pedigree can be discovered only by observing the
degrees of resemblance between the beings which are to be classed. For
this object numerous points of resemblance are of much more importance than
the amount of similarity or dissimilarity in a few points. If two
languages were found to resemble each other in a multitude of words and
points of construction, they would be universally recognised as having
sprung from a common source, notwithstanding that they differed greatly in
some few words or points of construction. But with organic beings the
points of resemblance must not consist of adaptations to similar habits of
life: two animals may, for instance, have had their whole frames modified
for living in the water, and yet they will not be brought any nearer to
each other in the natural system. Hence we can see how it is that
resemblances in several unimportant structures, in useless and rudimentary
organs, or not now functionally active, or in an embryological condition,
are by far the most serviceable for classification; for they can hardly be
due to adaptations within a late period; and thus they reveal the old lines
of descent or of true affinity.

We can further see why a great amount of modification in some one character
ought not to lead us to separate widely any two organisms. A part which
already differs much from the same part in other allied forms has already,
according to the theory of evolution, varied much; consequently it would
(as long as the organism remained exposed to the same exciting conditions)
be liable to further variations of the same kind; and these, if beneficial,
would be preserved, and thus be continually augmented. In many cases the
continued development of a part, for instance, of the beak of a bird, or of
the teeth of a mammal, would not aid the species in gaining its food, or
for any other object; but with man we can see no definite limit to the
continued development of the brain and mental faculties, as far as
advantage is concerned. Therefore in determining the position of man in
the natural or genealogical system, the extreme development of his brain
ought not to outweigh a multitude of resemblances in other less important
or quite unimportant points.

The greater number of naturalists who have taken into consideration the
whole structure of man, including his mental faculties, have followed
Blumenbach and Cuvier, and have placed man in a separate Order, under the
title of the Bimana, and therefore on an equality with the orders of the
Quadrumana, Carnivora, etc. Recently many of our best naturalists have
recurred to the view first propounded by Linnaeus, so remarkable for his
sagacity, and have placed man in the same Order with the Quadrumana, under
the title of the Primates. The justice of this conclusion will be
admitted: for in the first place, we must bear in mind the comparative
insignificance for classification of the great development of the brain in
man, and that the strongly-marked differences between the skulls of man and
the Quadrumana (lately insisted upon by Bischoff, Aeby, and others)
apparently follow from their differently developed brains. In the second
place, we must remember that nearly all the other and more important
differences between man and the Quadrumana are manifestly adaptive in their
nature, and relate chiefly to the erect position of man; such as the
structure of his hand, foot, and pelvis, the curvature of his spine, and
the position of his head. The family of Seals offers a good illustration
of the small importance of adaptive characters for classification. These
animals differ from all other Carnivora in the form of their bodies and in
the structure of their limbs, far more than does man from the higher apes;
yet in most systems, from that of Cuvier to the most recent one by Mr.
Flower (4. 'Proceedings Zoological Society,' 1863, p. 4.), seals are
ranked as a mere family in the Order of the Carnivora. If man had not been
his own classifier, he would never have thought of founding a separate
order for his own reception.

It would be beyond my limits, and quite beyond my knowledge, even to name
the innumerable points of structure in which man agrees with the other
Primates. Our great anatomist and philosopher, Prof. Huxley, has fully
discussed this subject (5. 'Evidence as to Man's Place in Nature,' 1863,
p. 70, et passim.), and concludes that man in all parts of his organization
differs less from the higher apes, than these do from the lower members of
the same group. Consequently there "is no justification for placing man in
a distinct order."

In an early part of this work I brought forward various facts, shewing how
closely man agrees in constitution with the higher mammals; and this
agreement must depend on our close similarity in minute structure and
chemical composition. I gave, as instances, our liability to the same
diseases, and to the attacks of allied parasites; our tastes in common for
the same stimulants, and the similar effects produced by them, as well as
by various drugs, and other such facts.

As small unimportant points of resemblance between man and the Quadrumana
are not commonly noticed in systematic works, and as, when numerous, they
clearly reveal our relationship, I will specify a few such points. The
relative position of our features is manifestly the same; and the various
emotions are displayed by nearly similar movements of the muscles and skin,
chiefly above the eyebrows and round the mouth. Some few expressions are,
indeed, almost the same, as in the weeping of certain kinds of monkeys and
in the laughing noise made by others, during which the corners of the mouth
are drawn backwards, and the lower eyelids wrinkled. The external ears are
curiously alike. In man the nose is much more prominent than in most
monkeys; but we may trace the commencement of an aquiline curvature in the
nose of the Hoolock Gibbon; and this in the Semnopithecus nasica is carried
to a ridiculous extreme.

The faces of many monkeys are ornamented with beards, whiskers, or
moustaches. The hair on the head grows to a great length in some species
of Semnopithecus (6. Isidore Geoffroy St.-Hilaire, 'Hist. Nat. Gen.' tom.
ii. 1859, p. 217.); and in the Bonnet monkey (Macacus radiatus) it radiates
from a point on the crown, with a parting down the middle. It is commonly
said that the forehead gives to man his noble and intellectual appearance;
but the thick hair on the head of the Bonnet monkey terminates downwards
abruptly, and is succeeded by hair so short and fine that at a little
distance the forehead, with the exception of the eyebrows, appears quite
naked. It has been erroneously asserted that eyebrows are not present in
any monkey. In the species just named the degree of nakedness of the
forehead differs in different individuals; and Eschricht states (7. 'Uber
die Richtung der Haare,' etc., Muller's 'Archiv fur Anat. und Phys.' 1837,
s. 51.) that in our children the limit between the hairy scalp and the
naked forehead is sometimes not well defined; so that here we seem to have
a trifling case of reversion to a progenitor, in whom the forehead had not
as yet become quite naked.

It is well known that the hair on our arms tends to converge from above and
below to a point at the elbow. This curious arrangement, so unlike that in
most of the lower mammals, is common to the gorilla, chimpanzee, orang,
some species of Hylobates, and even to some few American monkeys. But in
Hylobates agilis the hair on the fore-arm is directed downwards or towards
the wrist in the ordinary manner; and in H. lar it is nearly erect, with
only a very slight forward inclination; so that in this latter species it
is in a transitional state. It can hardly be doubted that with most
mammals the thickness of the hair on the back and its direction, is adapted
to throw off the rain; even the transverse hairs on the fore-legs of a dog
may serve for this end when he is coiled up asleep. Mr. Wallace, who has
carefully studied the habits of the orang, remarks that the convergence of
the hair towards the elbow on the arms of the orang may be explained as
serving to throw off the rain, for this animal during rainy weather sits
with its arms bent, and with the hands clasped round a branch or over its
head. According to Livingstone, the gorilla also "sits in pelting rain
with his hands over his head." (8. Quoted by Reade, 'The African Sketch
Book,' vol i. 1873, p. 152.) If the above explanation is correct, as seems
probable, the direction of the hair on our own arms offers a curious record
of our former state; for no one supposes that it is now of any use in
throwing off the rain; nor, in our present erect condition, is it properly
directed for this purpose.

It would, however, be rash to trust too much to the principle of adaptation
in regard to the direction of the hair in man or his early progenitors; for
it is impossible to study the figures given by Eschricht of the arrangement
of the hair on the human foetus (this being the same as in the adult) and
not agree with this excellent observer that other and more complex causes
have intervened. The points of convergence seem to stand in some relation
to those points in the embryo which are last closed in during development.
There appears, also, to exist some relation between the arrangement of the
hair on the limbs, and the course of the medullary arteries. (9. On the
hair in Hylobates, see 'Natural History of Mammals,' by C.L. Martin, 1841,
p. 415. Also, Isidore Geoffroy on the American monkeys and other kinds,
'Hist. Nat. Gen.' vol. ii. 1859, pp. 216, 243. Eschricht, ibid. s. 46, 55,
61. Owen, 'Anatomy of Vertebrates,' vol. iii. p. 619. Wallace,
'Contributions to the Theory of Natural Selection,' 1870, p. 344.)

It must not be supposed that the resemblances between man and certain apes
in the above and in many other points--such as in having a naked forehead,
long tresses on the head, etc.,--are all necessarily the result of unbroken
inheritance from a common progenitor, or of subsequent reversion. Many of
these resemblances are more probably due to analogous variation, which
follows, as I have elsewhere attempted to shew (10. 'Origin of Species,'
5th edit. 1869, p.194. 'The Variation of Animals and Plants under
Domestication,' vol. ii. 1868, p. 348.), from co-descended organisms having
a similar constitution, and having been acted on by like causes inducing
similar modifications. With respect to the similar direction of the hair
on the fore-arms of man and certain monkeys, as this character is common to
almost all the anthropomorphous apes, it may probably be attributed to
inheritance; but this is not certain, as some very distinct American
monkeys are thus characterised.

Although, as we have now seen, man has no just right to form a separate
Order for his own reception, he may perhaps claim a distinct Sub-order or
Family. Prof. Huxley, in his last work (11. 'An Introduction to the
Classification of Animals,' 1869, p. 99.), divides the primates into three
Sub-orders; namely, the Anthropidae with man alone, the Simiadae including
monkeys of all kinds, and the Lemuridae with the diversified genera of
lemurs. As far as differences in certain important points of structure are
concerned, man may no doubt rightly claim the rank of a Sub-order; and this
rank is too low, if we look chiefly to his mental faculties. Nevertheless,
from a genealogical point of view it appears that this rank is too high,
and that man ought to form merely a Family, or possibly even only a Sub-
family. If we imagine three lines of descent proceeding from a common
stock, it is quite conceivable that two of them might after the lapse of
ages be so slightly changed as still to remain as species of the same
genus, whilst the third line might become so greatly modified as to deserve
to rank as a distinct Sub-family, Family, or even Order. But in this case
it is almost certain that the third line would still retain through
inheritance numerous small points of resemblance with the other two. Here,
then, would occur the difficulty, at present insoluble, how much weight we
ought to assign in our classifications to strongly-marked differences in
some few points,--that is, to the amount of modification undergone; and how
much to close resemblance in numerous unimportant points, as indicating the
lines of descent or genealogy. To attach much weight to the few but strong
differences is the most obvious and perhaps the safest course, though it
appears more correct to pay great attention to the many small resemblances,
as giving a truly natural classification.

In forming a judgment on this head with reference to man, we must glance at
the classification of the Simiadae. This family is divided by almost all
naturalists into the Catarrhine group, or Old World monkeys, all of which
are characterised (as their name expresses) by the peculiar structure of
their nostrils, and by having four premolars in each jaw; and into the
Platyrrhine group or New World monkeys (including two very distinct sub-
groups), all of which are characterised by differently constructed
nostrils, and by having six premolars in each jaw. Some other small
differences might be mentioned. Now man unquestionably belongs in his
dentition, in the structure of his nostrils, and some other respects, to
the Catarrhine or Old World division; nor does he resemble the Platyrrhines
more closely than the Catarrhines in any characters, excepting in a few of
not much importance and apparently of an adaptive nature. It is therefore
against all probability that some New World species should have formerly
varied and produced a man-like creature, with all the distinctive
characters proper to the Old World division; losing at the same time all
its own distinctive characters. There can, consequently, hardly be a doubt
that man is an off-shoot from the Old World Simian stem; and that under a
genealogical point of view he must be classed with the Catarrhine division.
(12. This is nearly the same classification as that provisionally adopted
by Mr. St. George Mivart, ('Transactions, Philosophical Society," 1867, p.
300), who, after separating the Lemuridae, divides the remainder of the
Primates into the Hominidae, the Simiadae which answer to the Catarrhines,
the Cebidae, and the Hapalidae,--these two latter groups answering to the
Platyrrhines. Mr. Mivart still abides by the same view; see 'Nature,'
1871, p. 481.)

The anthropomorphous apes, namely the gorilla, chimpanzee, orang, and
hylobates, are by most naturalists separated from the other Old World
monkeys, as a distinct sub-group. I am aware that Gratiolet, relying on
the structure of the brain, does not admit the existence of this sub-group,
and no doubt it is a broken one. Thus the orang, as Mr. St. G. Mivart
remarks, "is one of the most peculiar and aberrant forms to be found in the
Order." (13. 'Transactions, Zoolog. Soc.' vol. vi. 1867, p. 214.) The
remaining non-anthropomorphous Old World monkeys, are again divided by some
naturalists into two or three smaller sub-groups; the genus Semnopithecus,
with its peculiar sacculated stomach, being the type of one sub-group. But
it appears from M. Gaudry's wonderful discoveries in Attica, that during
the Miocene period a form existed there, which connected Semnopithecus and
Macacus; and this probably illustrates the manner in which the other and
higher groups were once blended together.

If the anthropomorphous apes be admitted to form a natural sub-group, then
as man agrees with them, not only in all those characters which he
possesses in common with the whole Catarrhine group, but in other peculiar
characters, such as the absence of a tail and of callosities, and in
general appearance, we may infer that some ancient member of the
anthropomorphous sub-group gave birth to man. It is not probable that,
through the law of analogous variation, a member of one of the other lower
sub-groups should have given rise to a man-like creature, resembling the
higher anthropomorphous apes in so many respects. No doubt man, in
comparison with most of his allies, has undergone an extraordinary amount
of modification, chiefly in consequence of the great development of his
brain and his erect position; nevertheless, we should bear in mind that he
"is but one of several exceptional forms of Primates." (14. Mr. St. G.
Mivart, 'Transactions of the Philosophical Society,' 1867, p. 410.)

Every naturalist, who believes in the principle of evolution, will grant
that the two main divisions of the Simiadae, namely the Catarrhine and
Platyrrhine monkeys, with their sub-groups, have all proceeded from some
one extremely ancient progenitor. The early descendants of this
progenitor, before they had diverged to any considerable extent from each
other, would still have formed a single natural group; but some of the
species or incipient genera would have already begun to indicate by their
diverging characters the future distinctive marks of the Catarrhine and
Platyrrhine divisions. Hence the members of this supposed ancient group
would not have been so uniform in their dentition, or in the structure of
their nostrils, as are the existing Catarrhine monkeys in one way and the
Platyrrhines in another way, but would have resembled in this respect the
allied Lemuridae, which differ greatly from each other in the form of their
muzzles (15. Messrs. Murie and Mivart on the Lemuroidea, 'Transactions,
Zoological Society,' vol. vii, 1869, p. 5.), and to an extraordinary degree
in their dentition.

The Catarrhine and Platyrrhine monkeys agree in a multitude of characters,
as is shewn by their unquestionably belonging to one and the same Order.
The many characters which they possess in common can hardly have been
independently acquired by so many distinct species; so that these
characters must have been inherited. But a naturalist would undoubtedly
have ranked as an ape or a monkey, an ancient form which possessed many
characters common to the Catarrhine and Platyrrhine monkeys, other
characters in an intermediate condition, and some few, perhaps, distinct
from those now found in either group. And as man from a genealogical point
of view belongs to the Catarrhine or Old World stock, we must conclude,
however much the conclusion may revolt our pride, that our early
progenitors would have been properly thus designated. (16. Haeckel has
come to this same conclusion. See 'Uber die Entstehung des
Menschengeschlechts,' in Virchow's 'Sammlung. gemein. wissen. Vortrage,'
1868, s. 61. Also his 'Naturliche Schopfungsgeschicte,' 1868, in which he
gives in detail his views on the genealogy of man.) But we must not fall
into the error of supposing that the early progenitor of the whole Simian
stock, including man, was identical with, or even closely resembled, any
existing ape or monkey.


We are naturally led to enquire, where was the birthplace of man at that
stage of descent when our progenitors diverged from the Catarrhine stock?
The fact that they belonged to this stock clearly shews that they inhabited
the Old World; but not Australia nor any oceanic island, as we may infer
from the laws of geographical distribution. In each great region of the
world the living mammals are closely related to the extinct species of the
same region. It is therefore probable that Africa was formerly inhabited
by extinct apes closely allied to the gorilla and chimpanzee; and as these
two species are now man's nearest allies, it is somewhat more probable that
our early progenitors lived on the African continent than elsewhere. But
it is useless to speculate on this subject; for two or three
anthropomorphous apes, one the Dryopithecus (17. Dr. C. Forsyth Major,
'Sur les Singes fossiles trouves en Italie:' 'Soc. Ital. des Sc. Nat.' tom.
xv. 1872.) of Lartet, nearly as large as a man, and closely allied to
Hylobates, existed in Europe during the Miocene age; and since so remote a
period the earth has certainly undergone many great revolutions, and there
has been ample time for migration on the largest scale.

At the period and place, whenever and wherever it was, when man first lost
his hairy covering, he probably inhabited a hot country; a circumstance
favourable for the frugiferous diet on which, judging from analogy, he
subsisted. We are far from knowing how long ago it was when man first
diverged from the Catarrhine stock; but it may have occurred at an epoch as
remote as the Eocene period; for that the higher apes had diverged from the
lower apes as early as the Upper Miocene period is shewn by the existence
of the Dryopithecus. We are also quite ignorant at how rapid a rate
organisms, whether high or low in the scale, may be modified under
favourable circumstances; we know, however, that some have retained the
same form during an enormous lapse of time. From what we see going on
under domestication, we learn that some of the co-descendants of the same
species may be not at all, some a little, and some greatly changed, all
within the same period. Thus it may have been with man, who has undergone
a great amount of modification in certain characters in comparison with the
higher apes.

The great break in the organic chain between man and his nearest allies,
which cannot be bridged over by any extinct or living species, has often
been advanced as a grave objection to the belief that man is descended from
some lower form; but this objection will not appear of much weight to those
who, from general reasons, believe in the general principle of evolution.
Breaks often occur in all parts of the series, some being wide, sharp and
defined, others less so in various degrees; as between the orang and its
nearest allies--between the Tarsius and the other Lemuridae--between the
elephant, and in a more striking manner between the Ornithorhynchus or
Echidna, and all other mammals. But these breaks depend merely on the
number of related forms which have become extinct. At some future period,
not very distant as measured by centuries, the civilised races of man will
almost certainly exterminate, and replace, the savage races throughout the
world. At the same time the anthropomorphous apes, as Professor
Schaaffhausen has remarked (18. 'Anthropological Review,' April 1867, p.
236.), will no doubt be exterminated. The break between man and his
nearest allies will then be wider, for it will intervene between man in a
more civilised state, as we may hope, even than the Caucasian, and some ape
as low as a baboon, instead of as now between the negro or Australian and
the gorilla.

With respect to the absence of fossil remains, serving to connect man with
his ape-like progenitors, no one will lay much stress on this fact who
reads Sir C. Lyell's discussion (19. 'Elements of Geology,' 1865, pp. 583-
585. 'Antiquity of Man,' 1863, p. 145.), where he shews that in all the
vertebrate classes the discovery of fossil remains has been a very slow and
fortuitous process. Nor should it be forgotten that those regions which
are the most likely to afford remains connecting man with some extinct ape-
like creature, have not as yet been searched by geologists.


We have seen that man appears to have diverged from the Catarrhine or Old
World division of the Simiadae, after these had diverged from the New World
division. We will now endeavour to follow the remote traces of his
genealogy, trusting principally to the mutual affinities between the
various classes and orders, with some slight reference to the periods, as
far as ascertained, of their successive appearance on the earth. The
Lemuridae stand below and near to the Simiadae, and constitute a very
distinct family of the primates, or, according to Haeckel and others, a
distinct Order. This group is diversified and broken to an extraordinary
degree, and includes many aberrant forms. It has, therefore, probably
suffered much extinction. Most of the remnants survive on islands, such as
Madagascar and the Malayan archipelago, where they have not been exposed to
so severe a competition as they would have been on well-stocked continents.
This group likewise presents many gradations, leading, as Huxley remarks
(20. 'Man's Place in Nature,' p. 105.), "insensibly from the crown and
summit of the animal creation down to creatures from which there is but a
step, as it seems, to the lowest, smallest, and least intelligent of the
placental mammalia." From these various considerations it is probable that
the Simiadae were originally developed from the progenitors of the existing
Lemuridae; and these in their turn from forms standing very low in the
mammalian series.

The Marsupials stand in many important characters below the placental
mammals. They appeared at an earlier geological period, and their range
was formerly much more extensive than at present. Hence the Placentata are
generally supposed to have been derived from the Implacentata or
Marsupials; not, however, from forms closely resembling the existing
Marsupials, but from their early progenitors. The Monotremata are plainly
allied to the Marsupials, forming a third and still lower division in the
great mammalian series. They are represented at the present day solely by
the Ornithorhynchus and Echidna; and these two forms may be safely
considered as relics of a much larger group, representatives of which have
been preserved in Australia through some favourable concurrence of
circumstances. The Monotremata are eminently interesting, as leading in
several important points of structure towards the class of reptiles.

In attempting to trace the genealogy of the Mammalia, and therefore of man,
lower down in the series, we become involved in greater and greater
obscurity; but as a most capable judge, Mr. Parker, has remarked, we have
good reason to believe, that no true bird or reptile intervenes in the
direct line of descent. He who wishes to see what ingenuity and knowledge
can effect, may consult Prof. Haeckel's works. (21. Elaborate tables are
given in his 'Generelle Morphologie' (B. ii. s. cliii. and s. 425); and
with more especial reference to man in his 'Naturliche
Schopfungsgeschichte,' 1868. Prof. Huxley, in reviewing this latter work
('The Academy,' 1869, p. 42) says, that he considers the phylum or lines of
descent of the Vertebrata to be admirably discussed by Haeckel, although he
differs on some points. He expresses, also, his high estimate of the
general tenor and spirit of the whole work.) I will content myself with a
few general remarks. Every evolutionist will admit that the five great
vertebrate classes, namely, mammals, birds, reptiles, amphibians, and
fishes, are descended from some one prototype; for they have much in
common, especially during their embryonic state. As the class of fishes is
the most lowly organised, and appeared before the others, we may conclude
that all the members of the vertebrate kingdom are derived from some
fishlike animal. The belief that animals so distinct as a monkey, an
elephant, a humming-bird, a snake, a frog, and a fish, etc., could all have
sprung from the same parents, will appear monstrous to those who have not
attended to the recent progress of natural history. For this belief
implies the former existence of links binding closely together all these
forms, now so utterly unlike.

Nevertheless, it is certain that groups of animals have existed, or do now
exist, which serve to connect several of the great vertebrate classes more
or less closely. We have seen that the Ornithorhynchus graduates towards
reptiles; and Prof. Huxley has discovered, and is confirmed by Mr. Cope and
others, that the Dinosaurians are in many important characters intermediate
between certain reptiles and certain birds--the birds referred to being the
ostrich-tribe (itself evidently a widely-diffused remnant of a larger
group) and the Archeopteryx, that strange Secondary bird, with a long
lizard-like tail. Again, according to Prof. Owen (22. 'Palaeontology'
1860, p. 199.), the Ichthyosaurians--great sea-lizards furnished with
paddles--present many affinities with fishes, or rather, according to
Huxley, with amphibians; a class which, including in its highest division
frogs and toads, is plainly allied to the Ganoid fishes. These latter
fishes swarmed during the earlier geological periods, and were constructed
on what is called a generalised type, that is, they presented diversified
affinities with other groups of organisms. The Lepidosiren is also so
closely allied to amphibians and fishes, that naturalists long disputed in
which of these two classes to rank it; it, and also some few Ganoid fishes,
have been preserved from utter extinction by inhabiting rivers, which are
harbours of refuge, and are related to the great waters of the ocean in the
same way that islands are to continents.

Lastly, one single member of the immense and diversified class of fishes,
namely, the lancelet or amphioxus, is so different from all other fishes,
that Haeckel maintains that it ought to form a distinct class in the
vertebrate kingdom. This fish is remarkable for its negative characters;
it can hardly be said to possess a brain, vertebral column, or heart, etc.;
so that it was classed by the older naturalists amongst the worms. Many
years ago Prof. Goodsir perceived that the lancelet presented some
affinities with the Ascidians, which are invertebrate, hermaphrodite,
marine creatures permanently attached to a support. They hardly appear
like animals, and consist of a simple, tough, leathery sack, with two small
projecting orifices. They belong to the Mulluscoida of Huxley--a lower
division of the great kingdom of the Mollusca; but they have recently been
placed by some naturalists amongst the Vermes or worms. Their larvae
somewhat resemble tadpoles in shape (23. At the Falkland Islands I had the
satisfaction of seeing, in April, 1833, and therefore some years before any
other naturalist, the locomotive larvae of a compound Ascidian, closely
allied to Synoicum, but apparently generically distinct from it. The tail
was about five times as long as the oblong head, and terminated in a very
fine filament. It was, as sketched by me under a simple microscope,
plainly divided by transverse opaque partitions, which I presume represent
the great cells figured by Kovalevsky. At an early stage of development
the tail was closely coiled round the head of the larva.), and have the
power of swimming freely about. Mr. Kovalevsky (24. 'Memoires de l'Acad.
des Sciences de St. Petersbourg,' tom. x. No. 15, 1866.) has lately
observed that the larvae of Ascidians are related to the Vertebrata, in
their manner of development, in the relative position of the nervous
system, and in possessing a structure closely like the chorda dorsalis of
vertebrate animals; and in this he has been since confirmed by Prof.
Kupffer. M. Kovalevsky writes to me from Naples, that he has now carried
these observations yet further, and should his results be well established,
the whole will form a discovery of the very greatest value. Thus, if we
may rely on embryology, ever the safest guide in classification, it seems
that we have at last gained a clue to the source whence the Vertebrata were
derived. (25. But I am bound to add that some competent judges dispute
this conclusion; for instance, M. Giard, in a series of papers in the
'Archives de Zoologie Experimentale,' for 1872. Nevertheless, this
naturalist remarks, p. 281, "L'organisation de la larve ascidienne en
dehors de toute hypothese et de toute theorie, nous montre comment la
nature peut produire la disposition fondamentale du type vertebre
(l'existence d'une corde dorsale) chez un invertebre par la seule condition
vitale de l'adaptation, et cette simple possibilite du passage supprime
l'abime entre les deux sous-regnes, encore bien qu'en ignore par ou le
passage s'est fait en realite.") We should then be justified in believing
that at an extremely remote period a group of animals existed, resembling
in many respects the larvae of our present Ascidians, which diverged into
two great branches--the one retrograding in development and producing the
present class of Ascidians, the other rising to the crown and summit of the
animal kingdom by giving birth to the Vertebrata.

We have thus far endeavoured rudely to trace the genealogy of the
Vertebrata by the aid of their mutual affinities. We will now look to man
as he exists; and we shall, I think, be able partially to restore the
structure of our early progenitors, during successive periods, but not in
due order of time. This, can be effected by means of the rudiments which
man still retains, by the characters which occasionally make their
appearance in him through reversion, and by the aid of the principles of
morphology and embryology. The various facts, to which I shall here
allude, have been given in the previous chapters.

The early progenitors of man must have been once covered with hair, both
sexes having beards; their ears were probably pointed, and capable of
movement; and their bodies were provided with a tail, having the proper
muscles. Their limbs and bodies were also acted on by many muscles which
now only occasionally reappear, but are normally present in the Quadrumana.
At this or some earlier period, the great artery and nerve of the humerus
ran through a supra-condyloid foramen. The intestine gave forth a much
larger diverticulum or caecum than that now existing. The foot was then
prehensile, judging from the condition of the great toe in the foetus; and
our progenitors, no doubt, were arboreal in their habits, and frequented
some warm, forest-clad land. The males had great canine teeth, which
served them as formidable weapons. At a much earlier period the uterus was
double; the excreta were voided through a cloaca; and the eye was protected
by a third eyelid or nictitating membrane. At a still earlier period the
progenitors of man must have been aquatic in their habits; for morphology
plainly tells us that our lungs consist of a modified swim-bladder, which
once served as a float. The clefts on the neck in the embryo of man shew
where the branchiae once existed. In the lunar or weekly recurrent periods
of some of our functions we apparently still retain traces of our
primordial birthplace, a shore washed by the tides. At about this same
early period the true kidneys were replaced by the corpora wolffiana. The
heart existed as a simple pulsating vessel; and the chorda dorsalis took
the place of a vertebral column. These early ancestors of man, thus seen
in the dim recesses of time, must have been as simply, or even still more
simply organised than the lancelet or amphioxus.

There is one other point deserving a fuller notice. It has long been known
that in the vertebrate kingdom one sex bears rudiments of various accessory
parts, appertaining to the reproductive system, which properly belong to
the opposite sex; and it has now been ascertained that at a very early
embryonic period both sexes possess true male and female glands. Hence
some remote progenitor of the whole vertebrate kingdom appears to have been
hermaphrodite or androgynous. (26. This is the conclusion of Prof.
Gegenbaur, one of the highest authorities in comparative anatomy: see
'Grundzuge der vergleich. Anat.' 1870, s. 876. The result has been arrived
at chiefly from the study of the Amphibia; but it appears from the
researches of Waldeyer (as quoted in 'Journal of Anat. and Phys.' 1869, p.
161), that the sexual organs of even "the higher vertebrata are, in their
early condition, hermaphrodite." Similar views have long been held by some
authors, though until recently without a firm basis.) But here we
encounter a singular difficulty. In the mammalian class the males possess
rudiments of a uterus with the adjacent passage, in their vesiculae
prostaticae; they bear also rudiments of mammae, and some male Marsupials
have traces of a marsupial sack. (27. The male Thylacinus offers the best
instance. Owen, 'Anatomy of Vertebrates,' vol. iii. p. 771.) Other
analogous facts could be added. Are we, then, to suppose that some
extremely ancient mammal continued androgynous, after it had acquired the
chief distinctions of its class, and therefore after it had diverged from
the lower classes of the vertebrate kingdom? This seems very improbable,
for we have to look to fishes, the lowest of all the classes, to find any
still existent androgynous forms. (28. Hermaphroditism has been observed
in several species of Serranus, as well as in some other fishes, where it
is either normal and symmetrical, or abnormal and unilateral. Dr.
Zouteveen has given me references on this subject, more especially to a
paper by Prof. Halbertsma, in the 'Transact. of the Dutch Acad. of
Sciences,' vol. xvi. Dr. Gunther doubts the fact, but it has now been
recorded by too many good observers to be any longer disputed. Dr. M.
Lessona writes to me, that he has verified the observations made by
Cavolini on Serranus. Prof. Ercolani has recently shewn ('Accad. delle
Scienze,' Bologna, Dec. 28, 1871) that eels are androgynous.) That various
accessory parts, proper to each sex, are found in a rudimentary condition
in the opposite sex, may be explained by such organs having been gradually
acquired by the one sex, and then transmitted in a more or less imperfect
state to the other. When we treat of sexual selection, we shall meet with
innumerable instances of this form of transmission,--as in the case of the
spurs, plumes, and brilliant colours, acquired for battle or ornament by
male birds, and inherited by the females in an imperfect or rudimentary

The possession by male mammals of functionally imperfect mammary organs is,
in some respects, especially curious. The Monotremata have the proper
milk-secreting glands with orifices, but no nipples; and as these animals
stand at the very base of the mammalian series, it is probable that the
progenitors of the class also had milk-secreting glands, but no nipples.
This conclusion is supported by what is known of their manner of
development; for Professor Turner informs me, on the authority of Kolliker
and Langer, that in the embryo the mammary glands can be distinctly traced
before the nipples are in the least visible; and the development of
successive parts in the individual generally represents and accords with
the development of successive beings in the same line of descent. The
Marsupials differ from the Monotremata by possessing nipples; so that
probably these organs were first acquired by the Marsupials, after they had
diverged from, and risen above, the Monotremata, and were then transmitted
to the placental mammals. (29. Prof. Gegenbaur has shewn ('Jenaische
Zeitschrift,' Bd. vii. p. 212) that two distinct types of nipples prevail
throughout the several mammalian orders, but that it is quite intelligible
how both could have been derived from the nipples of the Marsupials, and
the latter from those of the Monotremata. See, also, a memoir by Dr. Max
Huss, on the mammary glands, ibid. B. viii. p. 176.) No one will suppose
that the marsupials still remained androgynous, after they had
approximately acquired their present structure. How then are we to account
for male mammals possessing mammae? It is possible that they were first
developed in the females and then transferred to the males, but from what
follows this is hardly probable.

It may be suggested, as another view, that long after the progenitors of
the whole mammalian class had ceased to be androgynous, both sexes yielded
milk, and thus nourished their young; and in the case of the Marsupials,
that both sexes carried their young in marsupial sacks. This will not
appear altogether improbable, if we reflect that the males of existing
syngnathous fishes receive the eggs of the females in their abdominal
pouches, hatch them, and afterwards, as some believe, nourish the young
(30. Mr. Lockwood believes (as quoted in 'Quart. Journal of Science,'
April 1868, p. 269), from what he has observed of the development of
Hippocampus, that the walls of the abdominal pouch of the male in some way
afford nourishment. On male fishes hatching the ova in their mouths, see a
very interesting paper by Prof. Wyman, in 'Proc. Boston Soc. of Nat. Hist.'
Sept. 15, 1857; also Prof. Turner, in 'Journal of Anatomy and Physiology,'
Nov. 1, 1866, p. 78. Dr. Gunther has likewise described similar cases.);--
that certain other male fishes hatch the eggs within their mouths or
branchial cavities;--that certain male toads take the chaplets of eggs from
the females, and wind them round their own thighs, keeping them there until
the tadpoles are born;--that certain male birds undertake the whole duty of
incubation, and that male pigeons, as well as the females, feed their
nestlings with a secretion from their crops. But the above suggestion
first occurred to me from mammary glands of male mammals being so much more
perfectly developed than the rudiments of the other accessory reproductive
parts, which are found in the one sex though proper to the other. The
mammary glands and nipples, as they exist in male mammals, can indeed
hardly be called rudimentary; they are merely not fully developed, and not
functionally active. They are sympathetically affected under the influence
of certain diseases, like the same organs in the female. They often
secrete a few drops of milk at birth and at puberty: this latter fact
occurred in the curious case, before referred to, where a young man
possessed two pairs of mammae. In man and some other male mammals these
organs have been known occasionally to become so well developed during
maturity as to yield a fair supply of milk. Now if we suppose that during
a former prolonged period male mammals aided the females in nursing their
offspring (31. Mlle. C. Royer has suggested a similar view in her 'Origine
de l'homme,' etc., 1870.), and that afterwards from some cause (as from the
production of a smaller number of young) the males ceased to give this aid,
disuse of the organs during maturity would lead to their becoming inactive;
and from two well-known principles of inheritance, this state of inactivity
would probably be transmitted to the males at the corresponding age of
maturity. But at an earlier age these organs would be left unaffected, so
that they would be almost equally well developed in the young of both


Von Baer has defined advancement or progress in the organic scale better
than any one else, as resting on the amount of differentiation and
specialisation of the several parts of a being,--when arrived at maturity,
as I should be inclined to add. Now as organisms have become slowly
adapted to diversified lines of life by means of natural selection, their
parts will have become more and more differentiated and specialised for
various functions from the advantage gained by the division of
physiological labour. The same part appears often to have been modified
first for one purpose, and then long afterwards for some other and quite
distinct purpose; and thus all the parts are rendered more and more
complex. But each organism still retains the general type of structure of
the progenitor from which it was aboriginally derived. In accordance with
this view it seems, if we turn to geological evidence, that organisation on
the whole has advanced throughout the world by slow and interrupted steps.
In the great kingdom of the Vertebrata it has culminated in man. It must
not, however, be supposed that groups of organic beings are always
supplanted, and disappear as soon as they have given birth to other and
more perfect groups. The latter, though victorious over their
predecessors, may not have become better adapted for all places in the
economy of nature. Some old forms appear to have survived from inhabiting
protected sites, where they have not been exposed to very severe
competition; and these often aid us in constructing our genealogies, by
giving us a fair idea of former and lost populations. But we must not fall
into the error of looking at the existing members of any lowly-organised
group as perfect representatives of their ancient predecessors.

The most ancient progenitors in the kingdom of the Vertebrata, at which we
are able to obtain an obscure glance, apparently consisted of a group of
marine animals (32. The inhabitants of the seashore must be greatly
affected by the tides; animals living either about the MEAN high-water
mark, or about the MEAN low-water mark, pass through a complete cycle of
tidal changes in a fortnight. Consequently, their food supply will undergo
marked changes week by week. The vital functions of such animals, living
under these conditions for many generations, can hardly fail to run their
course in regular weekly periods. Now it is a mysterious fact that in the
higher and now terrestrial Vertebrata, as well as in other classes, many
normal and abnormal processes have one or more whole weeks as their
periods; this would be rendered intelligible if the Vertebrata are
descended from an animal allied to the existing tidal Ascidians. Many
instances of such periodic processes might be given, as the gestation of
mammals, the duration of fevers, etc. The hatching of eggs affords also a
good example, for, according to Mr. Bartlett ('Land and Water,' Jan. 7,
1871), the eggs of the pigeon are hatched in two weeks; those of the fowl
in three; those of the duck in four; those of the goose in five; and those
of the ostrich in seven weeks. As far as we can judge, a recurrent period,
if approximately of the right duration for any process or function, would
not, when once gained, be liable to change; consequently it might be thus
transmitted through almost any number of generations. But if the function
changed, the period would have to change, and would be apt to change almost
abruptly by a whole week. This conclusion, if sound, is highly remarkable;
for the period of gestation in each mammal, and the hatching of each bird's
eggs, and many other vital processes, thus betray to us the primordial
birthplace of these animals.), resembling the larvae of existing Ascidians.
These animals probably gave rise to a group of fishes, as lowly organised
as the lancelet; and from these the Ganoids, and other fishes like the
Lepidosiren, must have been developed. From such fish a very small advance
would carry us on to the Amphibians. We have seen that birds and reptiles
were once intimately connected together; and the Monotremata now connect
mammals with reptiles in a slight degree. But no one can at present say by
what line of descent the three higher and related classes, namely, mammals,
birds, and reptiles, were derived from the two lower vertebrate classes,
namely, amphibians and fishes. In the class of mammals the steps are not
difficult to conceive which led from the ancient Monotremata to the ancient
Marsupials; and from these to the early progenitors of the placental
mammals. We may thus ascend to the Lemuridae; and the interval is not very
wide from these to the Simiadae. The Simiadae then branched off into two
great stems, the New World and Old World monkeys; and from the latter, at a
remote period, Man, the wonder and glory of the Universe, proceeded.

Thus we have given to man a pedigree of prodigious length, but not, it may
be said, of noble quality. The world, it has often been remarked, appears
as if it had long been preparing for the advent of man: and this, in one
sense is strictly true, for he owes his birth to a long line of
progenitors. If any single link in this chain had never existed, man would
not have been exactly what he now is. Unless we wilfully close our eyes,
we may, with our present knowledge, approximately recognise our parentage;
nor need we feel ashamed of it. The most humble organism is something much
higher than the inorganic dust under our feet; and no one with an unbiassed
mind can study any living creature, however humble, without being struck
with enthusiasm at its marvellous structure and properties.



The nature and value of specific characters--Application to the races of
man--Arguments in favour of, and opposed to, ranking the so-called races of
man as district species--Sub-species--Monogenists and polygenists--
Convergence of character--Numerous points of resemblance in body and mind
between the most distinct races of man--The state of man when he first
spread over the earth--Each race not descended from a single pair--The
extinction of races--The formation of races--The effects of crossing--
Slight influence of the direct action of the conditions of life--Slight or
no influence of natural selection--Sexual selection.

It is not my intention here to describe the several so-called races of men;
but I am about to enquire what is the value of the differences between them
under a classificatory point of view, and how they have originated. In
determining whether two or more allied forms ought to be ranked as species
or varieties, naturalists are practically guided by the following
considerations; namely, the amount of difference between them, and whether
such differences relate to few or many points of structure, and whether
they are of physiological importance; but more especially whether they are
constant. Constancy of character is what is chiefly valued and sought for
by naturalists. Whenever it can be shewn, or rendered probable, that the
forms in question have remained distinct for a long period, this becomes an
argument of much weight in favour of treating them as species. Even a
slight degree of sterility between any two forms when first crossed, or in
their offspring, is generally considered as a decisive test of their
specific distinctness; and their continued persistence without blending
within the same area, is usually accepted as sufficient evidence, either of
some degree of mutual sterility, or in the case of animals of some mutual
repugnance to pairing.

Independently of fusion from intercrossing, the complete absence, in a
well-investigated region, of varieties linking together any two closely-
allied forms, is probably the most important of all the criterions of their
specific distinctness; and this is a somewhat different consideration from
mere constancy of character, for two forms may be highly variable and yet
not yield intermediate varieties. Geographical distribution is often
brought into play unconsciously and sometimes consciously; so that forms
living in two widely separated areas, in which most of the other
inhabitants are specifically distinct, are themselves usually looked at as
distinct; but in truth this affords no aid in distinguishing geographical
races from so-called good or true species.

Now let us apply these generally-admitted principles to the races of man,
viewing him in the same spirit as a naturalist would any other animal. In
regard to the amount of difference between the races, we must make some
allowance for our nice powers of discrimination gained by the long habit of
observing ourselves. In India, as Elphinstone remarks, although a newly-
arrived European cannot at first distinguish the various native races, yet
they soon appear to him extremely dissimilar (1. 'History of India,' 1841,
vol. i. p. 323. Father Ripa makes exactly the same remark with respect to
the Chinese.); and the Hindoo cannot at first perceive any difference
between the several European nations. Even the most distinct races of man
are much more like each other in form than would at first be supposed;
certain negro tribes must be excepted, whilst others, as Dr. Rohlfs writes
to me, and as I have myself seen, have Caucasian features. This general
similarity is well shewn by the French photographs in the Collection
Anthropologique du Museum de Paris of the men belonging to various races,
the greater number of which might pass for Europeans, as many persons to
whom I have shewn them have remarked. Nevertheless, these men, if seen
alive, would undoubtedly appear very distinct, so that we are clearly much
influenced in our judgment by the mere colour of the skin and hair, by
slight differences in the features, and by expression.

There is, however, no doubt that the various races, when carefully compared
and measured, differ much from each other,--as in the texture of the hair,
the relative proportions of all parts of the body (2. A vast number of
measurements of Whites, Blacks, and Indians, are given in the
'Investigations in the Military and Anthropolog. Statistics of American
Soldiers,' by B.A. Gould, 1869, pp. 298-358; 'On the capacity of the
lungs,' p. 471. See also the numerous and valuable tables, by Dr.
Weisbach, from the observations of Dr. Scherzer and Dr. Schwarz, in the
'Reise der Novara: Anthropolog. Theil,' 1867.), the capacity of the lungs,
the form and capacity of the skull, and even in the convolutions of the
brain. (3. See, for instance, Mr. Marshall's account of the brain of a
Bushwoman, in 'Philosophical Transactions,' 1864, p. 519.) But it would be
an endless task to specify the numerous points of difference. The races
differ also in constitution, in acclimatisation and in liability to certain
diseases. Their mental characteristics are likewise very distinct; chiefly
as it would appear in their emotional, but partly in their intellectual
faculties. Every one who has had the opportunity of comparison, must have
been struck with the contrast between the taciturn, even morose, aborigines
of S. America and the light-hearted, talkative negroes. There is a nearly
similar contrast between the Malays and the Papuans (4. Wallace, 'The
Malay Archipelago,' vol. ii. 1869, p. 178.), who live under the same
physical conditions, and are separated from each other only by a narrow
space of sea.

We will first consider the arguments which may be advanced in favour of
classing the races of man as distinct species, and then the arguments on
the other side. If a naturalist, who had never before seen a Negro,
Hottentot, Australian, or Mongolian, were to compare them, he would at once
perceive that they differed in a multitude of characters, some of slight
and some of considerable importance. On enquiry he would find that they
were adapted to live under widely different climates, and that they
differed somewhat in bodily constitution and mental disposition. If he
were then told that hundreds of similar specimens could be brought from the
same countries, he would assuredly declare that they were as good species
as many to which he had been in the habit of affixing specific names. This
conclusion would be greatly strengthened as soon as he had ascertained that
these forms had all retained the same character for many centuries; and
that negroes, apparently identical with existing negroes, had lived at
least 4000 years ago. (5. With respect to the figures in the famous
Egyptian caves of Abou-Simbel, M. Pouchet says ('The Plurality of the Human
Races,' Eng. translat., 1864, p. 50), that he was far from finding
recognisable representations of the dozen or more nations which some
authors believe that they can recognise. Even some of the most strongly-
marked races cannot be identified with that degree of unanimity which might
have been expected from what has been written on the subject. Thus Messrs.
Nott and Gliddon ('Types of Mankind,' p. 148), state that Rameses II., or
the Great, has features superbly European; whereas Knox, another firm
believer in the specific distinctness of the races of man ('Races of Man,'
1850, p. 201), speaking of young Memnon (the same as Rameses II., as I am
informed by Mr. Birch), insists in the strongest manner that he is
identical in character with the Jews of Antwerp. Again, when I looked at
the statue of Amunoph III., I agreed with two officers of the
establishment, both competent judges, that he had a strongly-marked negro
type of features; but Messrs. Nott and Gliddon (ibid. p. 146, fig. 53),
describe him as a hybrid, but not of "negro intermixture.") He would also
hear, on the authority of an excellent observer, Dr. Lund (6. As quoted by
Nott and Gliddon, 'Types of Mankind,' 1854, p. 439. They give also
corroborative evidence; but C. Vogt thinks that the subject requires
further investigation.), that the human skulls found in the caves of
Brazil, entombed with many extinct mammals, belonged to the same type as
that now prevailing throughout the American Continent.

Our naturalist would then perhaps turn to geographical distribution, and he
would probably declare that those forms must be distinct species, which
differ not only in appearance, but are fitted for hot, as well as damp or
dry countries, and for the Artic regions. He might appeal to the fact that
no species in the group next to man--namely, the Quadrumana, can resist a
low temperature, or any considerable change of climate; and that the
species which come nearest to man have never been reared to maturity, even
under the temperate climate of Europe. He would be deeply impressed with
the fact, first noticed by Agassiz (7. 'Diversity of Origin of the Human
Races,' in the 'Christian Examiner,' July 1850.), that the different races
of man are distributed over the world in the same zoological provinces, as
those inhabited by undoubtedly distinct species and genera of mammals.
This is manifestly the case with the Australian, Mongolian, and Negro races
of man; in a less well-marked manner with the Hottentots; but plainly with
the Papuans and Malays, who are separated, as Mr. Wallace has shewn, by
nearly the same line which divides the great Malayan and Australian
zoological provinces. The Aborigines of America range throughout the
Continent; and this at first appears opposed to the above rule, for most of
the productions of the Southern and Northern halves differ widely: yet
some few living forms, as the opossum, range from the one into the other,
as did formerly some of the gigantic Edentata. The Esquimaux, like other
Arctic animals, extend round the whole polar regions. It should be
observed that the amount of difference between the mammals of the several
zoological provinces does not correspond with the degree of separation
between the latter; so that it can hardly be considered as an anomaly that
the Negro differs more, and the American much less from the other races of
man, than do the mammals of the African and American continents from the
mammals of the other provinces. Man, it may be added, does not appear to
have aboriginally inhabited any oceanic island; and in this respect, he
resembles the other members of his class.

In determining whether the supposed varieties of the same kind of domestic
animal should be ranked as such, or as specifically distinct, that is,
whether any of them are descended from distinct wild species, every
naturalist would lay much stress on the fact of their external parasites
being specifically distinct. All the more stress would be laid on this
fact, as it would be an exceptional one; for I am informed by Mr. Denny
that the most different kinds of dogs, fowls, and pigeons, in England, are
infested by the same species of Pediculi or lice. Now Mr. A. Murray has
carefully examined the Pediculi collected in different countries from the
different races of man (8. 'Transactions of the Royal Society of
Edinburgh,' vol. xxii, 1861, p. 567.); and he finds that they differ, not
only in colour, but in the structure of their claws and limbs. In every
case in which many specimens were obtained the differences were constant.
The surgeon of a whaling ship in the Pacific assured me that when the
Pediculi, with which some Sandwich Islanders on board swarmed, strayed on
to the bodies of the English sailors, they died in the course of three or
four days. These Pediculi were darker coloured, and appeared different
from those proper to the natives of Chiloe in South America, of which he
gave me specimens. These, again, appeared larger and much softer than
European lice. Mr. Murray procured four kinds from Africa, namely, from
the Negroes of the Eastern and Western coasts, from the Hottentots and
Kaffirs; two kinds from the natives of Australia; two from North and two
from South America. In these latter cases it may be presumed that the
Pediculi came from natives inhabiting different districts. With insects
slight structural differences, if constant, are generally esteemed of
specific value: and the fact of the races of man being infested by
parasites, which appear to be specifically distinct, might fairly be urged
as an argument that the races themselves ought to be classed as distinct

Our supposed naturalist having proceeded thus far in his investigation,
would next enquire whether the races of men, when crossed, were in any
degree sterile. He might consult the work (9. 'On the Phenomena of
Hybridity in the Genus Homo,' Eng. translat., 1864.) of Professor Broca, a
cautious and philosophical observer, and in this he would find good
evidence that some races were quite fertile together, but evidence of an
opposite nature in regard to other races. Thus it has been asserted that
the native women of Australia and Tasmania rarely produce children to
European men; the evidence, however, on this head has now been shewn to be
almost valueless. The half-castes are killed by the pure blacks: and an
account has lately been published of eleven half-caste youths murdered and
burnt at the same time, whose remains were found by the police. (10. See
the interesting letter by Mr. T.A. Murray, in the 'Anthropological Review,'
April 1868, p. liii. In this letter Count Strzelecki's statement that
Australian women who have borne children to a white man, are afterwards
sterile with their own race, is disproved. M. A. de Quatrefages has also
collected (Revue des Cours Scientifiques, March, 1869, p. 239), much
evidence that Australians and Europeans are not sterile when crossed.)
Again, it has often been said that when mulattoes intermarry, they produce
few children; on the other hand, Dr. Bachman, of Charleston (11. 'An
Examination of Prof. Agassiz's Sketch of the Nat. Provinces of the Animal
World,' Charleston, 1855, p. 44.), positively asserts that he has known
mulatto families which have intermarried for several generations, and have
continued on an average as fertile as either pure whites or pure blacks.
Enquiries formerly made by Sir C. Lyell on this subject led him, as he
informs me, to the same conclusion. (12. Dr. Rohlfs writes to me that he
found the mixed races in the Great Sahara, derived from Arabs, Berbers, and
Negroes of three tribes, extraordinarily fertile. On the other hand, Mr.
Winwood Reade informs me that the Negroes on the Gold Coast, though
admiring white men and mulattoes, have a maxim that mulattoes should not
intermarry, as the children are few and sickly. This belief, as Mr. Reade
remarks, deserves attention, as white men have visited and resided on the
Gold Coast for four hundred years, so that the natives have had ample time
to gain knowledge through experience.) In the United States the census for
the year 1854 included, according to Dr. Bachman, 405,751 mulattoes; and
this number, considering all the circumstances of the case, seems small;
but it may partly be accounted for by the degraded and anomalous position
of the class, and by the profligacy of the women. A certain amount of
absorption of mulattoes into negroes must always be in progress; and this
would lead to an apparent diminution of the former. The inferior vitality
of mulattoes is spoken of in a trustworthy work (13. 'Military and
Anthropological Statistics of American Soldiers,' by B.A. Gould, 1869, p.
319.) as a well-known phenomenon; and this, although a different
consideration from their lessened fertility, may perhaps be advanced as a
proof of the specific distinctness of the parent races. No doubt both
animal and vegetable hybrids, when produced from extremely distinct
species, are liable to premature death; but the parents of mulattoes cannot
be put under the category of extremely distinct species. The common Mule,
so notorious for long life and vigour, and yet so sterile, shews how little
necessary connection there is in hybrids between lessened fertility and
vitality; other analogous cases could be cited.

Even if it should hereafter be proved that all the races of men were
perfectly fertile together, he who was inclined from other reasons to rank
them as distinct species, might with justice argue that fertility and
sterility are not safe criterions of specific distinctness. We know that
these qualities are easily affected by changed conditions of life, or by
close inter-breeding, and that they are governed by highly complex laws,
for instance, that of the unequal fertility of converse crosses between the
same two species. With forms which must be ranked as undoubted species, a
perfect series exists from those which are absolutely sterile when crossed,
to those which are almost or completely fertile. The degrees of sterility
do not coincide strictly with the degrees of difference between the parents
in external structure or habits of life. Man in many respects may be
compared with those animals which have long been domesticated, and a large
body of evidence can be advanced in favour of the Pallasian doctrine (14.
The 'Variation of Animals and Plants under Domestication,' vol. ii. p. 109.
I may here remind the reader that the sterility of species when crossed is
not a specially-acquired quality, but, like the incapacity of certain trees
to be grafted together, is incidental on other acquired differences. The
nature of these differences is unknown, but they relate more especially to
the reproductive system, and much less so to external structure or to
ordinary differences in constitution. One important element in the
sterility of crossed species apparently lies in one or both having been
long habituated to fixed conditions; for we know that changed conditions
have a special influence on the reproductive system, and we have good
reason to believe (as before remarked) that the fluctuating conditions of
domestication tend to eliminate that sterility which is so general with
species, in a natural state, when crossed. It has elsewhere been shewn by
me (ibid. vol. ii. p. 185, and 'Origin of Species,' 5th edit. p. 317), that
the sterility of crossed species has not been acquired through natural
selection: we can see that when two forms have already been rendered very
sterile, it is scarcely possible that their sterility should be augmented
by the preservation or survival of the more and more sterile individuals;
for, as the sterility increases, fewer and fewer offspring will be produced
from which to breed, and at last only single individuals will be produced
at the rarest intervals. But there is even a higher grade of sterility
than this. Both Gartner and Kolreuter have proved that in genera of
plants, including many species, a series can be formed from species which,
when crossed, yield fewer and fewer seeds, to species which never produce a
single seed, but yet are affected by the pollen of the other species, as
shewn by the swelling of the germen. It is here manifestly impossible to
select the more sterile individuals, which have already ceased to yield
seeds; so that the acme of sterility, when the germen alone is affected,
cannot have been gained through selection. This acme, and no doubt the
other grades of sterility, are the incidental results of certain unknown
differences in the constitution of the reproductive system of the species
which are crossed.), that domestication tends to eliminate the sterility
which is so general a result of the crossing of species in a state of
nature. From these several considerations, it may be justly urged that the
perfect fertility of the intercrossed races of man, if established, would
not absolutely preclude us from ranking them as distinct species.

Independently of fertility, the characters presented by the offspring from
a cross have been thought to indicate whether or not the parent-forms ought
to be ranked as species or varieties; but after carefully studying the
evidence, I have come to the conclusion that no general rules of this kind
can be trusted. The ordinary result of a cross is the production of a
blended or intermediate form; but in certain cases some of the offspring
take closely after one parent-form, and some after the other. This is
especially apt to occur when the parents differ in characters which first
appeared as sudden variations or monstrosities. (15. 'The Variation of
Animals,' etc., vol. ii. p. 92.) I refer to this point, because Dr. Rohlfs
informs me that he has frequently seen in Africa the offspring of negroes
crossed with members of other races, either completely black or completely
white, or rarely piebald. On the other hand, it is notorious that in
America mulattoes commonly present an intermediate appearance.

We have now seen that a naturalist might feel himself fully justified in
ranking the races of man as distinct species; for he has found that they
are distinguished by many differences in structure and constitution, some
being of importance. These differences have, also, remained nearly
constant for very long periods of time. Our naturalist will have been in
some degree influenced by the enormous range of man, which is a great
anomaly in the class of mammals, if mankind be viewed as a single species.
He will have been struck with the distribution of the several so-called
races, which accords with that of other undoubtedly distinct species of
mammals. Finally, he might urge that the mutual fertility of all the races
has not as yet been fully proved, and even if proved would not be an
absolute proof of their specific identity.

On the other side of the question, if our supposed naturalist were to
enquire whether the forms of man keep distinct like ordinary species, when
mingled together in large numbers in the same country, he would immediately
discover that this was by no means the case. In Brazil he would behold an
immense mongrel population of Negroes and Portuguese; in Chiloe, and other
parts of South America, he would behold the whole population consisting of
Indians and Spaniards blended in various degrees. (16. M. de Quatrefages
has given ('Anthropological Review,' Jan. 1869, p. 22), an interesting
account of the success and energy of the Paulistas in Brazil, who are a
much crossed race of Portuguese and Indians, with a mixture of the blood of
other races.) In many parts of the same continent he would meet with the
most complex crosses between Negroes, Indians, and Europeans; and judging
from the vegetable kingdom, such triple crosses afford the severest test of
the mutual fertility of the parent forms. In one island of the Pacific he
would find a small population of mingled Polynesian and English blood; and
in the Fiji Archipelago a population of Polynesian and Negritos crossed in
all degrees. Many analogous cases could be added; for instance, in Africa.
Hence the races of man are not sufficiently distinct to inhabit the same
country without fusion; and the absence of fusion affords the usual and
best test of specific distinctness.

Our naturalist would likewise be much disturbed as soon as he perceived
that the distinctive characters of all the races were highly variable.
This fact strikes every one on first beholding the negro slaves in Brazil,
who have been imported from all parts of Africa. The same remark holds
good with the Polynesians, and with many other races. It may be doubted
whether any character can be named which is distinctive of a race and is
constant. Savages, even within the limits of the same tribe, are not
nearly so uniform in character, as has been often asserted. Hottentot
women offer certain peculiarities, more strongly marked than those
occurring in any other race, but these are known not to be of constant
occurrence. In the several American tribes, colour and hairiness differ
considerably; as does colour to a certain degree, and the shape of the
features greatly, in the Negroes of Africa. The shape of the skull varies
much in some races (17. For instance, with the aborigines of America and
Australia, Prof. Huxley says ('Transact. Internat. Congress of Prehist.
Arch.' 1868, p. 105), that the skulls of many South Germans and Swiss are
"as short and as broad as those of the Tartars," etc.); and so it is with
every other character. Now all naturalists have learnt by dearly bought
experience, how rash it is to attempt to define species by the aid of
inconstant characters.

But the most weighty of all the arguments against treating the races of man
as distinct species, is that they graduate into each other, independently
in many cases, as far as we can judge, of their having intercrossed. Man
has been studied more carefully than any other animal, and yet there is the
greatest possible diversity amongst capable judges whether he should be
classed as a single species or race, or as two (Virey), as three
(Jacquinot), as four (Kant), five (Blumenbach), six (Buffon), seven
(Hunter), eight (Agassiz), eleven (Pickering), fifteen (Bory St. Vincent),
sixteen (Desmoulins), twenty-two (Morton), sixty (Crawfurd), or as sixty-
three, according to Burke. (18. See a good discussion on this subject in
Waitz, 'Introduction to Anthropology,' Eng. translat., 1863, pp. 198-208,
227. I have taken some of the above statements from H. Tuttle's 'Origin
and Antiquity of Physical Man,' Boston, 1866, p. 35.) This diversity of
judgment does not prove that the races ought not to be ranked as species,
but it shews that they graduate into each other, and that it is hardly
possible to discover clear distinctive characters between them.

Every naturalist who has had the misfortune to undertake the description of
a group of highly varying organisms, has encountered cases (I speak after
experience) precisely like that of man; and if of a cautious disposition,
he will end by uniting all the forms which graduate into each other, under
a single species; for he will say to himself that he has no right to give
names to objects which he cannot define. Cases of this kind occur in the
Order which includes man, namely in certain genera of monkeys; whilst in
other genera, as in Cercopithecus, most of the species can be determined
with certainty. In the American genus Cebus, the various forms are ranked
by some naturalists as species, by others as mere geographical races. Now
if numerous specimens of Cebus were collected from all parts of South
America, and those forms which at present appear to be specifically
distinct, were found to graduate into each other by close steps, they would
usually be ranked as mere varieties or races; and this course has been
followed by most naturalists with respect to the races of man.
Nevertheless, it must be confessed that there are forms, at least in the
vegetable kingdom (19. Prof. Nageli has carefully described several
striking cases in his 'Botanische Mittheilungen,' B. ii. 1866, ss. 294-369.
Prof. Asa Gray has made analogous remarks on some intermediate forms in the
Compositae of N. America.), which we cannot avoid naming as species, but
which are connected together by numberless gradations, independently of

Some naturalists have lately employed the term "sub-species" to designate
forms which possess many of the characteristics of true species, but which
hardly deserve so high a rank. Now if we reflect on the weighty arguments
above given, for raising the races of man to the dignity of species, and
the insuperable difficulties on the other side in defining them, it seems
that the term "sub-species" might here be used with propriety. But from
long habit the term "race" will perhaps always be employed. The choice of
terms is only so far important in that it is desirable to use, as far as
possible, the same terms for the same degrees of difference. Unfortunately
this can rarely be done: for the larger genera generally include closely-
allied forms, which can be distinguished only with much difficulty, whilst
the smaller genera within the same family include forms that are perfectly
distinct; yet all must be ranked equally as species. So again, species
within the same large genus by no means resemble each other to the same
degree: on the contrary, some of them can generally be arranged in little
groups round other species, like satellites round planets. (20. 'Origin
of Species,' 5th edit. p. 68.)

The question whether mankind consists of one or several species has of late
years been much discussed by anthropologists, who are divided into the two
schools of monogenists and polygenists. Those who do not admit the
principle of evolution, must look at species as separate creations, or in
some manner as distinct entities; and they must decide what forms of man
they will consider as species by the analogy of the method commonly pursued
in ranking other organic beings as species. But it is a hopeless endeavour
to decide this point, until some definition of the term "species" is
generally accepted; and the definition must not include an indeterminate
element such as an act of creation. We might as well attempt without any
definition to decide whether a certain number of houses should be called a
village, town, or city. We have a practical illustration of the difficulty
in the never-ending doubts whether many closely-allied mammals, birds,
insects, and plants, which represent each other respectively in North
America and Europe, should be ranked as species or geographical races; and
the like holds true of the productions of many islands situated at some
little distance from the nearest continent.

Those naturalists, on the other hand, who admit the principle of evolution,
and this is now admitted by the majority of rising men, will feel no doubt
that all the races of man are descended from a single primitive stock;
whether or not they may think fit to designate the races as distinct
species, for the sake of expressing their amount of difference. (21. See
Prof. Huxley to this effect in the 'Fortnightly Review,' 1865, p. 275.)
With our domestic animals the question whether the various races have
arisen from one or more species is somewhat different. Although it may be
admitted that all the races, as well as all the natural species within the
same genus, have sprung from the same primitive stock, yet it is a fit
subject for discussion, whether all the domestic races of the dog, for
instance, have acquired their present amount of difference since some one
species was first domesticated by man; or whether they owe some of their
characters to inheritance from distinct species, which had already been
differentiated in a state of nature. With man no such question can arise,
for he cannot be said to have been domesticated at any particular period.

During an early stage in the divergence of the races of man from a common
stock, the differences between the races and their number must have been
small; consequently as far as their distinguishing characters are
concerned, they then had less claim to rank as distinct species than the
existing so-called races. Nevertheless, so arbitrary is the term of
species, that such early races would perhaps have been ranked by some
naturalists as distinct species, if their differences, although extremely
slight, had been more constant than they are at present, and had not
graduated into each other.

It is however possible, though far from probable, that the early
progenitors of man might formerly have diverged much in character, until
they became more unlike each other than any now existing races; but that
subsequently, as suggested by Vogt (22. 'Lectures on Man,' Eng. translat.,
1864, p. 468.), they converged in character. When man selects the
offspring of two distinct species for the same object, he sometimes induces
a considerable amount of convergence, as far as general appearance is
concerned. This is the case, as shewn by von Nathusius (23. 'Die Rassen
des Schweines,' 1860, s. 46. 'Vorstudien fur Geschichte,' etc.,
Schweinesschadel, 1864, s. 104. With respect to cattle, see M. de
Quatrefages, 'Unite de l'Espece Humaine,' 1861, p. 119.), with the improved
breeds of the pig, which are descended from two distinct species; and in a
less marked manner with the improved breeds of cattle. A great anatomist,
Gratiolet, maintains that the anthropomorphous apes do not form a natural
sub-group; but that the orang is a highly developed gibbon or
semnopithecus, the chimpanzee a highly developed macacus, and the gorilla a
highly developed mandrill. If this conclusion, which rests almost
exclusively on brain-characters, be admitted, we should have a case of
convergence at least in external characters, for the anthropomorphous apes
are certainly more like each other in many points, than they are to other
apes. All analogical resemblances, as of a whale to a fish, may indeed be
said to be cases of convergence; but this term has never been applied to
superficial and adaptive resemblances. It would, however, be extremely
rash to attribute to convergence close similarity of character in many
points of structure amongst the modified descendants of widely distinct
beings. The form of a crystal is determined solely by the molecular
forces, and it is not surprising that dissimilar substances should
sometimes assume the same form; but with organic beings we should bear in
mind that the form of each depends on an infinity of complex relations,
namely on variations, due to causes far too intricate to be followed,--on
the nature of the variations preserved, these depending on the physical
conditions, and still more on the surrounding organisms which compete with
each,--and lastly, on inheritance (in itself a fluctuating element) from
innumerable progenitors, all of which have had their forms determined
through equally complex relations. It appears incredible that the modified
descendants of two organisms, if these differed from each other in a marked
manner, should ever afterwards converge so closely as to lead to a near
approach to identity throughout their whole organisation. In the case of
the convergent races of pigs above referred to, evidence of their descent
from two primitive stocks is, according to von Nathusius, still plainly
retained, in certain bones of their skulls. If the races of man had
descended, as is supposed by some naturalists, from two or more species,
which differed from each other as much, or nearly as much, as does the
orang from the gorilla, it can hardly be doubted that marked differences in
the structure of certain bones would still be discoverable in man as he now

Although the existing races of man differ in many respects, as in colour,
hair, shape of skull, proportions of the body, etc., yet if their whole
structure be taken into consideration they are found to resemble each other
closely in a multitude of points. Many of these are of so unimportant or
of so singular a nature, that it is extremely improbable that they should
have been independently acquired by aboriginally distinct species or races.
The same remark holds good with equal or greater force with respect to the
numerous points of mental similarity between the most distinct races of
man. The American aborigines, Negroes and Europeans are as different from
each other in mind as any three races that can be named; yet I was
incessantly struck, whilst living with the Feugians on board the "Beagle,"
with the many little traits of character, shewing how similar their minds
were to ours; and so it was with a full-blooded negro with whom I happened
once to be intimate.

He who will read Mr. Tylor's and Sir J. Lubbock's interesting works (24.
Tylor's 'Early History of Mankind,' 1865: with respect to gesture-
language, see p. 54. Lubbock's 'Prehistoric Times,' 2nd edit. 1869.) can
hardly fail to be deeply impressed with the close similarity between the
men of all races in tastes, dispositions and habits. This is shewn by the
pleasure which they all take in dancing, rude music, acting, painting,
tattooing, and otherwise decorating themselves; in their mutual
comprehension of gesture-language, by the same expression in their
features, and by the same inarticulate cries, when excited by the same
emotions. This similarity, or rather identity, is striking, when
contrasted with the different expressions and cries made by distinct
species of monkeys. There is good evidence that the art of shooting with
bows and arrows has not been handed down from any common progenitor of
mankind, yet as Westropp and Nilsson have remarked (25. 'On Analogous
Forms of Implements,' in 'Memoirs of Anthropological Society' by H.M.
Westropp. 'The Primitive Inhabitants of Scandinavia,' Eng. translat.,
edited by Sir J. Lubbock, 1868, p. 104.), the stone arrow-heads, brought
from the most distant parts of the world, and manufactured at the most
remote periods, are almost identical; and this fact can only be accounted
for by the various races having similar inventive or mental powers. The
same observation has been made by archaeologists (26. Westropp 'On
Cromlechs,' etc., 'Journal of Ethnological Soc.' as given in 'Scientific
Opinion,' June 2nd, 1869, p. 3.) with respect to certain widely-prevalent
ornaments, such as zig-zags, etc.; and with respect to various simple
beliefs and customs, such as the burying of the dead under megalithic
structures. I remember observing in South America (27. 'Journal of
Researches: Voyage of the "Beagle,"' p. 46.), that there, as in so many
other parts of the world, men have generally chosen the summits of lofty
hills, to throw up piles of stones, either as a record of some remarkable
event, or for burying their dead.

Now when naturalists observe a close agreement in numerous small details of
habits, tastes, and dispositions between two or more domestic races, or
between nearly-allied natural forms, they use this fact as an argument that
they are descended from a common progenitor who was thus endowed; and
consequently that all should be classed under the same species. The same
argument may be applied with much force to the races of man.

As it is improbable that the numerous and unimportant points of resemblance
between the several races of man in bodily structure and mental faculties
(I do not here refer to similar customs) should all have been independently
acquired, they must have been inherited from progenitors who had these same
characters. We thus gain some insight into the early state of man, before
he had spread step by step over the face of the earth. The spreading of
man to regions widely separated by the sea, no doubt, preceded any great
amount of divergence of character in the several races; for otherwise we
should sometimes meet with the same race in distinct continents; and this
is never the case. Sir J. Lubbock, after comparing the arts now practised
by savages in all parts of the world, specifies those which man could not
have known, when he first wandered from his original birthplace; for if
once learnt they would never have been forgotten. (28. 'Prehistoric
Times,' 1869, p. 574.) He thus shews that "the spear, which is but a
development of the knife-point, and the club, which is but a long hammer,
are the only things left." He admits, however, that the art of making fire
probably had been already discovered, for it is common to all the races now
existing, and was known to the ancient cave-inhabitants of Europe. Perhaps
the art of making rude canoes or rafts was likewise known; but as man
existed at a remote epoch, when the land in many places stood at a very
different level to what it does now, he would have been able, without the
aid of canoes, to have spread widely. Sir J. Lubbock further remarks how
improbable it is that our earliest ancestors could have "counted as high as
ten, considering that so many races now in existence cannot get beyond
four." Nevertheless, at this early period, the intellectual and social
faculties of man could hardly have been inferior in any extreme degree to
those possessed at present by the lowest savages; otherwise primeval man
could not have been so eminently successful in the struggle for life, as
proved by his early and wide diffusion.

From the fundamental differences between certain languages, some
philologists have inferred that when man first became widely diffused, he
was not a speaking animal; but it may be suspected that languages, far less
perfect than any now spoken, aided by gestures, might have been used, and
yet have left no traces on subsequent and more highly-developed tongues.
Without the use of some language, however imperfect, it appears doubtful
whether man's intellect could have risen to the standard implied by his
dominant position at an early period.

Whether primeval man, when he possessed but few arts, and those of the
rudest kind, and when his power of language was extremely imperfect, would
have deserved to be called man, must depend on the definition which we
employ. In a series of forms graduating insensibly from some ape-like
creature to man as he now exists, it would be impossible to fix on any
definite point where the term "man" ought to be used. But this is a matter
of very little importance. So again, it is almost a matter of indifference
whether the so-called races of man are thus designated, or are ranked as
species or sub-species; but the latter term appears the more appropriate.
Finally, we may conclude that when the principle of evolution is generally
accepted, as it surely will be before long, the dispute between the
monogenists and the polygenists will die a silent and unobserved death.

One other question ought not to be passed over without notice, namely,
whether, as is sometimes assumed, each sub-species or race of man has
sprung from a single pair of progenitors. With our domestic animals a new
race can readily be formed by carefully matching the varying offspring from
a single pair, or even from a single individual possessing some new
character; but most of our races have been formed, not intentionally from a
selected pair, but unconsciously by the preservation of many individuals
which have varied, however slightly, in some useful or desired manner. If
in one country stronger and heavier horses, and in another country lighter
and fleeter ones, were habitually preferred, we may feel sure that two
distinct sub-breeds would be produced in the course of time, without any
one pair having been separated and bred from, in either country. Many
races have been thus formed, and their manner of formation is closely
analogous to that of natural species. We know, also, that the horses taken
to the Falkland Islands have, during successive generations, become smaller
and weaker, whilst those which have run wild on the Pampas have acquired
larger and coarser heads; and such changes are manifestly due, not to any
one pair, but to all the individuals having been subjected to the same
conditions, aided, perhaps, by the principle of reversion. The new sub-
breeds in such cases are not descended from any single pair, but from many
individuals which have varied in different degrees, but in the same general
manner; and we may conclude that the races of man have been similarly
produced, the modifications being either the direct result of exposure to
different conditions, or the indirect result of some form of selection.
But to this latter subject we shall presently return.


The partial or complete extinction of many races and sub-races of man is
historically known. Humboldt saw in South America a parrot which was the
sole living creature that could speak a word of the language of a lost
tribe. Ancient monuments and stone implements found in all parts of the
world, about which no tradition has been preserved by the present
inhabitants, indicate much extinction. Some small and broken tribes,
remnants of former races, still survive in isolated and generally
mountainous districts. In Europe the ancient races were all, according to
Shaaffhausen (29. Translation in 'Anthropological Review,' Oct. 1868, p.
431.), "lower in the scale than the rudest living savages"; they must
therefore have differed, to a certain extent, from any existing race. The
remains described by Professor Broca from Les Eyzies, though they
unfortunately appear to have belonged to a single family, indicate a race
with a most singular combination of low or simious, and of high
characteristics. This race is "entirely different from any other, ancient
or modern, that we have heard of." (30. 'Transactions, International
Congress of Prehistoric Archaeology' 1868, pp. 172-175. See also Broca
(tr.) in 'Anthropological Review,' Oct. 1868, p. 410.) It differed,
therefore, from the quaternary race of the caverns of Belgium.

Man can long resist conditions which appear extremely unfavourable for his
existence. (31. Dr. Gerland, 'Ueber das Aussterben der Naturvolker,'
1868, s. 82.) He has long lived in the extreme regions of the North, with
no wood for his canoes or implements, and with only blubber as fuel, and
melted snow as drink. In the southern extremity of America the Fuegians
survive without the protection of clothes, or of any building worthy to be
called a hovel. In South Africa the aborigines wander over arid plains,
where dangerous beasts abound. Man can withstand the deadly influence of
the Terai at the foot of the Himalaya, and the pestilential shores of
tropical Africa.

Extinction follows chiefly from the competition of tribe with tribe, and
race with race. Various checks are always in action, serving to keep down
the numbers of each savage tribe,--such as periodical famines, nomadic
habits and the consequent deaths of infants, prolonged suckling, wars,
accidents, sickness, licentiousness, the stealing of women, infanticide,
and especially lessened fertility. If any one of these checks increases in
power, even slightly, the tribe thus affected tends to decrease; and when
of two adjoining tribes one becomes less numerous and less powerful than
the other, the contest is soon settled by war, slaughter, cannibalism,
slavery, and absorption. Even when a weaker tribe is not thus abruptly
swept away, if it once begins to decrease, it generally goes on decreasing
until it becomes extinct. (32. Gerland (ibid. s. 12) gives facts in
support of this statement.)

When civilised nations come into contact with barbarians the struggle is
short, except where a deadly climate gives its aid to the native race. Of
the causes which lead to the victory of civilised nations, some are plain
and simple, others complex and obscure. We can see that the cultivation of
the land will be fatal in many ways to savages, for they cannot, or will
not, change their habits. New diseases and vices have in some cases proved
highly destructive; and it appears that a new disease often causes much
death, until those who are most susceptible to its destructive influence
are gradually weeded out (33. See remarks to this effect in Sir H.
Holland's 'Medical Notes and Reflections,' 1839, p. 390.); and so it may be
with the evil effects from spirituous liquors, as well as with the
unconquerably strong taste for them shewn by so many savages. It further
appears, mysterious as is the fact, that the first meeting of distinct and
separated people generates disease. (34. I have collected ('Journal of
Researches: Voyage of the "Beagle,"' p. 435) a good many cases bearing on
this subject; see also Gerland, ibid. s. 8. Poeppig speaks of the "breath
of civilisation as poisonous to savages.") Mr. Sproat, who in Vancouver
Island closely attended to the subject of extinction, believed that changed
habits of life, consequent on the advent of Europeans, induces much ill
health. He lays, also, great stress on the apparently trifling cause that
the natives become "bewildered and dull by the new life around them; they
lose the motives for exertion, and get no new ones in their place." (35.
Sproat, 'Scenes and Studies of Savage Life,' 1868, p. 284.)

The grade of their civilisation seems to be a most important element in the
success of competing nations. A few centuries ago Europe feared the
inroads of Eastern barbarians; now any such fear would be ridiculous. It
is a more curious fact, as Mr. Bagehot has remarked, that savages did not
formerly waste away before the classical nations, as they now do before
modern civilised nations; had they done so, the old moralists would have
mused over the event; but there is no lament in any writer of that period
over the perishing barbarians. (36. Bagehot, 'Physics and Politics,'
'Fortnightly Review,' April 1, 1868, p. 455.) The most potent of all the
causes of extinction, appears in many cases to be lessened fertility and
ill-health, especially amongst the children, arising from changed
conditions of life, notwithstanding that the new conditions may not be
injurious in themselves. I am much indebted to Mr. H.H. Howorth for having
called my attention to this subject, and for having given me information
respecting it. I have collected the following cases.

When Tasmania was first colonised the natives were roughly estimated by
some at 7000 and by others at 20,000. Their number was soon greatly
reduced, chiefly by fighting with the English and with each other. After
the famous hunt by all the colonists, when the remaining natives delivered
themselves up to the government, they consisted only of 120 individuals
(37. All the statements here given are taken from 'The Last of the
Tasmanians,' by J. Bonwick, 1870.), who were in 1832 transported to
Flinders Island. This island, situated between Tasmania and Australia, is
forty miles long, and from twelve to eighteen miles broad: it seems
healthy, and the natives were well treated. Nevertheless, they suffered
greatly in health. In 1834 they consisted (Bonwick, p. 250) of forty-seven
adult males, forty-eight adult females, and sixteen children, or in all of
111 souls. In 1835 only one hundred were left. As they continued rapidly
to decrease, and as they themselves thought that they should not perish so
quickly elsewhere, they were removed in 1847 to Oyster Cove in the southern
part of Tasmania. They then consisted (Dec. 20th, 1847) of fourteen men,
twenty-two women and ten children. (38. This is the statement of the
Governor of Tasmania, Sir W. Denison, 'Varieties of Vice-Regal Life,' 1870,
vol. i. p. 67.) But the change of site did no good. Disease and death
still pursued them, and in 1864 one man (who died in 1869), and three
elderly women alone survived. The infertility of the women is even a more
remarkable fact than the liability of all to ill-health and death. At the
time when only nine women were left at Oyster Cove, they told Mr. Bonwick
(p. 386), that only two had ever borne children: and these two had
together produced only three children!

With respect to the cause of this extraordinary state of things, Dr. Story
remarks that death followed the attempts to civilise the natives. "If left
to themselves to roam as they were wont and undisturbed, they would have
reared more children, and there would have been less mortality." Another
careful observer of the natives, Mr. Davis, remarks, "The births have been
few and the deaths numerous. This may have been in a great measure owing
to their change of living and food; but more so to their banishment from
the mainland of Van Diemen's Land, and consequent depression of spirits"
(Bonwick, pp. 388, 390).

Similar facts have been observed in two widely different parts of
Australia. The celebrated explorer, Mr. Gregory, told Mr. Bonwick, that in
Queensland "the want of reproduction was being already felt with the
blacks, even in the most recently settled parts, and that decay would set
in." Of thirteen aborigines from Shark's Bay who visited Murchison River,
twelve died of consumption within three months. (39. For these cases, see
Bonwick's 'Daily Life of the Tasmanians,' 1870, p. 90: and the 'Last of
the Tasmanians,' 1870, p. 386.)

The decrease of the Maories of New Zealand has been carefully investigated
by Mr. Fenton, in an admirable Report, from which all the following
statements, with one exception, are taken. (40. 'Observations on the
Aboriginal Inhabitants of New Zealand,' published by the Government, 1859.)
The decrease in number since 1830 is admitted by every one, including the
natives themselves, and is still steadily progressing. Although it has
hitherto been found impossible to take an actual census of the natives,
their numbers were carefully estimated by residents in many districts. The
result seems trustworthy, and shows that during the fourteen years,
previous to 1858, the decrease was 19.42 per cent. Some of the tribes,
thus carefully examined, lived above a hundred miles apart, some on the
coast, some inland; and their means of subsistence and habits differed to a
certain extent (p. 28). The total number in 1858 was believed to be
53,700, and in 1872, after a second interval of fourteen years, another
census was taken, and the number is given as only 36,359, shewing a
decrease of 32.29 per cent! (41. 'New Zealand,' by Alex. Kennedy, 1873,
p. 47.) Mr. Fenton, after shewing in detail the insufficiency of the
various causes, usually assigned in explanation of this extraordinary
decrease, such as new diseases, the profligacy of the women, drunkenness,
wars, etc., concludes on weighty grounds that it depends chiefly on the
unproductiveness of the women, and on the extraordinary mortality of the
young children (pp. 31, 34). In proof of this he shews (p. 33) that in
1844 there was one non-adult for every 2.57 adults; whereas in 1858 there
was only one non-adult for every 3.27 adults. The mortality of the adults
is also great. He adduces as a further cause of the decrease the
inequality of the sexes; for fewer females are born than males. To this
latter point, depending perhaps on a widely distinct cause, I shall return
in a future chapter. Mr. Fenton contrasts with astonishment the decrease
in New Zealand with the increase in Ireland; countries not very dissimilar
in climate, and where the inhabitants now follow nearly similar habits.
The Maories themselves (p. 35) "attribute their decadence, in some measure,
to the introduction of new food and clothing, and the attendant change of
habits"; and it will be seen, when we consider the influence of changed
conditions on fertility, that they are probably right. The diminution
began between the years 1830 and 1840; and Mr. Fenton shews (p. 40) that
about 1830, the art of manufacturing putrid corn (maize), by long steeping
in water, was discovered and largely practised; and this proves that a
change of habits was beginning amongst the natives, even when New Zealand
was only thinly inhabited by Europeans. When I visited the Bay of Islands
in 1835, the dress and food of the inhabitants had already been much
modified: they raised potatoes, maize, and other agricultural produce, and
exchanged them for English manufactured goods and tobacco.

It is evident from many statements in the life of Bishop Patteson (42.
'Life of J.C. Patteson,' by C.M. Younge, 1874; see more especially vol. i.
p. 530.), that the Melanesians of the New Hebrides and neighbouring
archipelagoes, suffered to an extraordinary degree in health, and perished
in large numbers, when they were removed to New Zealand, Norfolk Island,
and other salubrious places, in order to be educated as missionaries.

The decrease of the native population of the Sandwich Islands is as
notorious as that of New Zealand. It has been roughly estimated by those
best capable of judging, that when Cook discovered the Islands in 1779, the
population amounted to about 300,000. According to a loose census in 1823,
the numbers then were 142,050. In 1832, and at several subsequent periods,
an accurate census was officially taken, but I have been able to obtain
only the following returns:
Native Population Annual rate of decrease
per cent., assuming it to
(Except during 1832 and have been uniform between
1836, when the few the successive censuses;
foreigners in the islands these censuses being taken
Year were included.) at irregular intervals.

1832 130,313
1836 108,579
1853 71,019
1860 67,084
1866 58,765
1872 51,531

We here see that in the interval of forty years, between 1832 and 1872, the
population has decreased no less than sixty-eight per cent.! This has been
attributed by most writers to the profligacy of the women, to former bloody
wars, and to the severe labour imposed on conquered tribes and to newly
introduced diseases, which have been on several occasions extremely
destructive. No doubt these and other such causes have been highly
efficient, and may account for the extraordinary rate of decrease between
the years 1832 and 1836; but the most potent of all the causes seems to be
lessened fertility. According to Dr. Ruschenberger of the U.S. Navy, who
visited these islands between 1835 and 1837, in one district of Hawaii,
only twenty-five men out of 1134, and in another district only ten out of
637, had a family with as many as three children. Of eighty married women,
only thirty-nine had ever borne children; and "the official report gives an
average of half a child to each married couple in the whole island." This
is almost exactly the same average as with the Tasmanians at Oyster Cove.
Jarves, who published his History in 1843, says that "families who have
three children are freed from all taxes; those having more, are rewarded by
gifts of land and other encouragements." This unparalleled enactment by
the government well shews how infertile the race had become. The Rev. A.
Bishop stated in the Hawaiian 'Spectator' in 1839, that a large proportion
of the children die at early ages, and Bishop Staley informs me that this
is still the case, just as in New Zealand. This has been attributed to the
neglect of the children by the women, but it is probably in large part due
to innate weakness of constitution in the children, in relation to the
lessened fertility of their parents. There is, moreover, a further
resemblance to the case of New Zealand, in the fact that there is a large
excess of male over female births: the census of 1872 gives 31,650 males
to 25,247 females of all ages, that is 125.36 males for every 100 females;
whereas in all civilised countries the females exceed the males. No doubt
the profligacy of the women may in part account for their small fertility;
but their changed habits of life is a much more probable cause, and which
will at the same time account for the increased mortality, especially of
the children. The islands were visited by Cook in 1779, Vancouver in 1794,
and often subsequently by whalers. In 1819 missionaries arrived, and found
that idolatry had been already abolished, and other changes effected by the
king. After this period there was a rapid change in almost all the habits
of life of the natives, and they soon became "the most civilised of the
Pacific Islanders." One of my informants, Mr. Coan, who was born on the
islands, remarks that the natives have undergone a greater change in their
habits of life in the course of fifty years than Englishmen during a
thousand years. From information received from Bishop Staley, it does not
appear that the poorer classes have ever much changed their diet, although
many new kinds of fruit have been introduced, and the sugar-cane is in
universal use. Owing, however, to their passion for imitating Europeans,
they altered their manner of dressing at an early period, and the use of
alcoholic drinks became very general. Although these changes appear
inconsiderable, I can well believe, from what is known with respect to
animals, that they might suffice to lessen the fertility of the natives.
(43. The foregoing statements are taken chiefly from the following works:
Jarves' 'History of the Hawaiian Islands,' 1843, pp. 400-407. Cheever,
'Life in the Sandwich Islands,' 1851, p. 277. Ruschenberger is quoted by
Bonwick, 'Last of the Tasmanians,' 1870, p. 378. Bishop is quoted by Sir
E. Belcher, 'Voyage Round the World,' 1843, vol. i. p. 272. I owe the
census of the several years to the kindness of Mr. Coan, at the request of
Dr. Youmans of New York; and in most cases I have compared the Youmans
figures with those given in several of the above-named works. I have
omitted the census for 1850, as I have seen two widely different numbers

Lastly, Mr. Macnamara states (44. 'The Indian Medical Gazette,' Nov. 1,
1871, p. 240.) that the low and degraded inhabitants of the Andaman
Islands, on the eastern side of the Gulf of Bengal, are "eminently

Book of the day: