Full Text Archive logoFull Text Archive — Free Classic E-books

Stories of Inventors by Russell Doubleday

Part 1 out of 3

Adobe PDF icon
Download this document as a .pdf
File size: 0.3 MB
What's this? light bulb idea Many people prefer to read off-line or to print out text and read from the real printed page. Others want to carry documents around with them on their mobile phones and read while they are on the move. We have created .pdf files of all out documents to accommodate all these groups of people. We recommend that you download .pdfs onto your mobile phone when it is connected to a WiFi connection for reading off-line.

Produced by Dave Morgan and the Online Distributed Proofreading Team



The Adventures Of Inventors And Engineers.
True Incidents And Personal Experiences





The author and publishers take pleasure in acknowledging the courtesy of

_The Scientific American_
_The Booklovers Magazine_
_The Holiday Magazine_, and
Messrs. Wood & Nathan Company

for the use of a number of illustrations in this book.

From _The Scientific American_, illustrations facing pages 16, 48,
78, 80, 88, 94, 118, 126, 142, and 162.

From _The Booklovers Magazine_, illustrations facing pages 184, 190,
194, and 196.

From _The Holiday Magazine_, illustrations facing pages 100 and 110.


How Guglielmo Marconi Telegraphs Without Wires
Santos-Dumont and His Air-Ship
How a Fast Train Is Run
How Automobiles Work
The Fastest Steamboats
The Life-Savers and Their Apparatus
Moving Pictures--Some Strange Subjects and How They Were Taken
Bridge Builders and Some of Their Achievements
Submarines in War and Peace
Long-Distance Telephony--What Happens When You Talk into a
Telephone Receiver
A Machine That Thinks--A Type-Setting Machine That Makes
Mathematical Calculations
How Heat Produces Cold--Artificial Ice-Making


Marconi Reading a Message _Frontispiece_

Marconi Station at Wellfleet, Massachusetts
The Wireless Telegraph Station at Glace Bay
Santos-Dumont Preparing for a Flight
Rounding the Eiffel Tower
The Motor and Basket of "Santos-Dumont No. 9"
Firing a Fast Locomotive
Track Tank
Railroad Semaphore Signals
Thirty Years' Advance in Locomotive Building
The "Lighthouse" of the Rail
A Giant Automobile Mower-Thrasher
An Automobile Buckboard
An Automobile Plow
The _Velox_, of the British Navy
The Engines of the _Arrow_
A Life-Saving Crew Drilling
Life-Savers at Work
Biograph Pictures of a Military Hazing
Developing Moving-Picture Films
Building an American Bridge in Burmah
Viaduct Across Canyon Diablo
Beginning an American Bridge in Mid-Africa
Lake's Submarine Torpedo-Boat _Protector_
Speeding at the Rate of 102 Miles an Hour
Singing Into the Telephone
"Central" Telephone Operators at Work
Central Making Connections
The Back of a Telephone Switchboard
A Few Telephone Trunk Wires
The Lanston Type-Setter Keyboard
Where the "Brains" are Located
The Type Moulds and the Work They Produce


There are many thrilling incidents--all the more attractive because of
their truth--in the study, the trials, the disappointments, the
obstacles overcome, and the final triumph of the successful inventor.

Every great invention, afterward marvelled at, was first derided. Each
great inventor, after solving problems in mechanics or chemistry, had to
face the jeers of the incredulous.

The story of James Watt's sensations when the driving-wheels of his
first rude engine began to revolve will never be told; the visions of
Robert Fulton, when he puffed up the Hudson, of the fleets of vessels
that would follow the faint track of his little vessel, can never be put
in print.

It is the purpose of this book to give, in a measure, the adventurous
side of invention. The trials and dangers of the builders of the
submarine; the triumphant thrill of the inventor who hears for the first
time the vibration of the long-distance message through the air; the
daring and tension of the engineer who drives a locomotive at one
hundred miles an hour.

The wonder of the mechanic is lost in the marvel of the machine; the
doer is overshadowed by the greatness of his achievement.

These are true stories of adventure in invention.



A nineteen-year-old boy, just a quiet, unobtrusive young fellow, who
talked little but thought much, saw in the discovery of an older
scientist the means of producing a revolutionising invention by which
nations could talk to nations without the use of wires or tangible
connection, no matter how far apart they might be or by what they might
be separated. The possibilities of Guglielmo (William) Marconi's
invention are just beginning to be realised, and what it has already
accomplished would seem too wonderful to be true if the people of these
marvellous times were not almost surfeited with wonders.

It is of the boy and man Marconi that this chapter will tell, and
through him the story of his invention, for the personality, the
talents, and the character of the inventor made wireless telegraphy

It was an article in an electrical journal describing the properties of
the "Hertzian waves" that suggested to young Marconi the possibility of
sending messages from one place to another without wires. Many men
doubtless read the same article, but all except the young Italian lacked
the training, the power of thought, and the imagination, first to
foresee the great things that could be accomplished through this
discovery, and then to study out the mechanical problem, and finally to
steadfastly push the work through to practical usefulness.

It would seem that Marconi was not the kind of boy to produce a
revolutionising invention, for he was not in the least spectacular, but,
on the contrary, almost shy, and lacking in the aggressive enthusiasm
that is supposed to mark the successful inventor; quiet determination
was a strong characteristic of the young Italian, and a studious habit
which had much to do with the great results accomplished by him at so
early an age.

He was well equipped to grapple with the mighty problem which he had
been the first to conceive, since from early boyhood he had made
electricity his chief study, and a comfortable income saved him from the
grinding struggle for bare existence that many inventors have had to
endure. Although born in Bologna (in 1874) and bearing an Italian name,
Marconi is half Irish, his mother being a native of Britain. Having been
educated in Bologna, Florence, and Leghorn, Italy's schools may rightly
claim to have had great influence in the shaping of his career. Certain
it is, in any case, that he was well educated, especially in his chosen

Marconi, like many other inventors, did not discover the means by which
the end was accomplished; he used the discovery of other men, and turned
their impractical theories and inventions to practical uses, and, in
addition, invented many theories of his own. The man who does old things
in a new way, or makes new uses of old inventions, is the one who
achieves great things. And so it was the reading of the discovery of
Hertz that started the boy on the train of thought and the series of
experiments that ended with practical, everyday telegraphy without the
use of wires. To begin with, it is necessary to give some idea of the
medium that carries the wireless messages.

It is known that all matter, even the most compact and solid of
substances, is permeated by what is called ether, and that the
vibrations that make light, heat, and colour are carried by this
mysterious substance as water carries the wave motions on its surface.
This strange substance, ether, which pervades everything, surrounds
everything, and penetrates all things, is mysterious, since it cannot be
seen nor felt, nor made known to the human senses in any way;
colourless, odourless, and intangible in every way, its properties are
only known through the things that it accomplishes that are beyond the
powers of the known elements. Ether has been compared by one writer to
jelly which, filling all space, serves as a setting for the planets,
moons, and stars, and, in fact, all solid substances; and as a bowl of
jelly carries a plum, so all solid things float in it.

Heinrich Hertz discovered that in addition to the light, heat, and
colour waves carried by ether, this substance also served to carry
electric waves or vibrations, so that electric impulses could be sent
from one place to another without the aid of wires. These electric waves
have been named "Hertzian waves," in honour of their discoverer; but it
remained for Marconi, who first conceived their value, to put them to
practical use. But for a year he did not attempt to work out his plan,
thinking that all the world of scientists were studying the problem. The
expected did not happen, however. No news of wireless telegraphy
reached the young Italian, and so he set to work at his father's farm in
Bologna to develop his idea.

From the wires hung to these towers are sent the messages that carry
clear across to England.]

And so the boy began to work out his great idea with a dogged
determination to succeed, and with the thought constantly in mind
spurring him on that it was more than likely that some other scientist
was striving with might and main to gain the same end.

His father's farm was his first field of operations, the small
beginnings of experiments that were later to stretch across many
hundreds of miles of ocean. Set up on a pole planted at one side of the
garden, he rigged a tin box to which he connected, by an insulated wire,
his rude transmitting apparatus. At the other side of the garden a
corresponding pole with another tin box was set up and connected with
the receiving apparatus. The interest of the young inventor can easily
be imagined as he sat and watched for the tick of his recording
instrument that he knew should come from the flash sent across the
garden by his companion. Much time had been spent in the planning and
the making of both sets of instruments, and this was the first test;
silent he waited, his nerves tense, impatient, eager. Suddenly the Morse
sounder began to tick and burr-r-r; the boy's eyes flashed, and his
heart gave an exultant bound--the first wireless message had been sent
and received, and a new marvel had been added to the list of world's
wonders. The quiet farm was the scene of many succeeding experiments,
the place having been put at his disposal by his appreciative father,
and in addition ample funds were generously supplied from the same
source. Different heights of poles were tried, and it was found that the
distance could be increased in proportion to the altitude of the pole
bearing the receiving and transmitting tin boxes or "capacities"--the
higher the poles the greater distance the message could be sent. The
success of Marconi's system depended largely on his receiving apparatus,
and it is on account of his use of some of the devices invented by other
men that unthinking people have criticised him. He adapted to the use of
wireless telegraphy certain inventions that had heretofore been merely
interesting scientific toys--curious little instruments of no apparent
practical value until his eye saw in them a contributory means to a
great end.

Though Hertz caught the etheric waves on a wire hoop and saw the
answering sparks jump across the unjoined ends, there was no way to
record the flashes and so read the message. The electric current of a
wireless message was too weak to work a recording device, so Marconi
made use of an ingenious little instrument invented by M. Branly, called
a coherer, to hitch on, as it were, the stronger current of a local
battery. So the weak current of the ether waves, aided by the stronger
current of the local circuit, worked the recorder and wrote the message
down. The coherer was a little tube of glass not as long as your finger,
and smaller than a lead pencil, into each end of which was tightly
fitted plugs of silver; the plugs met within a small fraction of an inch
in the centre of the tube, and the very small space between the ends of
the plugs was filled with silver and nickel dust so fine as to be almost
as light as air. Though a small instrument, and more delicate than a
clinical thermometer, it loomed large in the working-out of wireless
telegraphy. One of the silver plugs of the coherer was connected to the
receiving wire, while the other was connected to the earth (grounded).
To one plug of the coherer also was joined one pole of the local
battery, while the other pole was in circuit with the other plug of the
coherer through the recording instrument. The fine dust-like silver and
nickel particles in the coherer possessed the quality of high
resistance, except when charged by the electric current of the ether
waves; then the particles of metal clung together, cohered, and allowed
of the passage of the ether waves' current and the strong current of the
local battery, which in turn actuated the Morse sounder and recorder.
The difficulty with this instrument was in the fact that the metal
particles continued to cohere, unless shaken apart, after the ether
waves' current was discontinued. So Marconi invented a little device
which was in circuit with the recorder and tapped the coherer tube with
a tiny mallet at just the right moment, causing the particles to
separate, or decohere, and so break the circuit and stop the local
battery current. As no wireless message could have been received without
the coherer, so no record or reading could have been made without the
young Italian's improvement.

In sending the message from one side of his father's estate at Bologna
to the other the young inventor used practically the same methods that
he uses to-day. Marconi's transmitting apparatus consisted of electric
batteries, an induction coil by which the force of the current is
increased, a telegrapher's key to make and break the circuit, and a
pair of brass knobs. The batteries were connected with the induction
coil, which in turn was connected with the brass knobs; the
telegrapher's key was placed between the battery and the coil. It was
the boy scarcely out of his teens who worked out the principles of his
system, but it took time and many, many experiments to overcome the
obstacles of long-distance wireless telegraphy. The sending of a message
across the garden in far-away Italy was a simple matter--the depressed
key completed the electric circuit created by a strong battery through
the induction coil and made a spark jump between the two brass knobs,
which in turn started the ether vibrating at the rate of three or four
hundred million times a minute from the tin box on top of a pole. The
vibrations in the ether circled wider and wider, as the circular waves
spread from the spot where a stone is dropped into a pool, but with the
speed of light, until they reached a corresponding tin box on top of a
like pole on the other side of the garden; this box, and the wire
connected with it, caught the waves, carried them down to the coherer,
and, joining the current from the local battery, a dot or dash was
recorded; immediately after, the tapper separated the metal particles
in the coherer and it was ready for the next series of waves.

One spark made a single dot, a stream of sparks the dash of the Morse
telegraphic code. The apparatus was crude at first, and worked
spasmodically, but Marconi knew he was on the right track and
persevered. With the heightening of the pole he found he could send
farther without an increase of electric power, until wireless messages
were sent from one extreme limit of his father's farm to the other.

It is hard to realize that the young inventor only began his experiments
in wireless telegraphy in 1895, and that it is scarcely eight years
since the great idea first occurred to him.

After a year of experimenting on his father's property, Marconi was able
to report to W.H. Preece, chief electrician of the British postal
system, certain definite facts--not theories, but facts. He had actually
sent and received messages, without the aid of wires, about two miles,
but the facilities for further experimenting at Bologna were exhausted,
and he went to England.

Here was a youth (scarcely twenty-one), with a great invention already
within his grasp--a revolutionising invention, the possibilities of
which can hardly yet be conceived. And so this young Italian, quiet,
retiring, unassuming, and yet possessing Jove's power of sending
thunderbolts, came to London (in 1896), to upbuild and link nation to
nation more closely. With his successful experiments behind him, Marconi
was well received in England, and began his further work with all the
encouragement possible. Then followed a series of tests that were fairly
bewildering. Messages were sent through brick walls--through houses,
indeed--over long stretches of plain, and even through hills, proving
beyond a doubt that the etheric electric waves penetrated everything.
For a long time Marconi used modifications of the tin boxes which were a
feature of his early trials, but later balloons covered with tin-foil,
and then a kite six feet high, covered with thin metallic sheets, was
used, the wire leading down to the sending and receiving instruments
running down the cord. With the kite, signals were sent eight miles by
the middle of 1897. Marconi was working on the theory that the higher
the transmitting and receiving "capacity," as it was then called, or
wire, or "antenna," the greater distance the message could be sent; so
that the distance covered was only limited by the height of the
transmitting and receiving conductors. This theory has since been
abandoned, great power having been substituted for great height.

Marconi saw that balloons and kites, the playthings of the winds, were
unsuitable for his purpose, and sought some more stable support for his
sending and receiving apparatus. He set up, therefore (in November,
1897), at the Needles, Isle of Wight, a 120-foot mast, from the apex of
which was strung his transmitting wire (an insulated wire, instead of a
box, or large metal body, as heretofore used). This was the forerunner
of all the tall spars that have since pointed to the sky, and which have
been the centre of innumerable etheric waves bearing man's messages over
land and sea.

With the planting of the mast at the Needles began a new series of
experiments which must have tried the endurance and determination of the
young man to the utmost. A tug was chartered, and to the sixty-foot mast
erected thereon was connected the wire and transmitting and receiving
apparatus. From this little vessel Marconi sent and received wireless
signals day after day, no matter what the state of the weather. With
each trip experience was accumulated and the apparatus was improved; the
moving station steamed farther and farther out to sea, and the ether
waves circled wider and wider, until, at the end of two months of
sea-going, wireless telegraphy signals were received clear across to the
mainland, fourteen miles, whereupon a mast was set up and a station
established (at Bournemouth), and later eighteen miles away at Poole.

By the middle of 1898 Marconi's wireless system was doing actual
commercial service in reporting, for a Dublin newspaper, the events at a
regatta at Kingstown, when about seven hundred messages were sent from a
floating station to land, at a maximum distance of twenty-five miles.

It was shortly afterward, while the royal yacht was in Cowes Bay, that
one hundred and fifty messages between the then Prince of Wales and his
royal mother at Osborne House were exchanged, most of them of a very
private nature.

One of the great objections to wireless telegraphy has been the
inability to make it secret, since the ether waves circle from the
centre in all directions, and any receiving apparatus within certain
limits would be affected by the waves just as the station to which the
message was sent would be affected by them. To illustrate: the waves
radiating from a stone dropped into a still pool would make a dead leaf
bob up and down anywhere on the pool within the circle of the waves, and
so the ether waves excited the receiving apparatus of any station within
the effective reach of the circle.

Of course, the use of a cipher code would secure the secrecy of a
message, but Marconi was looking for a mechanical device that would make
it impossible for any but the station to which the message was sent to
receive it. He finally hit upon the plan of focussing the ether waves as
the rays of a searchlight are concentrated in a given direction by the
use of a reflector, and though this adaptation of the searchlight
principle was to a certain extent successful, much penetrating power was
lost. This plan has been abandoned for one much more ingenious and
effective, based on the principle of attunement, of which more later.

It was a proud day for the young Italian when his receiver at Dover
recorded the first wireless message sent across the British Channel from
Boulogne in 1899--just the letters V M and three or four words in the
Morse alphabet of dots and dashes. He had bridged that space of stormy,
restless water with an invisible, intangible something that could be
neither seen, felt, nor heard, and yet was stronger and surer than
steel--a connection that nothing could interrupt, that no barrier could
prevent. The first message from England to France was soon followed by
one to M. Branly, the inventor of the coherer, that made the receiving
of the message possible, and one to the queen of Marconi's country. The
inventor's march of progress was rapid after this--stations were
established at various points all around the coast of England; vessels
were equipped with the apparatus so that they might talk to the mainland
and to one another. England's great dogs of war, her battle-ships,
fought an imaginary war with one another and the orders were flashed
from the flagship to the fighters, and from the Admiral's cabin to the
shore, in spite of fog and great stretches of open water heaving


A lightship anchored off the coast of England was fitted with the
Marconi apparatus and served to warn several vessels of impending
danger, and at last, after a collision in the dark and fog, saved the
men who were aboard of her by sending a wireless message to the mainland
for help.

From the very beginning Marconi had set a high standard for himself. He
worked for an end that should be both commercially practical and
universal. When he had spanned the Channel with his wireless messages,
he immediately set to work to fling the ether waves farther and farther.
Even then the project of spanning the Atlantic was in his mind.

On the coast of Cornwall, near Penzance, England, Marconi erected a
great station. A forest of tall poles were set up, and from the wires
strung from one to the other hung a whole group of wires which were in
turn connected to the transmitting apparatus. From a little distance the
station looked for all the world like ships' masts that had been taken
out and ranged in a circle round the low buildings. This was the station
of Poldhu, from which Marconi planned to send vibrations in the ether
that would reach clear across to St. Johns, Newfoundland, on the other
side of the Atlantic--more than two thousand miles away. A power-driven
dynamo took the place of the more feeble batteries at Poldhu, converters
to increase the power displaced the induction coil, and many
sending-wires, or antennae, were used instead of one.

On Signal Hill, at St. Johns, Newfoundland--a bold bluff overlooking the
sea--a group of men worked for several days, first in the little stone
house at the brink of the bluff, setting up some electric apparatus; and
later, on the flat ground nearby, the same men were very busy flying a
great kite and raising a balloon. There was no doubt about the
earnestness of these men: they were not raising that kite for fun. They
worked with care and yet with an eagerness that no boy ever displays
when setting his home-made or store flyer to the breeze. They had hard
luck: time and time again the wind or the rain, or else the fog, baffled
them, but a quiet young fellow with a determined, thoughtful face urged
them on, tugged at the cord, or held the kite while the others ran with
the line. Whether Marconi stood to one side and directed or took hold
with his men, there was no doubt who was master. At last the kite was
flying gallantly, high overhead in the blue. From the sagging
kite-string hung a wire that ran into the low stone house.

One cold December day in 1901, Guglielmo Marconi sat still in a room in
the Government building at Signal Hill, St. Johns, Newfoundland, with a
telephone receiver at his ear and his eye on the clock that ticked
loudly nearby. Overhead flew his kite bearing his receiving-wire. It was
12:30 o'clock on the American side of the ocean, and Marconi had ordered
his operator in far-off Poldhu, two thousand watery miles away, to begin
signalling the letter "S"--three dots of the Morse code, three flashes
of the bluish sparks--at that corresponding hour. For six years he had
been looking forward to and working for that moment--the final test of
all his effort and the beginning of a new triumph. He sat waiting to
hear three small sounds, the br-br-br of the Morse code "S," humming on
the diaphragm of his receiver--the signature of the ether waves that had
travelled two thousand miles to his listening ear. As the hands of the
clock, whose ticking alone broke the stillness of the room, reached
thirty minutes past twelve, the receiver at the inventor's ear began to
hum, br-br-br, as distinctly as the sharp rap of a pencil on a
table--the unmistakable note of the ether vibrations sounded in the
telephone receiver. The telephone receiver was used instead of the usual
recorder on account of its superior sensitiveness.

Transatlantic wireless telegraphy was an accomplished fact.

Though many doubted that an actual signal had been sent across the
Atlantic, the scientists of both continents, almost without exception,
accepted Marconi's statement. The sending of the transatlantic signal,
the spanning of the wide ocean with translatable vibrations, was a great
achievement, but the young Italian bore his honours modestly, and
immediately went to work to perfect his system.

Two months after receiving the message from Poldhu at St. Johns, Marconi
set sail from England for America, in the _Philadelphia_, to carry out,
on a much larger scale, the experiments he had worked out with the tug
three years ago. The steamship was fitted with a complete receiving and
sending outfit, and soon after she steamed out from the harbor she began
to talk to the Cornwall station in the dot-and-dash sign language. The
long-distance talk between ship and shore continued at intervals, the
recording instrument writing the messages down so that any one who
understood the Morse code could read. Message after message came and
went until one hundred and fifty miles of sea lay between Marconi and
his station. Then the ship could talk no more, her sending apparatus not
being strong enough; but the faithful men at Poldhu kept sending
messages to their chief, and the recorder on the _Philadelphia_ kept
taking them down in the telegrapher's shorthand, though the steamship
was plowing westward at twenty miles an hour. Day after day, at the
appointed hour to the very second, the messages came from the station on
land, flung into the air with the speed of light, to the young man in
the deck cabin of a speeding steamship two hundred and fifty, five
hundred, a thousand, fifteen hundred, yes, two thousand and ninety-nine
miles away--messages that were written down automatically as they came,
being permanent records that none might gainsay and that all might

To Marconi it was the simple carrying out of his orders, for he said
that he had fitted the Poldhu instruments to work to two thousand one
hundred miles, but to those who saw the thing done--saw the narrow
strips of paper come reeling off the recorder, stamped with the blue
impressions of the messages through the air, it was astounding almost
beyond belief; but there was the record, duly attested by those who
knew, and clearly marked with the position of the ship in longitude and
latitude at the time they were received.

It was only a few months afterward that Marconi, from his first station
in the United States, at Wellfleet, Cape Cod, Mass., sent a message
direct to Poldhu, three thousand miles. At frequent intervals messages
go from one country to the other across the ocean, carried through fog,
unaffected by the winds, and following the curvature of the earth,
without the aid of wires.

Again the unassuming nature of the young Italian was shown. There was
no brass band nor display of national colours in honour of the great
achievement; it was all accomplished quietly, and suddenly the world
woke up to find that the thing had been done. Then the great personages
on both sides of the water congratulated and complimented each other by
Marconi's wireless system.

At Marconi's new station at Glace Bay, Cape Breton, and at the powerful
station at Wellfleet, Cape Cod, the receiving and sending wires are
supported by four great towers more than two hundred feet high. Many
wires are used instead of one, and much greater power is of course
employed than at first, but the marvellously simple principle is the
same that was used in the garden at Bologna. The coherer has been
displaced by a new device invented by Marconi, called a magnetic
detector, by which the ether waves are aided by a stronger current to
record the message. The effect is the same, but the method is entirely

The sending of a long-distance message is a spectacular thing. Current
of great power is used, and the spark is a blinding flash accompanied by
deafening noises that suggest a volley from rifles. But Marconi is
experimenting to reduce the noise, and the use of the mercury vapour
invented by Peter Cooper Hewitt will do much to increase the rapidity in

After much experimenting Marconi discovered that the longer the waves in
the ether the more penetrating and lasting the quality they possessed,
just as long swells on a body of water carry farther and endure longer
than short ones. Moreover, he discovered that if many sending-wires were
used instead of one, and strong electric power was employed instead of
weak, these long, penetrating, enduring waves could be produced. All the
new Marconi stations, therefore, built for long-distance work, are
fitted with many sending-wires, and powerful dynamos are run which are
capable of producing a spark between the silvered knobs as thick as a
man's wrist.

Marconi and several other workers in the field of wireless telegraphy
are now busy experimenting on a system of attunement, or syntony, by
which it will be possible to so adjust the sending instruments that none
but the receiver for whom the message is meant can receive it. He is
working on the principle whereby one tuning-fork, when set vibrating,
will set another of the same pitch humming. This problem is practically
solved now, and in the near future every station, every ship, and each
installation will have its own key, and will respond to none other than
the particular vibrations, wave lengths, or oscillations, for which it
is adjusted.

All through the wonders he has brought about, Marconi, the boy and the
man, has shown but little--he is the strong character that does things
and says little, and his works speak so amazingly, so loudly, that the
personality of the man is obscured.

The Marconi station at Glace Bay, Cape Breton, is now receiving messages
for cableless transmission to England at the rate of ten cents a
word--newspaper matter at five cents a word. Transatlantic wireless
telegraphy is an everyday occurrence, and the common practical uses are
almost beyond mention. It is quite within the bounds of possibility for
England to talk clear across to Australia over the Isthmus of Panama,
and soon France will be actually holding converse with her strange ally,
Russia, across Germany and Austria, without asking the permission of
either country. Ships talk to one another while in mid-ocean, separated
by miles of salt water. Newspapers have been published aboard
transatlantic steamers with the latest news telegraphed while en route;
indeed, a regular news service of this kind, at a very reasonable rate,
has been established. These are facts; what wonders the future has in
store we can only guess. But these are some of the possibilities--news
service supplied to subscribers at their homes, the important items to
be ticked off on each private instrument automatically, "Marconigraphed"
from the editorial rooms; the sending and receiving of messages from
moving trains or any other kind of a conveyance; the direction of a
submarine craft from a safe-distance point, or the control of a
submarine torpedo.

One is apt to grow dizzy if the imagination is allowed to run on too
far--but why should not one friend talk to another though he be miles
away, and to him alone, since his portable instrument is attuned to but
one kind of vibration. It will be like having a separate language for
each person, so that "friend communeth with friend, and a stranger
intermeddleth not--" and which none but that one person can understand.


There was a boy in far-away Brazil who played with his friends the game
of "Pigeon Flies."

In this pastime the boy who is "it" calls out "pigeon flies," or "bat
flies," and the others raise their fingers; but if he should call "fox
flies," and one of his mates should raise his hand, that boy would have
to pay a forfeit.

The Brazilian boy, however, insisted on raising his finger when the
catchwords "man flies" were called, and firmly protested against paying
a forfeit.

Alberto Santos-Dumont, even in those early days, was sure that if man
did not fly then he would some day.

Many an imaginative boy with a mechanical turn of mind has dreamed and
planned wonderful machines that would carry him triumphantly over the
tree-tops, and when the tug of the kite-string has been felt has wished
that it would pull him up in the air and carry him soaring among the
clouds. Santos-Dumont was just such a boy, and he spent much time in
setting miniature balloons afloat, and in launching tiny air-ships
actuated by twisted rubber bands. But he never outgrew this interest in
overhead sailing, and his dreams turned into practical working
inventions that enabled him to do what never a mortal man had done
before--that is, move about at will in the air.

Perhaps it was the clear blue sky of his native land, and the dense,
almost impenetrable thickets below, as Santos-Dumont himself has
suggested, that made him think how fine it would be to float in the air
above the tangle, where neither rough ground nor wide streams could
hinder. At any rate, the thought came into the boy's mind when he was
very small, and it stuck there.

His father owned great plantations and many miles of railroad in Brazil,
and the boy grew up in the atmosphere of ponderous machinery and puffing
locomotives. By the time Santos-Dumont was ten years old he had learned
enough about mechanics to control the engines of his father's railroads
and handle the machinery in the factories. The boy had a natural bent
for mechanics and mathematics, and possessed a cool courage that made
him appear almost phlegmatic. Besides his inherited aptitude for
mechanics, his father, who was an engineer of the Central School of Arts
and Manufactures of Paris, gave him much useful instruction. Like
Marconi, Santos-Dumont had many advantages, and also, like the inventor
of wireless telegraphy, he had the high intelligence and determination
to win success in spite of many discouragements. Like an explorer in a
strange land, Santos-Dumont was a pioneer in his work, each trial being
different from any other, though the means in themselves were familiar

The steering-wheel can be seen in front of basket, the motor is
suspended in frame to the rear, the propeller and rudder at extreme

The boy Santos-Dumont dreamed air-ships, planned air-ships, and read
about aerial navigation, until he was possessed with the idea that he
must build an air-ship for himself.

He set his face toward France, the land of aerial navigation and the
country where light motors had been most highly developed for
automobiles. The same year, 1897, when he was twenty-four years old, he,
with M. Machuron, made his first ascent in a spherical balloon, the only
kind in existence at that time. He has described that first ascension
with an enthusiasm that proclaims him a devotee of the science for all

His first ascension was full of incident: a storm was encountered; the
clouds spread themselves between them and the map-like earth, so that
nothing could be seen except the white, billowy masses of vapour shining
in the sun; some difficulty was experienced in getting down, for the air
currents were blowing upward and carried the balloon with them; the
tree-tops finally caught them, but they escaped by throwing out ballast,
and finally landed in an open place, and watched the dying balloon as it
convulsively gasped out its last breath of escaping gas.

After a few trips with an experienced aeronaut, Santos-Dumont determined
to go alone into the regions above the clouds. This was the first of a
series of ascensions in his own balloon. It was made of very light silk,
which he could pack in a valise and carry easily back to Paris from his
landing point. In all kinds of weather this determined sky navigator
went aloft; in wind, rain, and sunshine he studied the atmospheric
conditions, air currents, and the action of his balloon.

The young Brazilian ascended thirty times in spherical balloons before
he attempted any work on an elongated shape. He realised that many
things must be learned before he could handle successfully the much more
delicate and sensitive elongated gas-bag.

In general, Santos-Dumont worked on the theory of the dirigible
balloon--that is, one that might be controlled and made to go in any
direction desired, by means of a motor and propeller carried by a
buoyant gas-bag. His plan was to build a balloon, cigar-shaped, of
sufficient capacity to a little more than lift his machinery and
himself, this extra lifting power to be balanced by ballast, so that the
balloon and the weight it carried would practically equal the weight of
air it displaced. The push of the revolving propeller would be depended
upon to move the whole air-ship up or down or forward, just as the
motion of a fish's fins and tail move it up, down, forward, or back, its
weight being nearly the same as the water it displaces.

The theory seems so simple that it strikes one as strange that the
problem of aerial navigation was not solved long ago. The story of
Santos-Dumont's experiments, however, his adventures and his successes,
will show that the problem was not so simple as it seemed.

Santos-Dumont was built to jockey a Pegasus or guide an air-ship, for he
weighed but a hundred pounds when he made his first ascensions, and
added very little live ballast as he grew older.

Weight, of course, was the great bugbear of every air-ship inventor,
and the chief problem was to provide a motor light enough to furnish
sufficient power for driving a balloon that had sufficient lifting
capacity to support it and the aeronaut in the air. Steam-engines had
been tried, but found too heavy for the power generated; electric motors
had been tested, and proved entirely out of the question for the same

Santos-Dumont has been very fortunate in this respect, his success,
indeed, being largely due to the compact and powerful gasoline motors
that have been developed for use on automobiles.

Even before the balloon for the first air-ship was ordered the young
Brazilian experimented with his three-and-one-half horse-power gasoline
motor in every possible way, adding to its power, and reducing its
weight until he had cut it down to sixty-six pounds, or a little less
than twenty pounds to a horse-power. Putting the little motor on a
tricycle, he led the procession of powerful automobiles in the
Paris-Amsterdam race for some distance, proving its power and speed. The
motor tested to his satisfaction, Santos-Dumont ordered his balloon of
the famous maker, Lachambre, and while it was building he experimented
still further with his little engine. To the horizontal shaft of his
motor he attached a propeller made of silk stretched tightly over a
light wooden framework. The motor was secured to the aeronaut's basket
behind, and the reservoir of gasoline hung to the basket in front. All
this was done and tested before the balloon was finished--in fact, the
aeronaut hung himself up in his basket from the roof of his workshop and
started his motor to find out how much pushing power it exerted and if
everything worked satisfactorily.

On September 18, 1898, Santos-Dumont made his first ascension in his
first air-ship--in fact, he had never tried to operate an elongated
balloon before, and so much of this first experience was absolutely new.
Imagine a great bag of yellow oiled silk, cigar-shaped, fully inflated
with hydrogen gas, but swaying in the morning breeze, and tugging at its
restraining ropes: a vast bubble eighty-two feet long, and twelve feel
in diameter at its greatest girth. Such was the balloon of
Santos-Dumont's first air-ship. Suspended by cords from the great
gas-bag was the basket, to which was attached the motor and six-foot
propeller, hung sixteen feet below the belly of the great air-fish.

Many friends and curiosity seekers had assembled to see the aeronaut
make his first foolhardy attempt, as they called it. Never before had a
spark-spitting motor been hung under a great reservoir of highly
inflammable hydrogen gas, and most of the group thought the daring
inventor would never see another sunset. Santos-Dumont moved around his
suspended air-ship, testing a cord here and a connection there, for he
well knew that his life might depend on such a small thing as a length
of twine or a slender rod. At one side of a small open space on the
outskirts of Paris the long, yellow balloon tugged at its fastenings,
while the navigator made his final round to see that all was well. A
twist of a strap around the driving-wheel set the motor going, and a
moment later Santos-Dumont was standing in his basket, giving the signal
to release the air-ship. It rose heavily, and travelling with the fresh
wind, the propellers whirling swiftly, it crashed into the trees at the
other side of the enclosure. The aeronaut had, against his better
judgment, gone with the wind rather than against it, so the power of the
propeller was added to the force of the breeze, and the trees were
encountered before the ship could rise sufficiently to clear them. The
damage was repaired, and two days later, September 20, 1898, the
Brazilian started again from the same enclosure, but this time against
the wind. The propeller whirled merrily, the explosions of the little
motor snapped sharply as the great yellow bulk and the tiny basket with
its human freight, the captain of the craft, rose slowly in the air.
Santos-Dumont stood quietly in his basket, his hand on the controlling
cords of the great rudder on the end of the balloon; near at hand was a
bag of loose sand, while small bags of ballast were packed around his
feet. Steadily she rose and began to move against the wind with the slow
grace of a great bird, while the little man in the basket steered right
or left, up or down, as he willed. He turned his rudder for the lateral
movements, and changed his shifting bags of ballast hanging fore and
aft, pulling in the after bag when he wished to point her nose down, and
doing likewise with the forward ballast when he wished to ascend--the
propeller pushing up or down as she was pointed. For the first time a
man had actual control of an air-ship that carried him. He commanded it
as a captain governs his ship, and it obeyed as a vessel answers its

A quarter of a mile above the heads of the pygmy crowd who watched him
the little South American maneuvered his air-ship, turning circles and
figure eights with and against the breeze, too busy with his rudder,
his vibrating little engine, his shifting bags of ballast, and the great
palpitating bag of yellow silk above him, to think of his triumph,
though he could still hear faintly the shouts of his friends on earth.
For a time all went well and he felt the exhilaration that no
earth-travelling can ever give, as he experienced somewhat of the
freedom that the birds must know when they soar through the air
unfettered. As he descended to a lower, denser atmosphere he felt rather
than saw that something was wrong--that there was a lack of buoyancy to
his craft. The engine kept on with its rapid "phut, phut, phut"
steadily, but the air-ship was sinking much more rapidly than it should.
Looking up, the aeronaut saw that his long gas-bag was beginning to
crease in the middle and was getting flabby, the cords from the ends of
the long balloon were beginning to sag, and threatened to catch in the
propeller. The earth seemed to be leaping up toward him and destruction
stared him in the face. A hand air-pump was provided to fill an air
balloon inside the larger one and so make up for the compression of the
hydrogen gas caused by the denser, lower atmosphere. He started this
pump, but it proved too small, and as the gas was compressed more and
more, and the flabbiness of the balloon increased, the whole thing
became unmanageable. The great ship dropped and dropped through the air,
while the aeronaut, no longer in control of his ship, but controlled by
it, worked at the pump and threw out ballast in a vain endeavour to
escape the inevitable. He was descending directly over the greensward in
the centre of the Longchamps race-course, when he caught sight of some
boys flying kites in the open space. He shouted to them to take hold of
his trailing guide-rope and run with it against the wind. They
understood at once and as instantly obeyed. The wind had the same effect
on the air-ship as it has on a kite when one runs with it, and the speed
of the fall was checked. Man and air-ship landed with a thud that
smashed almost everything but the man. The smart boys that had saved
Santos-Dumont's life helped him pack what was left of "Santos-Dumont No. 1"
into its basket, and a cab took inventor and invention back to Paris.

In spite of the narrow escape and the discouraging ending of his first
flight, Santos-Dumont launched his second air-ship the following May.
Number 2 was slightly larger than the first, and the fault that was
dangerous in it was corrected, its inventor thought, by a ventilator
connecting the inner bag with the outer air, which was designed to
compensate for the contraction of the gas and keep the skin of the
balloon taut. But No. 2 doubled up as had No. 1, while she was still
held captive by a line; falling into a tree hurt the balloon, but the
aeronaut escaped unscratched. Santos-Dumont, in spite of his quiet ways
and almost effeminate speech, his diminutive body, and wealth that
permitted him to enjoy every luxury, persisted in his work with rare
courage and determination. The difficulties were great and the available
information meager to the last degree. The young inventor had to
experiment and find out for himself the obstacles to success and then
invent ways to surmount them. He had need of ample wealth, for the
building of air-ships was expensive business. The balloons were made of
the finest, lightest Japanese silk, carefully prepared and still more
vigorously tested. They were made by the most famous of the world's
balloon-makers, Lachambre, and required the spending of money
unstintedly. The motors cost according to their lightness rather than
their weight, and all the materials, cordage, metal-work, etc., were
expensive for the same reason. The cost of the hydrogen gas was very
great also, at twenty cents per cubic meter (thirty-five cubic feet);
and as at each ascension all the gas was usually lost, the expense of
each sail in the air for gas alone amounted to from $57 for the smallest
ship to $122 for the largest.


Nevertheless, in November of 1899 Santos-Dumont launched another
air-ship--No. 3. This one was supported by a balloon of much greater
diameter, though the length remained about the same--sixty-six feet. The
capacity, however, was almost three times as great as No. 1, being
17,655 cubic feet. The balloon was so much larger that the less
expensive but heavier illuminating gas could be used instead of
hydrogen. When the air-ship "Santos-Dumont No. 3" collapsed and dumped
its navigator into the trees, Santos-Dumont's friends took it upon
themselves to stop his dangerous experimenting, but he said nothing, and
straightway set to work to plan a new machine. It was characteristic of
the man that to him the danger, the expense, and the discouragements
counted not at all.

In the afternoon of November 13, 1899, Santos-Dumont started on his
first flight in No. 3. The wind was blowing hard, and for a time the
great bulk of the balloon made little headway against it; 600 feet in
air it hung poised almost motionless, the winglike propeller whirling
rapidly. Then slowly the great balloon began nosing its way into the
wind, and the plucky little man, all alone, beyond the reach of any
human voice, could not tell his joy, although the feeling of triumph was
strong within him. Far below him, looking like two-legged hats, so
foreshortened they were from the aeronaut's point of view, were the
people of Paris, while in front loomed the tall steel spire of the
Eiffel Tower. To sail round that tower even as the birds float about had
been the dream of the young aeronaut since his first ascension. The
motor was running smoothly, the balloon skin was taut, and everything
was working well; pulling the rudder slightly, Santos-Dumont headed
directly for the great steel shaft.

The people who were on the Eiffel Tower that breezy afternoon saw a
sight that never a man saw before. Out of the haze a yellow shape loomed
larger each minute until its outlines could be distinctly seen. It was a
big cigar-shaped balloon, and under it, swung by what seemed gossamer
threads, was a basket in which was a man. The air-ship was going against
the wind, and the man in the basket evidently had full control, for the
amazed people on the tower saw the air-ship turn right and left as her
navigator pulled the rudder-cords, and she rose and fell as her master
regulated his shifting ballast. For twenty minutes Santos-Dumont
maneuvered around the tower as a sailboat tacks around a buoy. While the
people on that tall spire were still watching, the aeronaut turned his
ship around and sailed off for the Longchamps race-course, the green
oval of which could be just distinguished in the distance.

On the exact spot where, a little more than a year before, the same man
almost lost his life and wrecked his first air-ship, No. 3 landed as
softly and neatly as a bird.

Though he made many other successful flights, he discovered so many
improvements that with the first small mishap he abandoned No. 3 and
began on No. 4.

The balloon "Santos-Dumont No. 4" was long and slim, and had an inner
air-bag to compensate for the contraction of the hydrogen gas. This
air-ship had one feature that was entirely new; the aeronaut had
arranged for himself, not a secure basket to stand in, but a frail,
unprotected bicycle seat attached to an ordinary bicycle frame. The
cranks were connected with the starting-gear of the motor.

Seated on his unguarded bicycle seat, and holding on to the
handle-bars, to which were attached the rudder-cords, Santos-Dumont made
voyages in the air with all the assurance of the sailor on the sea.

But No. 4 was soon too imperfect for the exacting Brazilian, and in
April, 1901, he had finished No. 5. This air-cruiser was the longest of
all (105 feet), and was fitted with a sixteen horse-power motor. Instead
of the bicycle frame, he built a triangular keel of pine strips and
strengthened it with tightly strung piano wires, the whole frame, though
sixty feet long, weighing but 110 pounds. Hung between the rods, being
suspended by piano wires as in a spider-web, was the motor, basket, and

The last-named air-ship was built, if not expressly at least with the
intention of trying for the Deutsch Prize of 100,000 francs. This was a
big undertaking, and many people thought it would never be accomplished;
the successful aeronaut had to travel more than three miles in one
direction, round the Eiffel Tower as a racing yacht rounds a stake-boat,
and return to the starting point, all within thirty minutes--_i.e._,
almost seven miles in two directions in half an hour.

The new machine worked well, though at one time the aerial navigator's
friends thought that they would have to pick him up in pieces and carry
him home in a basket. This incident occurred during one of the first
flights in No. 5. Everything was going smoothly, and the air-ship
circled like a hawk, when the spectators, who were craning their necks
to see, noticed that something was wrong; the motor slowed down, the
propeller spun less swiftly, and the whole fabric began to sink toward
the ground. While the people gazed, their hearts in their mouths, they
saw Santos-Dumont scramble out of his basket and crawl out on the
framework, while the balloon swayed in the air. He calmly knotted the
cord that had parted and crept back to his place, as unconcernedly as if
he were on solid ground.

It was in August of 1901 that he made his first official trial for the
Deutsch Prize. The start was perfect, and the machine swooped toward the
distant tower straight as a crow flies and almost as fast. The first
half of the distance was covered in nine minutes, so twenty-one minutes
remained for the balance of the journey: success seemed assured; the
prize was almost within the grasp of the aeronaut. Of a sudden assured
success was changed to dire peril; the automatic valves began to leak,
the balloon to sag, the cords supporting the wooden keel hung low, and
before Santos-Dumont could stop the motor the propeller had cut them and
the whole system was threatened. The wind was drifting the air-ship
toward the Eiffel Tower; the navigator had lost control; 500 feet below
were the roofs of the Trocadero Hotels; he had to decide which was the
least dangerous; there was but a moment to think. Santos-Dumont, death
staring him in the face, chose the roofs. A swift jerk of a cord, and a
big slit was made in the balloon. Instantly man, motor, gas-bag, and
keel went tumbling down straight into the court of the hotels. The great
balloon burst with a noise like an explosion, and the man was lost in a
confusion of yellow-silk covering, cords, and wires. When the firemen
reached the place and put down their long ladders they found him
standing calmly in his wicker basket, entirely unhurt. The long, staunch
keel, resting by its ends on the walls of the court, prevented him from
being dashed to pieces. And so ended No. 5.

Most men would have given up aerial navigation after such an experience,
but Santos-Dumont could not be deterred from continuing his experiments.
The night of the very day which witnessed his fearful fall and the
destruction of No. 5 he ordered a new balloon for "Santos-Dumont No. 6."
It showed the pluck and determination of the man as nothing else could.

Twenty-two days after the aeronaut's narrow escape his new air-ship was
finished and ready for a flight. No. 6 was practically the same as its
predecessor--the triangular keel was retained, but an eighteen
horse-power gasoline motor was substituted for the sixteen horse-power
used previously. The propeller, made of silk stretched over a bamboo
frame, was hung at the after end of the keel; the motor was a little aft
of the centre, while the basket to which led the steering-gear, the
emergency valve to the balloon, and the motor-controlling gear was
suspended farther forward. To control the upward or downward pointing of
the new air-ship, shifting ballast was used which ran along a wire under
the keel from one end to the other; the cords controlling this ran to
the basket also.

The new air-ship worked well, and the experimental flights were
successful with one exception--when the balloon came in contact with a

It was in October, 1901 (the 19th), when the Deutsch Prize Committee was
asked to meet again and see a man try to drive a balloon against the
wind, round the Eiffel Tower, and return.

The start took place at 2:42 P.M. of October 19, 1901, with a beam wind
blowing. Straight as a bullet the air-ship sped for the steel shaft of
the tower, rising as she flew. On and on she sped, while the spectators,
remembering the finish of the last trial, watched almost breathlessly.
With the air of a cup-racer turning the stake-boat she rounded the steel
spire, a run of three and three-fifth miles, in nine minutes (at the
rate of more than twenty-two miles an hour), and started on the

For a few moments all went well, then those who watched were horrified
to see the propeller slow down and nearly stop, while the wind carried
the air-ship toward the Tower. Just in time the motor was speeded up and
the course was resumed. As the group of men watched the speck grow
larger and larger until things began to take definite shape, the white
blur of the whirling propeller could be seen and the small figure in the
basket could be at last distinguished. Again the motor failed, the speed
slackened, and the ship began to sink. Santos-Dumont threw out enough
ballast to recover his equilibrium and adjusted the motor. With but
three minutes left and some distance to go, the great dirigible balloon
got up speed and rushed for the goal. At eleven and a half minutes past
three, twenty-nine minutes and thirty-one seconds after starting,
Santos-Dumont crossed the line, the winner of the Deutsch Prize. And so
the young Brazilian accomplished that which had been declared

The gasoline holder, from which a tube leads to the motor, can be seen
on the side of the basket.]

The following winter the aerial navigator, in the same No. 5, sailed
many times over the waters of the Mediterranean from Monte Carlo. These
flights over the water, against, athwart, and with the wind, some of
them faster than the attending steamboats could travel, continued until
through careless inflation of the balloon the air-ship and navigator
sank into the sea. Santos-Dumont was rescued without being harmed in the
least, and the air-ship was preserved intact, to be exhibited later to
American sightseers.

"Santos-Dumont No. 6," the most successful of the series built by the
determined Brazilian, looks as if it were altogether too frail to
intrust with the carrying of a human being. The 105-foot-long balloon, a
light yellow in colour, sways and undulates with every passing breeze.
The steel piano wires by which the keel and apparatus are hung to the
balloon skin are like spider-webs in lightness and delicacy, and the
motor that has the strength of eighteen horses is hardly bigger than a
barrel. A little forward of the motor is suspended to the keel the
cigar-shaped gasoline reservoir, and strung along the top rod are the
batteries which furnish the current to make the sparks for the purpose
of exploding the gas in the motor.

Santos-Dumont himself says that the world is still a long way from
practical, everyday aerial navigation, but he points out the apparent
fact that the dirigible balloon in the hands of determined men will
practically put a stop to war. Henri Rochefort has said: "The day when
it is established that a man can direct an air-ship in a given direction
and cause it to maneuver as he wills--there will remain little for the
nations to do but to lay down their arms."

The man who has done so much toward the abolishing of war can rest well
content with his work.


The conductor stood at the end of the train, watch in hand, and at the
moment when the hands indicated the appointed hour he leisurely climbed
aboard and pulled the whistle cord. A sharp, penetrating hiss of
escaping air answered the pull, and the train moved out of the great
train-shed in its race against time. It was all so easy and comfortable
that the passengers never thought of the work and study that had been
spent to produce the result. The train gathered speed and rushed on at
an appalling rate, but the passengers did not realise how fast they were
going unless they looked out of the windows and saw the houses and
trees, telegraph poles, and signal towers flash by.

It is the purpose of this chapter to tell how high speed is attained
without loss of comfort to the passengers--in other words, to tell how a
fast train is run.

When the conductor pulled the cord at the rear end of the long train a
whistling signal was thus given in the engine-cab, and the engineer,
after glancing down the tracks to see that the signals indicated a clear
track, pulled out the long handle of the throttle, and the great machine
obeyed his will as a docile horse answers a touch on the rein. He opened
the throttle-valve just a little, so that but little steam was admitted
to the cylinders, and the pistons being pushed out slowly, the
driving-wheels revolved slowly and the train started gradually. When the
end of the piston stroke was reached the used steam was expelled into
the smokestack, creating a draught which in turn strengthened the heat
of the fire. With each revolution of the driving-wheels, each
cylinder--there is one on each side of every locomotive--blew its steamy
breath into the stack twice. This kept the fire glowing and made the
chou-chou sound that everybody knows and every baby imitates.

As the train gathered speed the engineer pulled the throttle open wider
and wider, the puffs in the short, stubby stack grew more and more
frequent, and the rattle and roar of the iron horse increased.

Down in the pit of the engine-cab the fireman, a great shovel in his
hands, stood ready to feed the ravenous fires. Every minute or two he
pulled the chain and yanked the furnace door open to throw in the
coal, shutting the door again after each shovelful, to keep the fire

[Illustration: "FIRING" A FAST LOCOMOTIVE An operation that is
practically continuous during a fast trip.]

The fireman on a fast locomotive is kept extremely busy, for he must
keep the steam-pressure up to the required standard--150 or 200
pounds--no matter how fast the sucking cylinders may draw it out. He
kept his eyes on the steam-gage most of the time, and the minute the
quivering finger began to drop, showing reduced pressure, he opened the
door to the glowing furnace and fed the fire. The steam-cylinders act on
the boiler a good deal as a lung-tester acts on a human being; the
cylinders draw out the steam from the boiler, requiring a roaring fire
to make the vapour rapidly enough and keep up the pressure.

Though the engineer seemed to be taking it easily enough with his hand
resting lightly on the reversing-lever, his body at rest, the fireman
was kept on the jump. If he was not shovelling coal he was looking ahead
for signals (for many roads require him to verify the engineer), or
adjusting the valves that admitted steam to the train-pipes and heated
the cars, or else, noticing that the water in the boiler was getting
low--and this is one of his greatest responsibilities, which, however,
the engineer sometimes shares--he turned on the steam in the injector,
which forced the water against the pressure into the boiler. All these
things he has to do repeatedly even on a short run.

The engineer--or "runner," as he is called by his fellows--has much to
do also, and has infinitely greater responsibility. On him depends the
safety and the comfort of the passengers to a large degree; he must
nurse his engine to produce the greatest speed at the least cost of
coal, and he must round the curves, climb the grades, and make the
slow-downs and stops so gradually that the passengers will not be

To the outsider who rides in a locomotive-cab for the first time it
seems as if the engineer settles down to his real work with a sigh of
relief when the limits of the city have been passed; for in the towns
there are many signals to be watched, many crossings to be looked out
for, and a multitude of moving trains, snorting engines, and tooting
whistles to distract one's attention. The "runner," however, seemed not
to mind it at all. He pulled on his cap a little more firmly, and, after
glancing at his watch, reached out for the throttle handle. A very
little pull satisfied him, and though the increase in speed was hardly
perceptible, the more rapid exhaust told the story of faster movement.
As the train sped on, the engineer moved the reversing-lever notch by
notch nearer the centre of the guide. This adjusted the "link-motion"
mechanism, which is operated by the driving-axle, and cut off the steam
entering the cylinders in such a way that it expanded more fully and
economically, thus saving fuel without loss of power.

When a station was reached, when a "caution" signal was displayed, or
whenever any one of the hundred or more things occurred that might
require a stop or a slow-down, the engineer closed down the throttle and
very gradually opened the air-brake valve that admitted compressed air
to the brake-cylinders, not only on the locomotive but on all the cars.
The speed of the train slackened steadily but without jar, until the
power of the compressed air clamped the brake-shoes on the wheels so
tightly that they were practically locked and the train was stopped. By
means of the air-brake the engineer had almost entire control of the
train. The pump that compresses the air is on the engine, and keeps the
pressure in the car and locomotive reservoirs automatically up to the
required standard.

Each stage of every trip of a train not a freight is carefully charted,
and the engineer is provided with a time-table that shows where his
train should be at a given time. It is a matter of pride with the
engineers of fast trains to keep close to their schedules, and their
good records depend largely on this running-time, but delays of various
kinds creep in, and in spite of their best efforts engineers are not
always able to make all their schedules. To arrive at their destinations
on time, therefore, certain sections must be covered in better than
schedule time, and then great skill is required to get the speed without
a sacrifice of comfort for the passenger.

To most travellers time is more valuable than money, and so everything
about a train is planned to facilitate rapid travelling. Almost every
part of a locomotive is controlled from the cab, which prevents
unnecessary stopping to correct defects; from his seat the engineer can
let the condensed water out of the cylinders; he can start a jet of
steam in the stack and create a draft through the fire-box; by the
pressure of a lever he is able to pour sand on a slippery track, or by
the manipulation of another lever a snow-scraper is let down from the
cowcatcher. The practised ear of a locomotive engineer often enables him
to discover defects in the working of his powerful machine, and he is
generally able, with the aid of various devices always on hand, to
prevent an increase of trouble without leaving the cab.

As explained above, a fast run means the use of a great deal of steam
and therefore water; indeed, the higher the speed the greater
consumption of water. Often the schedules do not allow time enough to
stop for water, and the consumption is so great that it is impossible to
carry enough to keep the engine going to the end of the run. There are
provided, therefore, at various places along the line, tanks eighteen
inches to two feet wide, six inches deep, and a quarter of a mile long.
These are filled with water and serve as long, narrow reservoirs, from
which the locomotive-tenders are filled while going at almost full
speed. Curved pipes are let down into the track-tank as the train speeds
on, and scoop up the water so fast that the great reservoirs are very
quickly filled. This operation, too, is controlled from the engine-cab,
and it is one of the fireman's duties to let down the pipe when the
water-signal alongside the track appears. The locomotive, when taking
water from a track-tank, looks as if it was going through a river: the
water is dashed into spray and flies out on either side like the waves
before a fast boat. Trainmen tell the story of a tramp who stole a ride
on the front or "dead" end platform of the baggage car of a fast train.
This car was coupled to the rear end of the engine-tender; it was quite
a long run, without stops, and the engine took water from a track-tank
on the way. When the train stopped, the tramp was discovered prone on
the platform of the baggage car, half-drowned from the water thrown back
when the engine took its drink on the run.

"Here, get off!" growled the brakeman. "What are you doing there?"

"All right, boss," sputtered the tramp. "Say," he asked after a moment,
"what was that river we went through a while ago?"

Though the engineer's work is not hard, the strain is great, and fast
runs are divided up into sections so that no one engine or its runner
has to work more than three or four hours at a time.

It is realised that in order to keep the trainmen--and especially the
engineers--alert and keenly alive to their work and responsibilities, it
is necessary to make the periods of labour short; the same thing is
found to apply to the machines also--they need rest to keep them
perfectly fit.

Before the engineer can run his train, the way must be cleared for him,
and when the train starts out it becomes part of a vast system. Each
part of this intricate system is affected by every other part, so each
train must run according to schedule or disarrange the entire plan.

[Illustration: TRACK TANK]

Each train has its right-of-way over certain other trains, and the
fastest train has the right-of-way over all others. If, for any reason,
the fastest train is late, all others that might be in the way must wait
till the flyer has passed. When anything of this sort occurs the whole
plan has to be changed, and all trains have to be run on a new schedule
that must be made up on the moment.

The ideal train schedules, or those by which the systems are regularly
governed, are charted out beforehand on a ruled sheet, as a ship's
course is charted on a voyage, in the main office of the railroad. Each
engineer and conductor is provided with a printed copy in the form of a
table giving the time of departure and arrival at the different points.
When the trains run on time it is all very simple, and the work of the
despatcher, the man who keeps track of the trains, is easy. When,
however, the system is disarranged by the failure of a train to keep to
its schedule, the despatcher's work becomes most difficult. From long
training the despatchers become perfectly familiar with every detail of
the sections of road under their control, the position of every switch,
each station, all curves, bridges, grades, and crossings. When a train
is delayed and the system spoiled, it is the despatcher's duty to make
up another one on the spot, and arrange by telegrams, which are repeated
for fear of mistakes, for the holding of this train and the movement of
others until the tangle is straightened out. This problem is
particularly difficult when a road has but one track and trains moving
in both directions have to run on the same pair of rails. It is on roads
of this sort that most of the accidents occur. Almost if not quite all
depends on the clear-headedness and quick-witted grasp of the
despatchers and strict obedience to orders by the trainmen. To remove as
much chance of error as possible, safety signalling methods have been
devised to warn the engineer of danger ahead. Many modern railroads are
divided into short sections or "blocks," each of which is presided over
by a signal-tower. At the beginning of each block stand poles with
projecting arms that are connected with the signal-tower by wires
running over pulleys. There are generally two to each track in each
block, and when both are slanting downward the engineer of the
approaching locomotive knows that the block he is about to enter is
clear and also that the rails of the section before that is clear as
well. The lower arm, or "semaphore," stands for the second block, and if
it is horizontal the engineer knows that he must proceed cautiously
because the second section already has a train in it; if the upper arm
is straight the "runner" knows that a train or obstruction of some sort
makes it unsafe to enter the first block, and if he obeys the strict
rules he must stay where he is until the arm is lowered At night, red,
white, and green lights serve instead of the arms: white, safety; green,
caution; and red, danger. Accidents have sometimes occurred because the
engineers were colour-blind and red and green looked alike to them. Most
roads nowadays test all their engineers for this defect in vision.

In spite of all precautions, it sometimes happens that the block-signals
are not set properly, and to avoid danger of rear-end collisions,
conductors and brakemen are instructed (when, for any reason, their
train stops where it is not so scheduled) to go back with lanterns at
night, or flags by day, and be ready to warn any following train. If for
any reason a train is delayed and has to move ahead slowly, torpedoes
are placed on the track which are exploded by the engine that comes
after and warn its engineer to proceed cautiously.

All these things the engineer must bear in mind, and beside his
jockey-like handling of his iron horse, he must watch for signals that
flash by in an instant when he is going at full speed, and at the same
time keep a sharp lookout ahead for obstructions on the track and for
damaged roadbed.

The conductor has nothing to do with the mechanical running of the
train, though he receives the orders and is, in a general way,
responsible. The passengers are his special care, and it is his business
to see that their getting on and off is in accordance with their
tickets. He is responsible for their comfort also, and must be an
animated information bureau, loaded with facts about every conceivable
thing connected with travel. The brakemen are his assistants, and stay
with him to the end of the division; the engineer and fireman, with
their engine, are cut off at the end of their division also.

The fastest train of a road is the pride of all its employees; all the
trainmen aspire to a place on the flyer. It never starts out on any run
without the good wishes of the entire force, and it seldom puffs out of
the train-shed and over the maze of rails in the yard without
receiving the homage of those who happen to be within sight. It is
impossible to tell of all the things that enter into the running of a
fast train, but as it flashes across States, intersects cities, thunders
past humble stations, and whistles imperiously at crossings, it attracts
the attention of all. It is the spectacular thing that makes fame for
the road, appears in large type in the newspapers, and makes havoc with
the time-tables, while the steady-going passenger trains and labouring
freights do the work and make the money.



Every boy and almost every man has longed to ride on a locomotive, and
has dreamed of holding the throttle-lever and of feeling the great
machine move under him in answer to his will. Many of us have protested
vigorously that we wanted to become grimy, hard-working firemen for the
sake of having to do with the "iron horse."

It is this joy of control that comes to the driver of an automobile
which is one of the motor-car's chief attractions: it is the longing of
the boy to run a locomotive reproduced in the grown-up.

The ponderous, snorting, thundering locomotive, towering high above its
steel road, seems far removed from the swift, crouching, almost
noiseless motor-car, and yet the relationship is very close. In fact,
the automobile, which is but a locomotive that runs at will anywhere, is
the father of the greater machine.

About the beginning of 1800, self-propelled vehicles steamed along the
roads of Old England, carrying passengers safely, if not swiftly, and,
strange to say, continued to run more or less successfully until
prohibited by law from using the highways, because of their interference
with the horse traffic. Therefore the locomotive and the railroads
throve at the expense of the automobile, and the permanent iron-bound
right of way of the railroads left the highways to the horse.

The old-time automobiles were cumbrous affairs, with clumsy boilers, and
steam-engines that required one man's entire attention to keep them
going. The concentrated fuels were not known in those days, and
heat-economising appliances were not invented.

It was the invention by Gottlieb Daimler of the high-speed gasoline
engine, in 1885, that really gave an impetus to the building of
efficient automobiles of all powers. The success of his explosive
gasoline engine, forerunner of all succeeding gasoline motor-car
engines, was the incentive to inventors to perfect the steam-engine for
use on self-propelled vehicles.

Unlike a locomotive, the automobile must be light, must be able to carry
power or fuel enough to drive it a long distance, and yet must be almost
automatic in its workings. All of these things the modern motor car
accomplishes, but the struggle to make the machinery more efficient
still continues.

The three kinds of power used to run automobiles are steam, electricity,
and gasoline, taken in the order of application. The steam-engines in
motor-cars are not very different from the engines used to run
locomotives, factory machinery, or street-rollers, but they are much
lighter and, of course, smaller--very much smaller in proportion to the
power they produce. It will be seen how compact and efficient these
little steam plants are when a ten-horse-power engine, boiler,
water-tank, and gasoline reservoir holding enough to drive the machine
one hundred miles, are stored in a carriage with a wheel-base of less
than seven feet and a width of five feet, and still leave ample room for
four passengers.

It is the use of gasoline for fuel that makes all this possible.
Gasoline, being a very volatile liquid, turns into a highly inflammable
gas when heated and mixed with the oxygen in the air. A tank holding
from twenty to forty gallons of gasoline is connected, through an
automatic regulator which controls the flow of oil, to a burner under
the boiler. The burner allows the oil, which turns into gas on coming in
contact with its hot surface, to escape through a multitude of small
openings and mix with the air, which is supplied from beneath. The
openings are so many and so close together that the whole surface is
practically one solid sheet of very hot blue flame. In getting up steam
a separate blaze or flame of alcohol or gasoline is made, which heats
the steel or iron with which the fuel-oil comes in contact until it is
sufficiently hot to turn the oil to gas, after which the burner works
automatically. A hand air-pump or one automatically operated by the
engine maintains sufficient air pressure in the fuel-tank to keep a
constant flow.

Most steam automobile boilers are of the water-tube variety--that is,
water to be turned into steam is carried through the flames in pipes,
instead of the heat in pipes through the water, as in the ordinary flue
boilers. Compactness, quick-heating, and strength are the
characteristics of motor-car boilers. Some of the boilers are less than
twenty inches high and of the same diameter, and yet are capable of
generating seven and one-half horse-power at a high steam pressure (150
to 200 pounds). In these boilers the heat is made to play directly on a
great many tubes, and a full head of steam is generated in a few
minutes. As the steam pressure increases, a regulator that shuts off
the supply of gasoline is operated automatically, and so the pressure
is maintained.

The switchman's house (on the left), commanding a view of the railroad
yard, from which the switches of the complicated system are worked and
the semaphore signals operated.]

The water from which the steam is made is also fed automatically into
the boiler, when the engine is in motion, by a pump worked by the engine
piston. A hand-pump is also supplied by which the driver can keep the
proper amount when the machine is still or in case of a breakdown. A
water-gauge in plain sight keeps the driver informed at all times as to
the amount of water in the boiler. From the boiler the steam goes
through the throttle-valve--the handle of which is by the driver's
side--direct to the engine, and there expands, pushes the piston up and
down, and by means of a crank on the axle does its work.

The engines of modern automobiles are marvels of compactness--so
compact, indeed, that a seven-horse-power engine occupies much less
space than an ordinary barrel. The steam, after being used, is admitted
to a coil of pipes cooled by the breeze caused by the motion of the
vehicle, and so condensed into water and returned to the tank. The
engine is started, stopped, slowed, and sped by the cutting off or
admission of the steam through the throttle-valve. It is reversed by
means of the same mechanism used on locomotives--the link-motion and
reversing-lever, by which the direction of the steam is reversed and the
engine made to run the other way.

After doing its work the steam is made to circulate round the cylinder
(or cylinders, if there are more than one), keeping it extra
hot--"superheated"; and thereafter it is made to perform a like duty to
the boiler-feed water, before it is allowed to escape.

All steam-propelled automobiles, from the light steam runabout to the
clumsy steam roller, are worked practically as described. Some machines
are worked by compound engines, which simply use the power of expansion
still left in the steam in a second larger cylinder after it has worked
the first, in which case every ounce of power is extracted from the

The automobile builders have a problem that troubles locomotive builders
very little--that is, compensating the difference between the speeds of
the two driving-wheels when turning corners. Just as the inside man of a
military company takes short steps when turning and the outside man
takes long ones, so the inside wheel of a vehicle turns slowly while the
outside wheel revolves quickly when rounding a corner. As most
automobiles are propelled by power applied to the rear axle, to which
the wheels are fixed, it is manifest that unless some device were made
to correct the fault one wheel would have to slide while the other
revolved. This difficulty has been overcome by cutting the axle in two
and placing between the ends a series of gears which permit the two
wheels to revolve at different speeds and also apply the power to both
alike. This device is called a compensating gear, and is worked out in
various ways by the different builders.

The locomotive builder accomplishes the same thing by making his wheels
larger on the outside, so that in turning the wide curves of the
railroad the whole machine slides to the inside, bringing to bear the
large diameter of the outer wheel and the small diameter of the inner,
the wheels being fixed to a solid axle.

The steam machine can always be distinguished by the thin stream of
white vapour that escapes from the rear or underneath while it is in
motion and also, as a rule, when it is at rest.

The motor of a steam vehicle always stops when the machine is not
moving, which is another distinguishing feature, as the gasoline motors
run continually, or at least unless the car is left standing for a long

As the owners of different makes of bicycles formerly wrangled over the
merits of their respective machines, so now motor-car owners discuss the
value of the different powers--steam, gasoline, and electricity.

Though steam was the propelling force of the earliest automobiles, and
the power best understood, it was the perfection of the gasoline motor
that revived the interest in self-propelled vehicles and set the
inventors to work.

A gasoline motor is somewhat like a gun--the explosion of the gas in the
motor-cylinder pushes the piston (which may be likened to the
projectile), and the power thus generated turns a crank and drives the

The gasoline motor is the lightest power-generator that has yet been
discovered, and it is this characteristic that makes it particularly
valuable to propel automobiles. Santos-Dumont's success in aerial
navigation is due largely to the gasoline motor, which generated great
power in proportion to its weight.

A gasoline motor works by a series of explosions, which make the noise
that is now heard on every hand. From the gasoline tank, which is always
of sufficient capacity for a good long run, a pipe is connected with a
device called the carbureter. This is really a gas machine, for it turns
the liquid oil into gas, this being done by turning it into fine spray
and mixing it with pure air. The gasoline vapour thus formed is highly
inflammable, and if lighted in a closed space will explode. It is the
explosive power that is made to do the work, and it is a series of small
gun-fires that make the gasoline motor-car go.

All this sounds simple enough, but a great many things must be
considered that make the construction of a successful working motor a
difficult problem.

In the first place, the carbureter, which turns the oil into gas, must
work automatically, the proper amount of oil being fed into the machine
and the exact proportion of air admitted for the successful mixture.
Then the gas must be admitted to the cylinders in just the right
quantity for the work to be done. This is usually regulated
automatically, and can also be controlled directly by the driver. Since
the explosion of gas in the cylinder drives the piston out only, and
not, as in the case of the steam-engine, back and forward, some
provision must be made to complete the cycle, to bring back the piston,
exhaust the burned gas, and refill the cylinder with a new charge.

In the steam-engine the piston is forced backward and forward by the
expansive power of the steam, the vapour being admitted alternately to
the forward and rear ends of the cylinder. The piston of the gasoline
engine, however, working by the force of exploded gas, produces power
when moving in one direction only--the piston-head is pushed out by the
force of the explosion, just as the plunger of a bicycle pump is
sometimes forced out by the pressure of air behind it. The piston is
connected with the engine-crank and revolves the shaft, which is in turn
connected with the driving-wheels. The movement of the piston in the
cylinder performs four functions: first, the downward stroke, the result
of the explosion of gas, produces the power; second, the returning
up-stroke pushes out the burned gas; third, the next down-stroke sucks
in a fresh supply of gas, which (fourth) is compressed by the
following-up movement and is ready for the next explosion. This is
called a two-cycle motor, because two complete revolutions are necessary
to accomplish all the operations. Many machines are fitted with heavy
fly-wheels, the swift revolution of which carries the impetus of the
power stroke through the other three operations.

This machine cuts a swath 35 feet wide and thrashes and sacks the grain
as it moves along. Seventy to 100 acres of grain a day are harvested by
this machine, and 1,000 to 1,500 sacks are produced each working day.]

To keep a practically continuous forward movement on the driving-shaft,
many motors are made with four cylinders, the piston of each being
connected with the crank-shaft at a different angle, and each cylinder
doing a different part of the work; for example, while No. 1 cylinder is
doing the work from the force of the explosion, No. 2 is compressing,
No. 3 is getting a fresh supply of gas, and No. 4 is cleaning out waste
gas. A four-cylinder motor is practically putting forth power
continuously, since one of the four pistons is always at work.

While this takes long to describe, the motion is faster than the eye can
follow, and the "phut, phut" noise of the exhaust sounds like the tattoo
of a drum. Almost every gasoline motor vehicle carries its own electric
plant, either a set of batteries or more commonly a little magneto
dynamo, which is run by the shaft of the motor. Electricity is used to
make the spark that explodes the gas at just the right moment in the
cylinders. All this is automatic, though sometimes the driver has to
resort to the persuasive qualities of a monkey-wrench and an oil-can.

The exploding gas creates great heat, and unless something is done to
cool the cylinders they get so hot that the gas is ignited by the heat
of the metal. Some motors are cooled by a stream of water which, flowing
round the cylinders and through coils of pipe, is blown upon by the
breeze made by the movement of the vehicle. Others are kept cool by a
revolving fan geared to the driving-shaft, which blows on the cylinders;
while still others--small motors used on motor bicycles, generally--have
wide ridges or projections on the outside of the cylinders to catch the
wind as the machine rushes along.

The inventors of the gasoline motor vehicles had many difficulties to
overcome that did not trouble those who had to deal with steam. For
instance, the gasoline motor cannot be started as easily as a
steam-engine. It is necessary to make the driving-shaft revolve a few
times by hand in order to start the cylinders working in their proper
order. Therefore, the motor of a gasoline machine goes all the time,
even when the vehicle is at rest. Friction clutches are used by which
the driving-shaft and the axles can be connected or disconnected at the
will of the driver, so that the vehicle can stand while the motor is
running; friction clutches are used also to throw in gears of
different sizes to increase or decrease the speed of the vehicle, as
well as to drive backward.


The early gasoline automobiles sounded, when moving, like an artillery
company coming full tilt down a badly paved street. The exhausted gas
coughed resoundingly, the gears groaned and shrieked loudly when
improperly lubricated, and the whole machine rattled like a runaway
tin-peddler. Ingenious mufflers have subdued the sputtering exhaust, the
gears are made to run in oil or are so carefully cut as to mesh
perfectly, rubber tires deaden the pounding of the wheels, and carefully
designed frames take up the jar.

Steam and gasoline vehicles can be used to travel long distances from
the cities, for water can be had and gasoline bought almost anywhere;
but electric automobiles, driven by the third of the three powers used
for self-propelled vehicles, must keep within easy reach of the charging

Just as the perfection of the gasoline motor spurred on the inventors to
adapt the steam-engine for use in automobiles, so the inventors of the
storage battery, which is the heart of an electric carriage, were
stirred up to make electric propulsion practical.

The storage battery of an electric vehicle is practically a tank that
holds electricity; the electrical energy of the dynamo is transformed
into chemical energy in the batteries, which in turn is changed into
electrical energy again and used to run the motors.

Electric automobiles are the most simple of all the self-propelled
vehicles. The current stored in the batteries is simply turned off and
on the motors, or the pressure reduced by means of resistance which
obstructs the flow, and therefore the power, of the current. To reverse,
it is only necessary to change the direction of the current's flow; and
in order to stop, the connection between motor and battery is broken by
a switch.

Electricity is the ideal power for automobiles. Being clean and easily
controlled, it seems just the thing; but it is expensive, and sometimes
hard to get. No satisfactory substitute has been found for it, however,
in the larger cities, and it may be that creative or "primary" batteries
both cheap and effective will be invented and will do away with the one
objection to electricity for automobiles.

The astonishing things of to-day are the commonplaces of to-morrow, and
so the achievements of automobile builders as here set down may be
greatly surpassed by the time this appears in print.

The sensations of the locomotive engineer, who feels his great machine
strain forward over the smooth steel rails, are as nothing to the almost
numbing sensations of the automobile driver who covered space at the
rate of eighty-eight miles an hour on the road between Paris and Madrid:
he felt every inequality in the road, every grade along the way, and
each curve, each shadow, was a menace that required the greatest nerve
and skill. Locomotive driving at a hundred miles an hour is but mild
exhilaration as compared to the feelings of the motor-car driver who
travels at fifty miles an hour on the public highway.

Gigantic motor trucks carrying tons of freight twist in and out through
crowded streets, controlled by one man more easily than a driver guides
a spirited horse on a country road.

Frail motor bicycles dash round the platter-like curves of cycle tracks
at railroad speed, and climb hills while the riders sit at ease with
feet on coasters.

An electric motor-car wends the streets of New York every day with
thirty-five or forty sightseers on its broad back, while a groom in
whipcord blows an incongruous coaching-horn in the rear.

Motor plows, motor ambulances, motor stages, delivery wagons,
street-cars without tracks, pleasure vehicles, and even baby carriages,
are to be seen everywhere.

In 1845, motor vehicles were forbidden the streets for the sake of the
horses; in 1903, the horses are being crowded off by the motor-cars. The
motor is the more economical--it is the survival of the fittest.

A form of automobile that can be applied to all sorts of uses on the


In 1807, the first practical steamboat puffed slowly up the Hudson,
while the people ranged along the banks gazed in wonder. Even the grim
walls of the Palisades must have been surprised at the strange intruder.
Robert Fulton's _Clermont_ was the forerunner of the fleets upon fleets
of power-driven craft that have stemmed the currents of a thousand
streams and parted the waves of many seas.

The _Clermont_ took several days to go from New York to Albany, and the
trip was the wonder of that time.

During the summer of 1902 a long, slim, white craft, with a single brass
smokestack and a low deck-house, went gliding up the Hudson with a kind
of crouching motion that suggested a cat ready to spring. On her deck
several men were standing behind the pilot-house with stop-watches in
their hands. The little craft seemed alive under their feet and quivered
with eagerness to be off. The passenger boats going in the same
direction were passed in a twinkling, and the tugs and sailing vessels
seemed to dwindle as houses and trees seem to shrink when viewed from
the rear platform of a fast train.

Two posts, painted white and in line with each other--one almost at the
river's edge, the other 150 feet back--marked the starting-line of a
measured mile, and were eagerly watched by the men aboard the yacht. She
sped toward the starting-line as a sprinter dashes for the tape; almost
instantly the two posts were in line, the men with watches cried "Time!"
and the race was on. Then began such a struggle with Father Time as was
never before seen; the wind roared in the ears of the passengers and
snatched their words away almost before their lips had formed them; the
water, a foam-flecked streak, dashed away from the gleaming white sides
as if in terror. As the wonderful craft sped on she seemed to settle
down to her work as a good horse finds himself and gets into his stride.
Faster and faster she went, while the speed of her going swept off the
black flume of smoke from her stack and trailed it behind, a dense,
low-lying shadow.

"Look!" shouted one of the men into another's ear, and raised his arm to
point. "We're beating the train!"

The fastest torpedo-boat destroyer.]

Sure enough, a passenger train running along the river's edge, the
wheels spinning round, the locomotive throwing out clouds of smoke, was
dropping behind. The train was being beaten by the boat. Quivering,
throbbing with the tremendous effort, she dashed on, the water climbing
her sides and lashing to spume at her stern.

"Time!" shouted several together, as the second pair of posts came in
line, marking the finish of the mile. The word was passed to the
frantically struggling firemen and engineers below, while those on deck
compared watches.

"One minute and thirty-two seconds," said one.

"Right," answered the others.

Then, as the wonderful yacht _Arrow_ gradually slowed down, they tried
to realise the speed and to accustom themselves to the fact that they
had made the fastest mile on record on water.

And so the _Arrow_, moving at the rate of forty-six miles an hour,
followed the course of her ancestress, the _Clermont_, when she made her
first long trip almost a hundred years before.

The _Clermont_ was the first practical steamboat, and the _Arrow_ the
fastest, and so both were record-breakers. While there are not many
points of resemblance between the first and the fastest boat, one is
clearly the outgrowth of the other, but so vastly improved is the modern
craft that it is hard to even trace its ancestry. The little _Arrow_ is
a screw-driven vessel, and her reciprocating engines--that is, engines
operated by the pulling and pushing power of the steam-driven pistons in
cylinders--developed the power of 4,000 horses, equal to 32,000 men,
when making her record-breaking run. All this enormous power was used to
produce speed, there being practically no room left in the little
130-foot hull for anything but engines and boilers.

There is little difference, except in detail, between the _Arrow's_
machinery and an ordinary propeller tugboat. Her hull is very light for
its strength, and it was so built as to slip easily through the water.
She has twin engines, each operating its own shaft and propeller. These
are quadruple expansion. The steam, instead of being allowed to escape
after doing its work in the first cylinder, is turned into a larger one
and then successively into two more, so that all of its expansive power
is used. After passing through the four cylinders, the steam is
condensed into water again by turning it into pipes around which
circulates the cool water in which the vessel floats. The steam thus
condensed to water is heated and pumped into the boiler, to be turned
into steam, so the water has to do its work many times. All this saves
weight and, therefore, power, for the lighter a vessel is the more
easily she can be driven. The boilers save weight also by producing
steam at the enormous pressure of 400 pounds to the square inch.
Steadily maintained pressure means power; the greater the pressure the
more the power. It was the inventive skill of Charles D. Mosher, who has
built many fast yachts, that enabled him to build engines and boilers of
great power in proportion to their weight. It was the ability of the
inventor to build boilers and engines of 4,000 horse-power compact and
light enough to be carried in a vessel 130 feet long, of 12 feet 6
inches breadth, and 3 feet 6 inches depth, that made it possible for the
_Arrow_ to go a mile in one minute and thirty-two seconds. The speed of
the wonderful little American boat, however, was not the result of any
new invention, but was due to the perfection of old methods.

In England, about five years before the _Arrow's_ achievement, a little
torpedo-boat, scarcely bigger than a launch, set the whole world talking
by travelling at the rate of thirty-nine and three-fourths miles an
hour. The little craft seemed to disappear in the white smother of her
wake, and those who watched the speed trial marvelled at the railroad
speed she made. The _Turbina_--for that was the little record-breaker's
name--was propelled by a new kind of engine, and her speed was all the
more remarkable on that account. C.A. Parsons, the inventor of the
engine, worked out the idea that inventors have been studying for a long
time--since 1629, in fact--that is, the rotary principle, or the rolling
movement without the up-and-down driving mechanism of the piston.

The _Turbina_ was driven by a number of steam-turbines that worked a
good deal like the water-turbines that use the power of Niagara. Just as
a water-wheel is driven by the weight or force of the water striking the
blades or paddles of the wheel, so the force of the many jets of steam
striking against the little wings makes the wheels of the steam-turbines
revolve. If you take a card that has been cut to a circular shape and
cut the edges so that little wings will be made, then blow on this
winged edge, the card will revolve with a buzz; the Parsons
steam-turbine works in the same way. A shaft bearing a number of steel
disks or wheels, each having many wings set at an angle like the blades
of a propeller, is enclosed by a drumlike casing. The disks at one end
of the shaft are smaller than those at the other; the steam enters at
the small end in a circle of jets that blow against the wings and set
them and the whole shaft whirling. After passing the first disk and its
little vanes, the steam goes through the holes of an intervening fixed
partition that deflects it so that it blows afresh on the second, and so
on to the third and fourth, blowing upon a succession of wheels, each
set larger than the preceding one. Each of Parsons's steam-turbine
engines is a series of turbines put in a steel casing, so that they use
every ounce of the expansive power of the steam.

It will be noticed that the little wind-turbine that you blow with your
breath spins very rapidly; so, too, do the wheels spun by the steamy
breath of the boilers, and Mr. Parsons found that the propeller fastened
to the shaft of his engine revolved so fast that a vacuum was formed
around the blades, and its work was not half done. So he lengthened his
shaft and put three propellers on it, reducing the speed, and allowing
all of the blades to catch the water strongly.

The _Turbina_, speeding like an express train, glided like a ghost over
the water; the smoke poured from her stack and the cleft wave foamed at
her prow, but there was little else to remind her inventor that 2,300
horse-power was being expended to drive her. There was no jar, no shock,
no thumping of cylinders and pounding of rapidly revolving cranks; the
motion of the engine was rotary, and the propeller shafts, spinning at
2,000 revolutions per minute, made no more vibration than a windmill
whirling in the breeze.

To stop the _Turbina_ was an easy matter; Mr. Parsons had only to turn
off the steam. But to make the vessel go backward another set of
turbines was necessary, built to run the other way, and working on the
same shaft. To reverse the direction, the steam was shut off the engines
which revolved from right to left and turned on those designed to run
backward, or from left to right. One set of the turbines revolved the
propellers so that they pushed, and the other set, turning them the
other way, pulled the vessel backward--one set revolving in a vacuum and
doing no work, while the other supplied the power.

The Parsons turbine-engines have been used to propel torpedo-boats, fast
yachts, and vessels built to carry passengers across the English
Channel, and recently it has been reported that two new transatlantic
Cunarders are to be equipped with them.

[Illustration: THE ENGINES OF THE _ARROW_]

A few years after the Pilgrims sailed for the land of freedom in the
tiny _Mayflower_ a man named Branca built a steam-turbine that worked in
a crude way on the same principle as Parsons's modern giant. The
pictures of this first steam-turbine show the head and shoulders of a
bronze man set over the flaming brands of a wood fire; his metallic
lungs are evidently filled with water, for a jet of steam spurts from
his mouth and blows against the paddles of a horizontal turbine wheel,
which, revolving, sets in motion some crude machinery.

There is nothing picturesque about the steel-tube lungs of the boilers
used by Parsons in the _Turbina_ and the later boats built by him, and
plain steel or copper pipes convey the steam to the whirling blades of
the enclosed turbine wheels, but enormous power has been generated and
marvellous speed gained. In the modern turbine a glowing coal fire, kept
intensely hot by an artificial draft, has taken the place of the blazing
sticks; the coils of steel tubes carrying the boiling water surrounded
by flame replace the bronze-figure boiler, and the whirling, tightly
jacketed turbine wheels, that use every ounce of pressure and save all
the steam, to be condensed to water and used over again, have grown out
of the crude machine invented by Branca.

As the engines of the _Arrow_ are but perfected copies of the engine
that drove the _Clermont_, so the power of the _Turbina_ is derived from
steam-motors that work on the same principle as the engine built by
Branca in 1629, and his steam-turbine following the same old, old, ages
old idea of the moss-covered, splashing, tireless water-wheel.


Forming the outside boundary of Great South Bay, Long Island, a long row
of sand-dunes faces the ocean. In summer groups of laughing bathers
splash in the gentle surf at the foot of the low sand-hills, while the
sun shines benignly over all. The irregular points of vessels' sails
notch the horizon as they are swept along by the gentle summer breezes.
Old Ocean is in a playful mood, and even children sport in his waters.

After the last summer visitor has gone, and the little craft that sail
over the shallow bay have been hauled up high and dry, the pavilions
deserted and the bathing-houses boarded up, the beaches take on a new
aspect. The sun shines with a cold gleam, and the surf has an angry
snarl to it as it surges up the sandy slopes and then recedes, dragging
the pebbles after it with a rattling sound. The outer line of sand-bars,
which in summer breaks the blue sea into sunny ripples and flashing
whitecaps, then churns the water into fury and grips with a mighty hold
the keel of any vessel that is unlucky enough to be driven on them. When
the keen winter winds whip through the beach grasses on the dunes and
throw spiteful handfuls of cutting sand and spray; when the great waves
pound the beach and the crested tops are blown off into vapour, then the
life-saver patrolling the beach must be most vigilant.

All along the coast, from Maine to Florida, along the Gulf of Mexico,
the Great Lakes, and the Pacific, these men patrol the beach as a
policeman walks his beat. When the winds blow hardest and sleet adds
cutting force to the gale, then the surfmen, whose business it is to
save life regardless of their own comfort or safety, are most alert.

All day the wind whistled through the grasses and moaned round the
corners of the life-saving station; the gusts were cold, damp, and
penetrating. With the setting of the sun there was a lull, but when the
patrols started out at eight o'clock, on their four-hours' tour of duty,
the wind had risen again and was blowing with renewed force. Separating
at the station, one surf man went east and the other west, following the
line of the surf-beaten beach, each carrying on his back a recording
clock in a leather case, and also several candle-like Coston lights
and a wooden handle.

Hauling in a breeches-buoy and a passenger.]

"Wind's blowing some," said one of the men, raising his voice above the
howl of the blast.

"Hope nothing hits the bar to-night," the other answered. Then both
trudged off in opposite directions.

With pea-coats buttoned tightly and sou'westers tied down securely, the
surfmen fought the gale on their watch-tour of duty. At the end of his
beat each man stopped to take a key attached to a post, and, inserting
it in the clock, record the time of his visit at that spot, for by this
means is an actual record kept of the movements of the patrol at all

With head bent low in deference to the force of the blast, and eyes
narrowed to slits, the surfman searched the seething sea for the shadowy
outlines of a vessel in trouble.

Perchance as he looked his eye caught the dark bulk of a ship in a sea
of foam, or the faint lines of spars and rigging through the spume and
frozen haze--the unmistakable signs of a vessel in distress. An
instant's concentrated gaze to make sure, then, taking a Coston signal
from his pocket and fitting it to the handle, he struck the end on the
sole of his boot. Like a parlour match it caught fire and flared out a
brilliant red light. This served to warn the crew of the vessel of their
danger, or notified them that their distress was observed and that help
was soon forthcoming; it also served, if the surfman was near enough to
the station, to notify the lookout there of the ship in distress. If the
distance was too great or the weather too thick, the patrol raced back
with all possible speed to the station and reported what he had seen.
The patrol, through his long vigils under all kinds of weather
conditions, learns every foot of his beat thoroughly, and is able to
tell exactly how and where a stranded vessel lies, and whether she is
likely to be forced over on to the beach or whether she will stick on
the outer bar far beyond the reach of a line shot from shore.

In a few words spoken quickly and exactly to the point--for upon the
accuracy of his report much depends--he tells the situation. For
different conditions different apparatus is needed. The vessel reported
one stormy winter's night struck on the shoal that runs parallel to the

Book of the day: