Full Text Archive logoFull Text Archive — Free Classic E-books

Beacon Lights of History, Volume XIV by John Lord

Part 5 out of 6

Adobe PDF icon
Download this document as a .pdf
File size: 0.7 MB
What's this? light bulb idea Many people prefer to read off-line or to print out text and read from the real printed page. Others want to carry documents around with them on their mobile phones and read while they are on the move. We have created .pdf files of all out documents to accommodate all these groups of people. We recommend that you download .pdfs onto your mobile phone when it is connected to a WiFi connection for reading off-line.

With these few hundred dollars, and contributing every penny of his own
income, in October of 1845, he left Constantinople without companion or
servant, went by steamer to Samsoun, and then as fast as post-horses
could climb or gallop over mountains and plains, he reached Mosul in
twelve days.

Here at last he was fitted for his task, supplied for the accomplishment
of his passion. The Arabs say: "I had a horse, but no desert; I had a
desert, but no horse; now I have a desert and a horse, and shall I not
ride?" His boyhood, with the artists of Italy, and learning the
languages of the continent, had fitted him for his task; then his study
of all the books of Eastern travel, then half a year wandering with a
trained companion through Asia Minor and Syria, scarcely leaving untrod
one spot hallowed by tradition, or unvisited one ruin consecrated by
history, with no protection but his arms, living with the people and
learning their prejudices and customs. Then an irresistible desire had
brought him to the regions beyond the Euphrates, and the mystery of
Assyria, Babylonia, and Chaldea had fascinated him, so that he had
visited the land of Nimrod, seen the site of their old buried capitals,
had been the guest in the tents of Shammar and Aneyzah Arabs, and even
passed on to see the famous forty columns of Chilminar, old Persian
Persepolis, and to penetrate the mountain fastnesses where the
Bakhtiyari maintained a perilous freedom. Never was man better trained
by enthusiasm and experience for his task, and the late discoveries of
M. Botta had inflamed his desire to surpass what his French friend
had done.

His plan was not to begin excavations at Nineveh, opposite Mosul, but
twenty miles south, at the great mound of Nimroud, which bore the name
of the mighty hunter Nimrod. Xenophon and his Ten Thousand had seen and
wondered at its pyramid. There he would be free from the army of
mischievous spectators that would swarm from Mosul, had he selected the
site of Nineveh, and from the constant interference of the Turkish
governor. The Pasha at Mosul was a cruel scoundrel, who was robbing and
killing the people as his whim or greed prompted, and had reduced the
tribes of the neighborhood to a state of terror. Accordingly, Mr.
Layard, who was armed with protecting letters from the British
Ambassador and the Porte, thought it wise to conceal his purpose, let it
be reported that he was going on a hunting expedition; and with a few
tools and a supply of guns and spears, on the 8th of November, 1845,
accompanied only by his cawass, the soldier attendant detailed for the
protection of travellers, a servant, and one laborer, he floated down
the Tigris, and in four hours reached the bourne of his long hopes. He
had the mound, he had the money, and now he would dig.

The Arabs have strange stories of this ruin. The palace, they say, was
built by Athur, the vizier of Nimrod. There Abraham brake in pieces the
idols worshipped by the unbelievers. Nimrod was angry and waged war on
the holy patriarch. Abraham prayed to God: "Deliver me, O God, from this
man who worships stones, and boasts himself to be lord of all kings;"
and God said to him, "How shall I punish him?" and the prophet answered,
"To thee armies are as nothing, and the strength and power of men
likewise. Before the smallest of thy creatures will they perish." And
God was pleased at the faith of his servant, and he sent a gnat that
vexed Nimrod day and night, so that he built himself a room of glass in
that palace that he might dwell therein and shut out the insect. But the
gnat entered also, and passed by his ear into his brain, upon which it
fed, and increased day by day, so that the servants of Nimrod beat his
head continually with a mallet that he might have some ease from his
pain; but he died after suffering these torments four hundred years. And
after him the mound was named Nimroud.

It was dark when Layard and his little company reached the place. They
found near by a few huts occupied by poor Arabs, who had been harried by
the Turkish Pasha. There they slept, or tried to sleep. But the
explorer could not sleep. Hear him:--

"Hopes, long cherished, were now to be realized, or were to end in
disappointment. Visions of palaces under ground, of gigantic monsters,
of sculptured figures, and endless inscriptions, floated before me.
After forming plan after plan for removing the earth and extricating
these treasures, I fancied myself wandering in a maze of chambers from
which I could find no outlet. Then, again, all was reburied, and I was
standing on the grass-covered mound. Exhausted, I was at length sinking
into sleep, when, hearing the voice of Awad, I rose from my carpet and
joined him outside the tent. The day already dawned. The lofty cone and
broad mound of Nimroud broke like a distant mountain on the
morning sky."

Awad, his host, was a little chief among the Arabs, and was engaged to
take charge of the diggers. The first morning he had six Arabs at work,
and found alabaster slabs with cuneiform inscriptions. He was now sure
he would succeed.

It is not necessary to give the diary of his work. To be sure, the
villanous Pasha forbade him to continue, and recalled him to Mosul, but
a new governor was sent from Constantinople, under whom he had no
difficulty. A great palace had been found, and chamber after chamber was
excavated, the walls covered with bas-reliefs and inscriptions. Then
came strange, gigantic lions with human heads, that had been placed by
the old Assyrian king to guard the entrances to his court. What was the
amazement of the Arabs and Turks cannot be told. First, the head was
uncovered. It stood out from the earth, placid and vast. Hear Layard
tell the story. He had been away to visit a neighboring chief:--

"I was returning to the mound, when I saw two Arabs urging their mares
to the top of their speed. 'Hasten, O Bey,' exclaimed one of them,
'hasten to the diggers, for they have found Nimrod himself. By Allah! it
is wonderful, but it is true! We have seen him with our eyes! There is
no God but God!' And both joining in this pious exclamation, they
galloped back to the tent."

Layard hastened to the trench, and there saw what he knew to be the head
of a gigantic lion or bull, such as Botta had uncovered at Khorsabad. It
was in admirable preservation. The expression was calm, yet majestic,
and the outline of the features showed a freedom and knowledge of art
that was scarcely to be looked for at so early a period. Says the

"I was not surprised that the Arabs had been amazed and terrified at
this apparition. It required no stretch of imagination to conjure up the
most strange fancies. This gigantic head, blanched with age, thus rising
from the bowels of the earth, might well have belonged to one of those
fearful beings which are pictured in the traditions of the country as
appearing to mortals, slowly ascending from the regions below. 'This is
not the work of men's hands,' exclaimed Sheikh Abdurrahman, who had
galloped to the mound on the first news, 'but of those infidel giants of
whom the Prophet, peace be with him! has said that they were higher than
the tallest date-tree; this is one of the idols which Noah, peace be
with him! cursed before the flood!' In this opinion all the bystanders

The Arabs have a ready explanation for every fresh discovery. When some
years later Mr. Layard's assistant and successor in the work of
excavation, Mr. Rassam, uncovered, at Abu-habba, a remarkable bas-relief
with the figure of the seated Sun-god and three approaching worshippers,
the Arab diggers rushed to him, declaring that they had found Noah and
his three sons, Shem, Ham, and Japhet, and demanded a sheep to make
a feast.

The report of the wonderful discovery of a royal palace, evidently older
than those of Nineveh, with magnificent decorations in alabaster and
cuneiform inscriptions, reached beyond Mosul to Constantinople. Sir
Stratford Canning was delighted with the result of his expedition. He
had a passion for discovery as well as diplomacy, and it is to him that
the British Museum is indebted for the priceless marbles of
Halicarnassus. He now obtained for Mr. Layard a firman, permitting him
to make what excavations he wished. Then the news reached London, and
the British Museum made a grant to support the work. All difficulties
were now removed. Conditions were even more favorable for him than they
are now. There was then no Imperial Museum in Constantinople to which
all objects found must be taken, but those that dug had the right to
carry off their prizes to London or Paris.

To tell the story of the further excavations is unnecessary. It is all
given in Layard's two splendid volumes, "Nineveh and its Remains," and
"Babylon and Nineveh;" and the bas-reliefs, statues, bronzes, ivories,
and inscriptions are magnificently reproduced in great folio volumes.
From Nimroud he went back to Mosul, and there opened the two mounds
opposite of Kuyunjik and Neby-Yunus, the site of old Nineveh. There more
palaces and friezes were found of other kings. Then he went back to
London, closing his successful campaign, more profitable if not more
glorious than those of war, and published the story of his work. Its
effect was marvellous. No such popular book of travels had ever
appeared; for it was a story of adventure, and also of strange
discovery. Mr. Layard had not suspected that he had the literary gift,
but he had it in rare measure. He had gained an inner view of the heart
of tribes, Moslem and Christian and semi-pagan, by his sympathy with
them and his knowledge of their tongues. He had lived in their tents and
huts. He had saved them from persecution by Turkish governors. Their
gratitude to him was beyond words, and he told their story with
affection and enthusiasm. Then his discoveries were in the lands made
historic not only by the campaigns of Xenophon and Alexander, but made
almost sacred by the Bible history. These were the lands whence came the
armies that fought with Israel. These were the kings whose wars are told
in the Jewish records; and the annals of these kings were found in their
palaces, and they gave full accounts of wars of which the Bible had
given the outline. Piety and learning joined to give extraordinary
interest to these discoveries and to this report of them. Mr. Layard
found himself famous, and the monuments he was bringing to the British
Museum were, and still are, the most extraordinary and fascinating in
all its corridors.

Of course, a new grant was made in behalf of the British Museum, and of
course he went back to continue and extend his researches. Now he wished
to go further south, beyond Nimroud to Kalah Shergat, the yet earlier
capital of Assyria; and yet further to Babylon, that he might see and
test the multitude of mounds of ancient Chaldea, the real land of
Nimrod, the seat of Eden, and the Tower of Babel, far more ancient than
any one of the three capitals of Assyria. While he did scarce more than
to visit and report on the Babylonian mounds, his diggings in Nineveh
itself were of vast importance, for there he found the library of
Asshurbanabal, on clay tablets, which has given us our chief knowledge
of the literature and learning of the ancient East. In 1852 he returned
to England to publish his "Monuments of Nineveh," and left the further
exploration to his able lieutenant, Mr. Rassam, and to a noble
succession of explorers who should follow, and to a no less noble line
of scholars who should interpret the inscriptions and recover the
history of the nations; so that we now know more exactly the history of
Babylonian and Assyrian kings, and from more authentic records, and more
completely the social condition and business life of the countries, than
we do the history of Greece, or the life of the Greeks even of the time
of Pericles, and that, too, for a period of three thousand years.

To illustrate this fact, let us take the black obelisk of Shalmaneser
II., found by Layard at Nimroud. It is a column of basalt seven feet
high and about two feet wide at the base, from which it narrows
slightly, until near the top it is reduced by three steps. On the four
sides is engraved in five rows of bas-reliefs, twenty in all, the
pictured history of the royal conquests, the submission of kings, and
the presentation of tribute. Above and below, and between, in two
hundred and ten lines, was cut an inscription which explained the
figures, and gave a full historical and, of course, contemporary and
official account of the glorious events of the royal reign. Not a line
was defaced; at the British Museum it can be seen to-day as perfect as
when engraved twenty-seven centuries ago. Other monuments of Shalmaneser
have been found. One is a great monolith with a portrait of the king in
all his fine array, and with one hundred and fifty-six lines of text.
Another is a series of splendid bronze plates that covered great wooden
gates, on which, in repousse work, were pictures of the royal victories,
and inscriptions explaining them. The Bible tells us of the rivalries
and jealousies of Ahab and Jehu, kings of Israel, and Benhadad and
Hazael, kings of Damascus. How surprising it is to find here not only
the story of the successive campaigns of Shalmaneser against these same
kings, the number of their chariots and soldiers, but to see pictured
before us the tribute sent by Jehu. We learn that Shalmaneser reigned
from 859 to 825 B.C., and we have the record of all his successive
campaigns, the first twenty-six of which he led in person. There is not
another country of which, before the invention of printing, we have so
minute a history; and all had been lost, except the mention of a name or
two, whether historical or legendary we hardly knew, until Layard and
his fellow-explorers opened the mounds of Assyria.

But enough for Layard. He is only one, though the principal one, of all
the explorers of the buried records of the empires of the Tigris and
Euphrates. And Babylonia and Assyria are not the only countries that
history required us to explore. Greece and its neighboring states and
islands have not even yet been fairly investigated. Much of Asia Minor
is still a virgin field. Syria and Palestine have hardly been scratched
with the spade. More has been done in Egypt, but more yet is to be done.
And when we go into the further east of Persia and Old Elam, not to
speak of the yet farther east of Central Asia, now just beginning to
yield strange treasures to daring travellers, and ancient India and
China,--how ancient we know not at all,--there is field for centuries of
further research. For we must go back past empires and kingdoms and
tribal conditions to the very beginning of the human race on the earth,
even if so it be, to the first _Pithecanthropus_ which men of science
tell us was the link which connected _Homo sapiens_ with the race of
primitive simians. And all this, it may well be, is preserved in
undecaying records just a few feet under the ground, if one only knew
where to dig for it; nay, we now know where to dig for the most and best
of it, and we only await the Stratford Cannings, who will give the
money, and the Austen Layards, who have the enthusiasm for the work.

After Layard and Rassam, after Rawlinson and Botta, George Smith took
flying trips to the site of Nineveh twice that he might gather the
remaining fragments of the great library of Asshurbanabal, and he died
in the field far from home. It was he that found among Layard's tablets
the Babylonian account of the Deluge, so much like that in the Bible. He
was the first of a second generation who, following Rawlinson and
Oppert, decipherers as well as explorers, were able to read as they
found. I can only mention the names of the Englishmen Taylor and Loftus;
of the Frenchmen, Place and De Sarzec; and, later, the Americans,
Peters, Hilprecht, and Haynes, who have so faithfully explored the
extremely archaic mound of Niffer, which I had the honor to recommend
for excavation after I had visited the mounds of Southern Babylonia in
the winter of 1884-85. And now the Germans, with scientific as well as
commercial and political purpose, with their railroad to pass down the
valley through Baghdad to the Persian Gulf, which gives them predominant
influence, have sent expeditions well equipped with scholars and
engineers to the choicest sites in Babylonia, to Warka, the ancient
Erech, and to Babylon itself; and with Teuton thoroughness they are
excavating the most famous of ancient ruins and gathering fresh
treasures of archaeological research. Nor have they left the land of the
Hittites unexplored, for Germany claims the first rights, politically,
in all Anatolia, the right of succession and possession when the Turk is
expelled, and German archaeological science is bound to be first on
that field.

And now what have we found as the fruit of all this labor of
exploration? Is it worth the labor and the expense?

Let us look first--it can be only a glance--at Egypt, for Egypt was the
land first and most persistently explored. The French Government for
scores of years has been at work there. Germans and Italians have
explored the ruins; two English societies have for years kept
expeditions in the field; and just now a Californian university sends an
American Egyptologist to uncover the tombs and read the hieroglyphs of
the kings. Not only are the figured monuments of Egypt published in
princely folios, but its records have been translated and its lost
history recovered to the world's knowledge. Instead of the bare
"Pharaoh" of the Bible, a common designation for all the kings, and in
place of a bare list of names and dynasties copied from Manetho, and so
altered and corrupted in the copying as to be neither Greek nor
Egyptian, we have, on scarab, or gravestone, or pyramid, or
rock-sepulchre wall, in his own spelling, the name of almost every king
from the latest time of the Ptolemies back to the first king of the
first dynasty, five thousand--or was it six thousand?--years before
Christ. And not their names only, but the very pictures of their wars.
We see how they went up the Nile and fought the blacks of Abyssinia, and
brought back the spoils of Punt We see them sending their squadrons
into Syrian Asia, and waging a dubious battle with the Hittites before
the walls of Hamath, where Rameses in his lion-guarded chariot performs
prodigies of valor, and from which he returns not only to paint on
sacred walls the picture of his victory, but also to inscribe a copy of
the treaty of peace with the Hittite king, the earliest treaty in the
preserved annals of diplomacy. Well wrought that Rameses the Great for
eternal fame in the sixty years of his reign, fifteen centuries before
the birth of our Lord. But what fame had been his, had not explorers and
excavators and scholars dug and found and copied and translated what the
sands had covered for centuries? And to-day the curious traveller stops
in sight of the pyramids on the banks of the Nile, and enters the Bulaq
Museum, and there he sees set up before him the very mummy of Rameses
himself and of a dozen other royal personages, rifled from their tombs
and displayed for your amazement and mine. There is the very
Pharaoh--you can see his features, you can touch his coffin--who chased
the Children of Israel out of Egypt. There are the household implements,
the furniture of their homes, the jewelry their queens wore,--queens who
were also sisters of the kings, as Sarah was the sister of Abraham.

Or would you know of some great revolution in Egypt? These decipherers
of the inscriptions will tell you how the Shepherd Kings overthrew the
native dynasty, coming with their armies from Asia long before Rameses,
and changed religion and customs; under whom Jacob and his sons found
hospitable welcome, until their hated race was expelled by a stronger
native dynasty that knew not Joseph. Or they will tell you of the royal
reformer Khuenaten, son of a famous Eastern mother, a queen from the
banks of the Euphrates. Taught by her, perhaps, a purer religion, he
attempted to replace the worship of Egypt's bestial gods by the worship
of the one only great God, whose symbol was the sun. But the priestly
clan was too strong for him, and the succeeding Pharaohs destroyed his
records and chiselled out his name where it had been cut in stone that
no memory of his sacrilege might be preserved. A royal Moses there could
not be. The worshipper of one God, whether king or son of Pharaoh's
daughter, could bring no reformation to Egypt.

Or would you learn how Egypt ruled its subject territory? You can read
the correspondence of a dozen local Egyptian governors in Palestine and
Syria in the century before Moses led the Hebrew slaves out of Egypt.
There is the letter of the King of Jerusalem, where Melchizedek reigned
in the times of Abraham; and they tell of rebellions against the fading
power of Egypt, and of the fear of the advancing Hittites. The earliest
kings, those that built the pyramids, appear before us real in their
personality, emerging out of misty legend or myth, and, earlier still,
even the prehistoric races that antedated the very beginning of
civilization. Whence came that first dynasty? Who invented writing? Were
they autochthons? Hardly. These are questions left for further explorers
to answer. Probably those first messengers of civilization came from the
East, perhaps from Arabia, perhaps from Babylonia, or perhaps the first
Babylonians and Egyptians formed a common stock somewhere near the mouth
of the Euphrates. Perhaps the Bible is right in saying that the first
seat of civilized man was in Eden, and that the Euphrates was the chief
river of Paradise. Or was it from Arabia, the immemorial home of the
Semitic tribes, that land of sand and mountain and fertile valley, land
of changeless culture and tradition, so near the centres of
civilization, and yet still the most inaccessible, the least known
portion of the inhabited earth,--was it from Arabia that the wiser,
stronger multitude came that first overran the valleys of both the Nile
and the Euphrates, bringing to Egypt and Chaldea arts and letters? We do
not know. Some future explorer must teach us. But the German Glaser has
within these few years brought back from hazardous journeys a multitude
of inscriptions that tell of kingdoms that fringed its southern coast
and extended we know not how far into the interior in those early days
when one of the queens of Sheba brought presents to Solomon, and when,
earlier still, we are told there were dukes of Edom before there was any
king in Israel. They say that a railroad is to be built to Mecca; Arabia
is not to be always a closed land, neighbor as it is to Egypt. We shall
know one of these days whether, as scholars suspect, out of Arabia and
across the Straits of Bab-el-Mandeb, where, at the southern end of the
Red Sea, Africa almost touches Asia, there came that mighty flood of
more forceful men, bred in the deserts and hills, who, passing down the
Nile, first brought history to Egypt; and whether it was this same
Semitic people, as scholars suspect again, that spread resistlessly
eastward to the Euphrates valley, and did an equal service in conquering
and assimilating the black aborigines of these swamps and lagoons. The
spade will tell us.

Or was it still further east, in the highlands of Persia, that men first
learned how to write and record history? We cannot go back so far in the
history of Babylonia--Professor Hilprecht dares to carry us seven
thousand years before Christ--that we do not find its kings fighting
against Elam. And only in the last decade of the Nineteenth century the
Frenchman De Morgan has made marvellous discoveries in the Elamite
lands. What a noble passion those Frenchmen have for discovery! For
Egypt did not Napoleon provide the most elephantine books of monuments
and records that printing-presses have yet issued? And from that time to
this have not Frenchmen held the primacy in excavations until, even
while England holds and rules Egypt, she leaves, by special convention,
the care of its monuments and their exploration to French savants? And
before Layard removed a basketful of the earth that covered the palace
of Shalmaneser at Nimroud, had not the Frenchman Botta disclosed the
friezes and sphinxes of Sargon at Khorsabad; and in these late years is
it not the Frenchman De Sarzec who has brought from Telloh to the Louvre
the statues of Chaldean kings that lived almost five thousand years ago?
And so to France was given the right, for the honor and enrichment of
the Louvre, to explore Persia; and De Morgan went to Susa, to Shushan,
the palace of Xerxes and Darius, of Ahasuerus and Esther, in search of
what was far earlier than they, for another Frenchman and his wife, M.
and Mme. Dieulafoy, had already excavated the noble palace of these
Persian kings. Far below the palace of Xerxes he has found vastly
earlier remains. There is the column set up, if we can believe the
Assyriologists who trust the chronology of Nabonidus, the last king of
Babylon,--and it is not incredible,--three thousand eight hundred years
before Christ, by Naram-Sin, a Babylonian king, to commemorate one of
his raids into the land of what were perhaps his stronger enemies. It
is a noble composition, with archaic writing, and a stately figure of
the king climbing the mountains and slaying his enemies; it shows an art
that might well have developed into the best that Greece has produced.
But De Morgan has only begun to scratch the surface of the mounds of
Elam, and a multitude of scholars believe that out of Elam came the
first civilization of Chaldea. We shall find out yet; for the record is
in the earth, and only waits the man who will dig it out, and then the
man who will read it.

We are tempted to go further east and recall that in India, the land
where Alexander made his most distant conquests, a multitude of English
scholars have been searching the ruins of old temples for the earliest
memorials of the worship of Buddha. Just now they have found his
birthplace and precious relics. But that takes us too far afield, and
would tempt us to further excursions in Burmah and China. We must come
back to Western Asia and the shores of Europe.

As has been indicated, the greatest puzzle of ancient history is that of
the Hittite empire, which seems to have ruled all Asia Minor at some
uncertain time, and to have extended over Syria and Palestine. No sooner
had the greatest Egyptian kings, Thothmes and Rameses, ventured their
armies into Asia, perhaps in vengeance on the incursions of Ionian
pirates, perhaps in requital of the tyrannies of the hated Shepherd
Kings, than they learned of the Hittites on the shores of the Euphrates.
Then, a century or two later, a mass of official correspondence sent by
the Kings of Palestine and Syria, dug up in Egypt, reports that the
Hittites had appeared as invaders from the north and beseeches military
aid. But the power of Egypt had waned, and the Hittites were supreme
until the Assyrians began and carried on for five centuries the
uncertain war which ended in the utter overthrow of the Hittites and all
their allies in a great battle at Carchemish. That great mound of
Carchemish needs to be thoroughly explored. Already an English
expedition has very carelessly just opened the hill and exposed, but not
fairly published, some few as fine friezes as are to be found in the
Assyrian capitals, with unread Hittite inscriptions, and a fine statue
of the Hittite Venus; but much remains to reward the student of Oriental
history and art. At Senjirli a German expedition under Von Luschan has
done more and better work, handsomely published, but this was a smaller
Syrian town, and less was to be expected; and yet here, and near by,
were found what was not expected, steles (upright slabs or pillars) with
the portraits of kings in high relief, covered over with long
inscriptions in Aramaic, the oldest and longest as yet discovered
anywhere in that language. It was a magnificent result of very moderate
labor,--Hittite friezes, Assyrian and Aramean inscriptions all in one
little mound. But for the most part we know the art and writing of the
Hittites from what we have found above ground, in their towns and
fortresses in the hills, for little digging has been done. At Pterium
was a principal sacred capital, and there, on a natural corridor of
rock, they carved a procession of gods and kings and soldiers that
excites the wonder of scholars. As I write, the announcement comes that
Professor Sayce has at last discovered the secret of the Hittite
hieroglyphs, and we may hope that very soon it will be possible to read
them. But there is vastly more of their records yet to be disinterred.

And there remain the two lands most sacred and beloved in poetry and
history,--the land of Israel and the land of Homer. It is amazing that
so little search has been made to find out what is hidden under the soil
of Palestine. Scholars in plenty have walked over the top of it, and
have told all that is on the surface, but almost nothing has been done
underground, no such excavations as in Egypt or Assyria. I do not forget
that the English Palestine Exploration Fund has followed out, with
trenches and tunnels, the walls of Jerusalem, nor that one or two old
mounds have been partly explored. But what is this to the great work
that needs to be done? There has been found on the surface the Moabite
Stone, at the old capital of Dibon, a wonderful record of early kings
mentioned in the Bible. And there is the short account in the rock-cut
conduit of Siloam, of the success of the workmen in the time of
Hezekiah, who, beginning at the two ends, did the fine engineering feat
of having their tunnels meet correctly in the solid rock. But when
Jerusalem is fully explored, and the northern capitals of Bethel and
Tirzah and Samaria, and a hundred other mounds that mark the site of
Jewish, Israelite, Philistine, and Amorite cities, we may expect
marvellous discoveries that will illumine our Holy Scriptures.

And one region yet remains to be considered, the scattered coasts and
islands that owned the Greek speech, and that created the Greek
civilization. It is not the Greece of the Parthenon and Pericles that we
wish to discover, for that we fairly know; but the arts and the history
of those earlier Greeks and Trojans that Homer tells of, the age of
Agamemnon and Ulysses, of Helen and Hector and Priam, and of the yet
earlier tribes that sailed the Aegean, and settled the Mediterranean
islands, and sent their ships to the Egyptian coasts, and sought golden
fleeces on the Euxine Sea. All about the coast of Asia Minor they lived,
while that Hittite power was ruling the interior; and, intermixed with
Phoenician trading-posts, they held the great islands of Crete and
Cyprus and the shores of Sicily and Italy. What shall we call them? Were
they Dorians, or Heraclidae, Achaeans or Pelasgi? Were they of the same
race as the mysterious Etruscans, or shall we name them simply
Mycenaeans, as we call the art Mycenaean that ruled the islands and
coasts down to the Homeric age, and we know not how many centuries
earlier, but certainly as far back as the conquering period of the
Eighteenth Egyptian Dynasty of Thothmes? Their soldiers and merchants
and their fine vases are pictured on the walls of Egypt, and their
pottery has long been studied; but we knew little of them until Dr.
Schliemann, the Greek merchant who achieved wealth in the United States,
bravely opened the great ruins of Troy, in the full patriotism of his
assurance that Homer's story of the Trojan war was history as well as
poetry. As he found one burnt and buried city under another,--for many
times was Troy destroyed,--and extended his investigations to Tiryns and
other ancient cities, one volume of splendid research followed another,
until the trader had compelled the unwilling scholar to confess that he
must dig for both history and art. To be sure, his interpretations were
quite too literal at first, but the whole world of classical scholarship
has learned from him the new method of research. Splendid have been the
results. If we are not sure which stratum represents the city of Priam,
we do learn how the people lived, and how fine was their work in silver
and gold, and how slight their knowledge of letters. Dr. Schliemann has
now a multitude of imitators. France and Germany and England and the
United States each maintain a school of archaeology in Athens, and each
conducts careful explorations. Our American School lost to the French,
for lack of money at the right time, the chance to explore Delphi, but
it has carried on careful explorations at Corinth and other places. How
wonderful was the discovery, not long ago, of a shipload of bronze and
marble statues wrecked while being transported as spoil of war from
Corinth to Rome!

But the most surprising discoveries in the realm of old Greek history
and art are those that have been made in these last two or three years
in Crete. Crete was a famous centre of ancient Greek legend. Jupiter was
born and reared on Mount Ida. From another mountain summit in Crete the
gods watched the battle on the plains of Troy. There ruled Minos, who
first gave laws to men, and who at his death was sent by the gods to
judge the shades as they entered the lower world. There was the famous
Labyrinth, and there the Minotaur devoured his annual tale of maidens
until he was slain by Theseus. Was there such a real palace of Minos as
the Greek poets sung? The magnificent palace of the Cretan kings at
Cnossus has been found, by Mr. Evans, with its friezes, its spiral
ornaments, its flounce-petticoated women, its treasuries, and its
tablets written in a script so old that it cannot yet be read, but which
will be read as surely as scholarship leaves none of its riddles
unsolved. The childhood of Greece, its mighty infancy, out of which it
grew to be the creator and the example of all the world's culture, is
even now being exposed to our view, safely kept to be recovered by the
scholars of our generation.

Of interest rather to the student of the curiosities of history are the
mounds and pyramids and temples built by the aborigines of America; for
these tribes have had absolutely no part in creating our dominant
civilization or developing its art. China and Japan are, at this late
day, giving something to the world's store of beauty and utility; but
the mound-builders and cliff-dwellers, the Mayas and Toltecs and Incas,
have given absolutely nothing which the world cared to accept. But this
does not argue that it is not worth while to learn what we can of the
rude civilization of the races whom we have displaced. Their arrowheads
and hatchets are in every little museum. Their mounds, sometimes shaped
like serpents or tortoises or lizards, are scattered over all the
central States, and many of them have been carefully explored with
scanty results. The cliff-dwellers have left somewhat richer remains,
more baskets and parched corn, yet nothing of artistic value. We have to
go to Mexico and Yucatan and further south to Peru, to find the
majestic capitals of the Mayas and Incas, who had really reached a fair
degree of such civilization as stone and copper, without iron, and the
beginnings of picture symbols, without letters, could provide. Humboldt
and Stephens, and Lord Kingsborough, and Squier, and Tchudi, and Charnay
have made explorations and found vast and wonderful cities, some of them
deserted and overgrown before Cortez and Pizarro took possession of the
lands for Spain and enslaved the people. Where the city of Mexico now
stands was a famous capital, from whose ruins were taken the great
Calendar stone and the double statue of the god of war and the god of
death. In Palenque and Uxmal, capitals of Yucatan, were immense palaces
and temples, with the weird ornamentation of Mayan imagination; and
equal wonders exist in the high uplands where the Incas ruled Peru. Even
their barbaric art and their unrecorded history must be recovered, to
satisfy the curiosity of the more fortunate races whose boasted
Christianity visited on them nothing better than cruel slaughter. At
least we can give them museums and publish magnificent pictures of
their ruins.

So we may bless the ashes and sand that seemed to destroy and bury the
monuments of the mighty empires of the ancient world, but which have
kindly covered and preserved them, just as we put our treasures away in
some safety-vault while absent on a long journey. The fire burned the
upper wooden walls of the city, and it fell in ruins, but under those
ruins, covered by that ashes, were preserved for two thousand, three
thousand, five thousand years uninjured, the choicest sculpture and the
most precious records of ancient nations,--retained beyond the reach of
vandal hands, until scholarship had grown wise enough to ask questions
of forgotten history, and had sent Layard and Schliemann and De Sarzec
and Evans and a hundred other men to dig with their competitive spades.
But in all the long list of enthusiasts not one deserves a higher honor
or has reaped a richer harvest than Sir Henry Layard.


Layard: "Early Adventures;" "Nineveh and its Remains;" "Nineveh and
Babylon;" "Monuments of Nineveh." Botta: "Monument de Ninive." Loftus:
"Chaldea and Susiana." Y. Place: "Ninive et Assyrie." Hilprecht:
"Babylonian Expedition of the University of Pennsylvania;" "Recent
Research in Bible Lands." Perrot and Chipiez: "History of Art in
Antiquity." J.P. Peters: "Nippur." R.W. Rogers: "History of Babylonia
and Assyria." F. Lenormant: "Students' Manual of the Ancient History of
the East;" "The Beginnings of History." Maspero: "Dawn of Civilization;"
"Struggle of the Nations;" "Passing of the Empires;" "Egyptian
Archaeology;" "Life in Ancient Egypt and Assyria." C.J. Ball: "Light
from the East." Egypt Exploration Fund's Publications. F.J. Bliss:
"Exploration in Jerusalem;" "A Mound of Many Cities." Schliemann: "Troy
and its Remains;" "Ilios;" "Mycenae;" "Tiryns;" "Troja." A.J. Evans:
"Cnossus;" "Cretan Pictographs." Tsountas and Manatt: "The
Mycenaean Age."





"No man is born into the world whose work
Is not born with him. There is always work,
And tools to work withal, for those who will."


A man was born into the world, on the 22d of September, 1791, whose work
was born with him, and who did this work so well that he became one of
its greatest benefactors. Indeed, much of the marvellous advance made in
the electric arts and sciences, during the last half-century, can be
directly traced to this work.

It was in Newington Butts, in London, England, that the man-child first
opened his eyes on the wonders of the physical world around him. To
those eyes, in after years, were given a far deeper insight into the
mysteries of nature than often falls to the lot of man. This man-child
was Michael Faraday, who has been justly styled, by those best capable
of judging him, "The Prince of Experimental Philosophers."

The precocity so common in the childhood of men of genius was
apparently absent in the case of young Faraday. The growing boy played
marbles, and worried through a scant education in reading, writing, and
arithmetic, unnoticed, and most probably, for the greater part, severely
left alone, as commonly falls to the lot of nearly all boys, whether
ordinary or extraordinary. At the early age of thirteen, he was taken
from school and placed on trial as errand-boy in the book-shop of George
Ribeau, in London. After a year at this work, he was taken as an
apprentice to the book-binding trade, by the same employer, who, on
account of his faithful services, remitted the customary premium. At
this work he spent some eight years of his life.

But far be it from us even to hint at the absence of genius in the young
child. Genius is not an acquired gift. It is born in the individual.
Apart from the marvellous achievements of the man, a mere glance at the
magnificent head, with its high intellectual forehead, the firm lips,
the intelligent inquiring eyes, and the bright face, as seen in existing
pictures, assures us that they portray an unusual individuality,
incompatible with even a suspicion of belonging to an ordinary man.
Doubtless the growing child did give early promise of his future
greatness. Doubtless he was a formidable member of that terrible class
of inquiring youngsters who demand the why and the wherefore of all
around them, and refuse to accept the unsatisfactory belief of their
fathers that things "are because they are." In its self-complacency, the
busy world is too apt to fail to notice unusual abilities in
children,--abilities that perhaps too often remain undeveloped from lack
of opportunities. But whether young Faraday did or did not, at an early
age, display any unusual promise of his life-work, all his biographers
appear to agree that he could not be regarded as a precocious child.

Faraday disclaimed the idea that his childhood was distinguished by any
precocity. "Do not suppose that I was a very deep thinker, or was marked
as a precocious person," says Faraday, when alluding to his early life.
"I was a very lively, imaginative person, and could believe in the
'Arabian Nights' as easily as the 'Encyclopaedia,' but facts were
important to me, and saved me. I could trust a fact and always
cross-examined an assertion. So when I questioned Mrs. Marcet's book [he
is alluding to her 'Conversations on Chemistry'], by such little
experiments as I could find means to perform, and found it true to the
facts as I could understand them, I felt that I had got hold of an
anchor in chemical knowledge, and clung fast to it."

But while there may be a question as to the existence of precocity in
the young lad, there does not appear to be any reason for believing that
his unusual abilities were the result of direct heredity. His father, an
ordinary journeyman blacksmith, never exhibited any special intellectual
ability, though possibly poverty and poor health may have been
responsible for this failure. His mother, too, it appears, was of but
ordinary mentality.

The environment of those early years--that is, from 1804 to 1813, while
in the book-binding business--was far from calculated to develop any
marked abilities inherent in our young philosopher. What would seem less
calculated to inspire a wish to obtain a deeper insight into the
mysteries of the physical world than the trade of book-binding,
especially in the case of a boy whose scholastic education ceased at
fourteen years and was limited to the mere rudiments of learning? But,
fortunately for the world, the inquiring spirit of the lad led him to
examine the inside of the books he bound, and thus, by familiarizing
himself with their contents, he received the inspiration that good
writing is always ready to bestow on those who properly read it. Two
books, he afterwards informs us, proved of especial benefit; namely,
"Marcet's Conversations on Chemistry," already referred to, and the
"Encyclopaedia Britannica." To the former he attributes his grounding in
chemistry, and to the latter his first ideas in electricity, in both of
which studies he excelled in after years. As we have seen, even at this
early age he followed the true plan for the physical investigator,
cross-questioned all statements, only admitting those to the dignity of
facts whose truth he had established by careful experimentation.

But our future experimental philosopher has not as yet fairly started on
the beginnings of his life-work. The possibilities of the book-binding
trade were too limited to permit much real progress. A circumstance
occurred in the spring of 1812 that shaped his entire after-life. This
was the opportunity then afforded him to attend four of the last
lectures delivered at the Royal Institution, by the great Sir Humphry
Davy. Faraday took copious notes of these lectures, carefully wrote them
out, and bound them in a small quarto volume. It was this volume, which
he afterwards sent to Davy, that resulted in his receiving, on March 1,
1813, the appointment of laboratory assistant in the Royal Institution.
His pay for this work was twenty-five shillings a week, with a lodging
on the top floor of the Institute, a very fair compensation for
the times.

Very congenial were the duties of the young assistant. They were to keep
clean the beloved apparatus of the lecturers, and to assist them in
their demonstrations. The new world thus opened was full of bright
promise. He keenly felt the deficiencies of his early education, and
did his best to extend his learning, so that he might be able to make
the most of his opportunities. But what he perhaps appreciated the most
was the inspiration he received from the great teacher Davy, who was
then Professor of Chemistry and Director of the Laboratory of the Royal
Institution; for Faraday assisted at Davy's lectures, and in an humble
way even aided his investigations, sharing the dangers arising from the
explosion of the unstable substance, chloride of nitrogen, that Davy was
then investigating. Faraday has repeatedly acknowledged the debt owed to
the inspiration of this teacher. Davy also, in later life generously
recognized, in his former assistant, a philosopher greater than himself.
As the renowned astronomer, Tycho Brahe, discovered in one of his
pupils, John Kepler, an astronomer greater than the master, and as
Bergman, the Swedish chemist, in a similar manner, discovered the
greater chemist Scheele, so when Davy, in after years, was asked what he
regarded as his greatest discovery, he briefly replied,
"Michael Faraday."

The task of the scientific historian, who endeavors honestly to record
the progress of research, and to trace the influence of the work of some
individual on the times in which he lived, is by no means an easy one;
for, in scientific work one discovery frequently passes so insensibly
into another that it is often difficult to know just where one stops
and the other begins, and much difficulty constantly arises as to whom
the credit should be given, when, as is too often the case, these
discoveries are made by different individuals. It is only when some
great discovery stands alone, like a giant mountain peak against the
clear sky, that it is comparatively easy to determine the extent and
character of its influence on other discoveries, and justly to give the
credit to whom the credit is due. Such discoveries form ready points of
reference in the intellectual horizon, and mark distinct eras in the
world's progress. This is true of all work in the domain of physical
science, but it is especially true in that of electricity and magnetism,
in which Faraday was pre-eminent. The scope of each of these sciences is
so extended, the number of workers so great, and the applications to the
practical arts so nearly innumerable, that it is often by no means an
easy task correctly to trace their proper growth and development.

Faraday's investigations covered vast fields in the domain of chemistry,
electricity, and magnetism. It is to the last two only that reference
will here be made. Faraday's life-work in electricity and magnetism
began practically in 1831, when he made his immortal discovery of the
direct production of electricity from magnetism. His best work in
electricity and magnetism was accomplished between 1831 and 1856,
extending, therefore, over a period of some twenty-five years, although
it is not denied that good work was done since 1856. Consequently, it
was at so comparatively recent a date that most of Faraday's work was
done that some of the world's distinguished electricians yet live who
began their studies during the latter years of Faraday's life. The
difficulties of tracing, at least to some extent, the influence that
Faraday's masterly investigations have had on the present condition of
the electrical arts and sciences will, therefore, be considerably

The extent of Faraday's researches and discoveries in magnetism and
electricity was so great that it will be impossible, in the necessarily
limited space of a brief biographical sketch, to notice any but the more
prominent. Nor will any attempt be made, except where the nature of the
research or discovery appears to render it advisable, to follow any
strict chronological order; for, our inquiry here is not so much
directed to a mere matter of history as to the influence which the
investigation or discovery exerted on the life and civilization of the
age in which we live.

There is a single discovery of Faraday that stands out sharply amidst
all his other discoveries, great as they were, and is so important in
its far-reaching results that it alone would have stamped him as a
philosophical investigator of the highest merits, had he never done
anything else. This was his discovery of the means for developing
electricity directly from magnetism. It was made on the 29th of August,
1831, and should be regarded as inspired by the great discovery made by
Oersted in 1820, of the relations existing between the voltaic pile and
electro-magnetism. It was in the same year that Ampere had conducted
that memorable investigation as to the mutual attractions and repulsions
between circuits through which electric currents are flowing, which
resulted in a theory of electro-magnetism, and finally led to the
production of the electro-magnet itself. Ampere had shown that a coil of
wire, or helix, through which an electric current is passing, acted
practically as a magnet, and Arago had magnetized an iron bar by placing
it within such a helix.

In common with the other scientific men of his time, Faraday believed
that since the flow of an electric current invariably produced
magnetism, so magnetism should, in its turn, be capable of producing
electricity. Many investigators before Faraday's time had endeavored to
solve this problem, but it was reserved to Faraday alone to be
successful. Since success in this investigation resulted from some
experiments he made while endeavoring to obtain inductive action on a
quiescent circuit from a neighboring circuit through which an electric
current was flowing, we will first briefly examine this experiment. All
his experiments in this direction were at first unsuccessful. He passed
an electric current through a circuit, which was located close to
another circuit containing a galvanometer,--a device for showing the
presence of an electric current and measuring its strength,--but failed
to obtain any result. He looked for such results only when the current
had been fully established in the active circuit. Undismayed by failure,
he reasoned that probably effects were present, but that they were too
small to be observed owing to the feeble inducing current employed. He
therefore increased the strength of the current in the active wire; but
still with no results.

Again and again he interrogates nature, but unsuccessfully. At last he
notices that there is a slight movement of the galvanometer needle at
the moment of making and breaking the circuit. Carefully repeating his
experiments in the light of this observation, he discovers the important
fact that it is only at the moment a current is increasing or decreasing
in strength--at the moment of making or breaking a circuit--that the
active circuit is capable of producing a current in a neighboring
inactive circuit by induction. This was an important discovery, and in
the light of his after-knowledge was correctly regarded as a solution of
the production of electricity from magnetism.

Observing that the galvanometer needle momentarily swings in one
direction on making the circuit, and in the opposite direction on
breaking it, he establishes the fact that the current induced on making
flows in the opposite direction to the inducing current, and that
induced on breaking flows in the same direction as the inducing current.

Having thus established the fact of current induction, he makes the step
of substituting magnets for active circuits; a simple step in the light
of our present knowledge, but a giant stride at that time. Remembering
that current induction, or, as he called it, voltaic current induction,
takes place only while some effect produced by the current is either
increasing or decreasing, he moves coils of insulated wire towards or
from magnet poles, or magnet poles towards or from coils of wire, and
shows that electric currents are generated in the coils while either the
coils or the magnets are in motion, but cease to be produced as soon as
the motion ceases. Moreover, these magnetically induced currents differ
in no respects from other currents,--for example, those produced by the
voltaic pile,--since, like the latter, they produce sparks, magnetize
bars of steel, or deflect the needle of a galvanometer. In this manner
Faraday solved the great problem. He had produced electricity directly
from magnetism!

With, perhaps, the single exception of the discovery by Oersted, in
1820, of the invariable relation existing between an electric current
and magnetism, this discovery of Faraday may be justly regarded as the
greatest in this domain of physical science. These two master minds in
scientific research wonderfully complemented each other. Oersted showed
that an electric current is invariably attended by magnetic effects;
Faraday showed that magnetic changes are invariably attended by electric
currents. Before these discoveries, electricity and magnetism were
necessarily regarded as separate branches of physical science, and were
studied apart as separate phenomena. Now, however, they must be regarded
as co-existing phenomena. The ignorance of the scientific world had
unwittingly divorced what nature had joined together.

In view of the great importance of Faraday's discovery, we shall be
justified in inquiring, though somewhat briefly, into some of the
apparatus employed in this historic research. Note its extreme
simplicity. In one of his first successful experiments he wraps a coil
of insulated wire around the soft iron bar that forms the armature or
keeper of a permanent magnet of the horse-shoe type, and connects the
ends of this coil to a galvanometer. He discovers that whenever the
armature is placed against the magnet poles, and is therefore being
rendered magnetic by contact therewith, the deflection of the needle of
the galvanometer shows that the coiled wire on the armature is traversed
by a current of electricity; that whenever the armature is removed from
the magnet poles, and is therefore losing its magnetism, the needle of
the galvanometer is again deflected, but now in the opposite direction,
showing that an electric current is again flowing through the coiled
wire on the armature, but reversed in direction. He notices, too, that
these effects take place only while changes are going on in the strength
of the magnetism in the armature, or when magnetic flux is passing
through the coils; for, the galvanometer needle comes to rest, and
remains at rest as long as the contact between the armature and the
poles remains unbroken.

In another experiment he employs a simple hollow coil, or helix, of
insulated wire whose ends are connected with a galvanometer. On suddenly
thrusting one end of a straight cylindrical magnet into the axis of the
helix, the deflection of the galvanometer needle showed the presence of
an electric current in the helix. The magnet being left in the helix,
the galvanometer needle came to rest, thus showing the absence of
current. When the bar magnet was suddenly withdrawn from the helix, the
galvanometer needle was again deflected, but now in the opposite
direction, showing that the direction of the current in the helix had
been reversed.

The preceding are but some of the results that Faraday obtained by
means of his experimental researches in the direct production of
electricity from magnetism. Let us now briefly examine just what he was
doing, and the means whereby he obtained electric currents from
magnetism. We will consider this question from the views of the present
time, rather than from those of Faraday, although the difference between
the two are in most respects immaterial.

Faraday knew that the space or region around a magnet is permeated or
traversed by what he called magnetic curves, or lines of magnetic force.
These lines are still called "lines of magnetic force," or by some
"magnetic streamings" "magnetic flux," or simply "magnetism." They are
invisible, though their presence is readily manifested by means of iron
filings. They are present in every magnet, and although we do not know
in what direction they move, yet in order to speak definitely about
them, it is agreed to assume that they pass out of every magnet at its
north-seeking pole (or the pole which would point to the magnetic north,
were the magnet free to move as a needle), and, after having traversed
the space surrounding the magnet, reenter at its south-seeking pole,
thus completing what is called the magnetic circuit. Any space traversed
by lines of magnetic force is called a magnetic field.

But it is not only a magnet that is thus surrounded by lines of
magnetic force, or by ether streamings. The same is true of any
conductor through which an electric current is flowing, and their
presence may be shown by means of iron filings. If an active
conductor--a conductor conveying an electric current, as, for example, a
copper wire--be passed vertically through a piece of card-board, or a
glass plate, iron filings dusted on the card or plate will arrange
themselves in concentric circles around the axis of the wire. It
requires an expenditure of energy both to set up and to maintain these
lines of force. It is the interaction of their lines of force that
causes the attractions and repulsions in active movable conductors.
These lines of magnetic force act on magnetic needles like other lines
of magnetic force and tend to set movable magnetic needles at right
angles to the conducting wire.

The setting up of an electric current in a conducting wire is,
therefore, equivalent to the setting up of concentric magnetic whirls
around the axis of the wire, and anything that can do this will produce
an electric current. For example, if an inactive conducting wire is
moved through a magnetic field; it will have concentric circular whirls
set up around it; or, in other words, it will have a current generated
in it as a result of such motion. But to set up these whirls it is not
enough that the conducting wire be moved along the lines of force in the
field. In such a case no whirls are produced around the conductor. The
conductor must be moved so as to cut or pass through the lines of
magnetic force. Just what the mechanism is by means of which the cutting
of the lines of force by the conductor produces the circular magnetic
whirls around it, no man knows any more than he knows just what
electricity is; but this much we do know,--that to produce the circular
whirls or currents in a previously inactive conductor, the lines of
force of some already existing magnetic field must be caused to pass
through the conductor, and that the strength of the current so produced
is proportional to the number of lines of magnetic force cut in a given
time, say, per second; or, in other words, is directly proportional to
the strength of the magnetic field, and to the velocity and length of
the moving conductor.

Or, briefly recapitulating: Oersted showed that an electric current,
passed through a conducting circuit, sets up concentric circular whirls
around its axis; that is, an electric current invariably produces
magnetism; Faraday showed, that if the lines of magnetic force, or
magnetism, be caused to cut or pass through an inactive conductor,
concentric circular whirls will be set up around the conductor; that is,
lines of magnetic force passed across a conductor invariably set up an
electric current in that conductor.

The wonderful completeness of Faraday's researches into the production
of electricity from magnetism may be inferred from the fact that all
the forms of magneto-electric induction known to-day--namely,
self-induction, or the induction of an active circuit on itself; mutual
induction, or the induction of an active circuit on a neighboring
circuit; and electro-magnetic induction, and magneto-electric induction,
or the induction produced in conductors through which the magnetic flux
from electro and permanent magnets respectively is caused to pass--were
discovered and investigated by him. Nor were these investigations
carried on in the haphazard, blundering, groping manner that
unfortunately too often characterizes the explorer in a strange country;
on the contrary, they were singularly clear and direct, showing how
complete the mastery the great investigator had over the subject he was
studying. It is true that repeated failures frequently met him, but
despite discouragements and disappointments he continued until he had
entirely traversed the length and breadth of the unknown region he was
the first to explore.

Let us now briefly examine Faraday's many remaining discoveries and
inventions. Though none of these were equal to his great discovery, yet
many were exceedingly valuable. Some were almost immediately utilized;
some waited many years for utilization; and some have never yet been
utilized. We must avoid, however, falling into the common mistake of
holding in little esteem those parts of Faraday's work that did not
immediately result either in the production of practical apparatus, or
in valuable applications in the arts and sciences, or those which have
not even yet proved fruitful. Some discoveries and devices are so far
ahead of the times in which they are produced that several lifetimes
often pass before the world is ready to utilize them. Like immature or
unripe fruit, they are apt to die an untimely death, and it sometimes
curiously happens that, several generations after their birth, a
subsequent inventor or discoverer, in honest ignorance of their prior
existence, offers them to the world as absolutely new. The times being
ripe, they pass into immediate and extended public use, so that the
later inventor is given all the credit of an original discovery, and the
true first and original inventor remains unrecognized.

We will first examine Faraday's discovery of the relations existing
between light and magnetism. Though the discovery has not as yet borne
fruit in any direct practical application, yet it has proved of immense
value from a theoretical standpoint. In this investigation Faraday
proved that light-vibrations are rotated by the action of a magnetic
field. He employed the light of an ordinary Argand lamp, and polarized
it by reflection from a glass surface. He caused this polarized light to
pass through a plate of heavy glass made from a boro-silicate of lead.
Under ordinary circumstances this substance exerted no unusual action on
light, but when it was placed between the poles of a powerful
electro-magnet, and the light was passed through it in the same
direction as the magnetic flux, the plane of polarization of the light
was rotated in a certain direction.

Faraday discovered that other solid substances besides glass exert a
similar action on a beam of polarized light. Even opaque solids like
iron possess this property. Kerr has proved that a beam of light passed
through an extremely thin plate of highly magnetic iron has its plane of
polarization slightly rotated. Faraday showed that the power of rotating
a beam of polarized light is also possessed by some liquids. But what is
most interesting, in both solids and liquids, is that the direction of
the rotation of the light depends on the direction in which the
magnetism is passing, and can, therefore, be changed by changing the
polarity of the electro-magnet.

Faraday did not seem to thoroughly understand this phenomenon. He spoke
as if he thought the lines of magnetic force had been rendered luminous
by the light rays; for, he announced his discovery in a paper entitled,
"Magnetization of Light and the Illumination of the Lines of Magnetic
Force." Indeed, this discovery was so far ahead of the times that it was
not until a later date that the results were more fully developed,
first by Kelvin, and subsequently by Clerk Maxwell. In 1865, two years
before Faraday's death, Maxwell proposed the electro-magnetic theory of
light, showing that light is an electro-magnetic disturbance. He pointed
out that optical as well as electro-magnetic phenomena required a medium
for their propagation, and that the properties of this medium appeared
to be the same for both. Moreover, the rate at which light travels is
known by actual measurement; the rate at which electro-magnetic waves
are propagated can be calculated from electrical measurements, and these
two velocities exactly agree. Faraday's original experiment as to the
relation between light and magnetism is thus again experimentally
demonstrated; and, Maxwell's electro-magnetic theory of light now
resting on experimental fact, optics becomes a branch of electricity. A
curious consequence was pointed out by Maxwell as a result of his
theory; namely, that a necessary relation exists between opacity and
conductivity, since, as he showed, electro-magnetic disturbances could
not be propagated in substances which are conductors of electricity. In
other words, if light is an electro-magnetic disturbance, all conducting
substances must be opaque, and all good insulators transparent. This we
know to be the fact: metallic substances, the best of conductors, are
opaque, while glass and crystals are transparent. Even such apparent
exceptions as vulcanite, an excellent insulator, fall into the law,
since, as Graham Bell has recently shown, this substance is remarkably
transparent to certain kinds of radiant energy.

In 1778, Brugmans of Leyden noticed that if a piece of bismuth was held
near either pole of a strong magnet, repulsion occurred. Other observers
noticed the same effect in the case of antimony. These facts appear to
have been unknown to Faraday, who, in 1845, by employing powerful
electro-magnets rediscovered them, and in addition showed that
practically all substances possess the power of being attracted or
repelled, when placed between the poles of sufficiently powerful
magnets. By placing slender needles of the substances experimented on
between the poles of powerful horse-shoe magnets, he found that they were
all either attracted like iron, coming to rest with their greatest
length extending between the poles; or, like bismuth, were apparently
repelled by the poles, coming to rest at right angles to the position
assumed by iron. He regarded the first class of substances as attracted,
and the second class as repelled, and called them respectively
paramagnetic and diamagnetic substances. In other words, paramagnetic
substances, like iron, came to rest axially (extending from pole to
pole), and diamagnetic substances, like bismuth, equatorially (extending
transversely between the poles). He reserved the term magnetic
substances to cover the phenomena of both para and dia-magnetism. He
communicated the results of this investigation to the Royal Society in a
paper on the "Magnetic Condition of All Matter," on Dec. 18, 1845.

The properties of paramagnetism and diamagnetism are not possessed by
solids only, but exist also in liquids and gases. When experimenting
with liquids, they were placed in suitable glass vessels, such as watch
crystals, supported on pole pieces properly shaped to receive them.
Under these circumstances paramagnetic liquids, such as salts of iron or
cobalt dissolved in water, underwent curious contortions in shape, the
tendency being to arrange the greater part of their mass in the
direction in which the flux passed; namely, directly between the poles.
Diamagnetic liquids, such as solutions of salts of bismuth and antimony,
in a similar manner, arranged the greater part of their mass in
positions at right angles to this direction, or equatorially.

At first Faraday attributed the repulsion of diamagnetic substances to a
polarity, separate and distinct from ordinary magnetic polarity, for
which he proposed the name, diamagnetic polarity. He believed that when
a diamagnetic substance is brought near to the north pole of a magnet, a
north pole was developed in its approached end, and that therefore
repulsion occurred. He afterwards rejected this view, though it has
been subsequently adopted by Weber and Tyndall, the latter of whom
conducted an extended series of experiments on the subject. The majority
of physicists, however, at the present time, do not believe in the
existence of a diamagnetic polarity. They point out that the apparent
repulsion of diamagnetic substances is due to the fact that they are
less paramagnetic than the oxygen of the air in which they are

During this investigation Faraday observed some phenomena that led him
to a belief in the existence of another form of force, distinct from
either paramagnetic or diamagnetic force, which he called the
magne-crystallic force. He had been experimenting with some slender
needles of bismuth, suspending them horizontally between the poles of an
electro-magnet. Taking a few of these cylinders at random from a greater
number, he was much perplexed to find that they did not all come to rest
equatorially, as well-behaved bars of diamagnetic bismuth should do,
though, if subjected to the action of a single magnetic pole, they did
show this diamagnetic character by their marked repulsion. After much
experimentation, he ascribed this phenomenon to the crystalline
condition of the cylinder. By experimenting with carefully selected
groups of crystals of bismuth, he believed he could trace the cause of
the phenomenon to the action of a force which he called the
magne-crystallic force.

Extended experiments carried on by Pluecker on the influence of
magnetism on crystalline substances led him to believe that a close
relation exists between the ultimate forms of the particles of matter
and their magnetic behavior. This subject is as yet far from being fully

There was another series of investigations made by Faraday between the
years 1831 and 1840, that has been wonderfully utilized, and may
properly be ranked among his great discoveries. We allude to his
researches on the laws which govern the chemical decomposition of
compound substances by electricity. The fact that the electric current
possesses the power of decomposing compound substances was known as
early as 1800, when Carlisle and Nicholson separated water into its
constituent elements, by the passage of a voltaic current. Davy, too, in
1806, had delivered his celebrated discourse "On Some Chemical Agencies
of Electricity," and in 1807, had announced his great discovery of the
decomposition of the fixed alkalies.

Faraday showed that the amount of chemical action produced by
electricity is fixed and definite. In order to be able to measure the
amount of this action, he invented an instrument which he called a
voltameter, or a volta-electrometer. It consisted of a simple device for
measuring the amount of hydrogen and oxygen gases liberated by the
passage of an electric current through water acidulated with sulphuric
acid. He showed, by numerous experiments, that the decomposition
effected is invariably proportional to the amount of electricity
passing; that variations in the size of the electrodes, in the pressure,
or in the degree of dilution of the electrolyte, had nothing to do with
the result, and that therefore a voltameter could be employed to
determine the amount of electricity passing in a given circuit. He also
demonstrated that when a current is passed through different
electrolytes (compound substances decomposed by the passage of
electricity), the amount of the decompositions are chemically equivalent
to each other.

The extent of Faraday's work in the electro-chemical field may be judged
by considering some of the terms he proposed for its phenomena, most of
which, with some trifling exceptions, are still in use. It was he who
gave the name electrolysis to decomposition by the electric current; he
also proposed to call the wires, or conductors connected with the
battery, or other electric source, the electrodes, naming that one which
was connected with the positive terminal, the anode, and that one
connected with the negative terminal, the cathode. He called the
separate atoms or groups of atoms into which bodies undergoing
electrolysis are separated, the radicals, or ions, and named the
electro-positive ions, which appear at the cathode, the kathions, and
the electro-negative radicals which appear at the anode, the anions.

There were many other researches made by Faraday, such as his
experiments on disruptive electric discharges, his investigations on the
electric eel, his many researches on the phenomena both of frictional
electricity and of the voltaic pile, his investigations on the contact
and chemical theories of the voltaic pile, and those on chemical
decomposition by frictional electricity; these are but some of the mere
important of them. Those we have already discussed will, however, amply
suffice to show the value of his work. Rather than take up any others,
let us inquire what influence, if any, the various groups of discoveries
we have already discussed have exerted on the electric arts and sciences
in our present time. What practical results have attended these
discoveries? What actual, useful, commercial machines have been based on
them? What useful processes or industries have grown out of them?

And, first, as to actual commercial machines. These researches not only
led to the production of dynamo-electric machines, but, in point of
fact, Faraday actually produced the first dynamo. A dynamo-electric
machine, as is well known, is a machine by means of which mechanical
energy is converted into electrical energy, by causing conductors to cut
through, or be cut through by, lines of magnetic force; or, briefly, it
is a machine by means of which electricity is readily obtained from

Faraday's invention of the first dynamo is interesting because at the
same time he made the invention he solved a problem which up to his time
had been the despair of the ablest physicists and mathematicians. This
was the phenomenon of Arago's rotating disc. It was briefly as follows:
If a copper disc be rotated above a magnet, the needle tends to follow
the plate in its rotation; or, if a copper plate be placed at rest above
or below an oscillating magnet, it tends to check its oscillations and
bring the needle quickly to rest. Faraday investigated these phenomena
and soon discovered that a copper disc rotated below two magnet poles
had electric currents generated in it, which flowed radially through the
disc between its circumference and centre. By placing one end of a
conducting circuit on the axis of the disc, and the other end on its
circumference, he succeeded in drawing off a continuous electric current
generated from magnetism, and thus produced the first dynamo. This was
in 1831. Faraday produced many other dynamos besides this simple
disc machine.

Although the disc dynamo in its original form was impracticable as a
commercial machine, yet it was not only the forerunner of the dynamo,
but was, in point of fact, the first machine ever produced that is
entitled to be called a dynamo. He generously left to those who might
come after him the opportunity to avail themselves of his wonderful
discovery. "I have rather, however," he says, "been desirous of
discovering new facts and new relations dependent on magneto-electric
induction than of exalting the force of those already obtained, being
assured that the latter would find their development hereafter." How
profoundly prophetic! Could the illustrious investigator see the
hundreds of thousands of dynamos that are to-day in all parts of the
world engaged in converting millions of horse-power of mechanical energy
into electric energy, he would appreciate how marvellously his
successors have "exalted the force" of some of the effects he had so
ably shown the world how to obtain.

Faraday lived to see his infant dynamo, the first of its kind, developed
into a machine not only sufficiently powerful to maintain electric arc
lights, but also into a form sufficiently practicable to be continuously
engaged in producing such light, in one of the lighthouses on the
English coast. Holmes produced such a machine in 1862, or some years
before Faraday's death. It was installed under the care of the Trinity
House, at the Dungeness Lighthouse, in June, 1862, and continued in use
for about ten years. When this machine was shown to Faraday by its
inventor, the veteran philosopher remarked, "I gave you a baby, and you
bring me a giant."

The alternating-current transformer is another gift of Faraday to the
commercial world. As is well known, this instrument is a device for
raising or lowering electric pressure. The name is derived from the fact
that the instrument is capable of taking in at one pressure the electric
energy supplied to it, and giving it out at another pressure, thus
transforming it. Faraday produced the first transformer during his
investigations on voltaic-current induction. The modern
alternating-current transformer, though differing markedly in minor
details from Faraday's primitive instrument, yet in general details is
essentially identical with it. The enormous use of both step-up and
step-down transformers--transformers which respectively induce currents
of higher and of lower electromotive forces in their secondary coils
than are passed through their primaries--shows the great practical value
of this invention. The wonderful growth of the commercial applications
of alternating currents during the past few decades would have been
impossible without the use of the alternating-current transformer.

It is an interesting fact that it was not in the form of the step-down
alternating-current transformer that Faraday's discovery of
voltaic-current induction was first utilized, but in the form of a
step-up transformer, or what was then ordinarily called an induction
coil. As early as 1842, Masson and Breguet constructed an induction
coil by means of which minute sparks could be obtained from the
secondary, in vacuo. In 1851, Ruhmkorff constructed an induction coil so
greatly improved, by the careful insulation of its secondary circuit,
that he could obtain from it torrents of long sparks in ordinary air.
The Ruhmkorff induction coil has in late years been greatly improved
both by Tesla and Elihu Thomson, who, separately and independently of
each other, have produced excellent forms of high-frequency
induction coils.

Induction coils have long been in use for purposes of research, and in
later years have been employed in the production both of the Roentgen
rays used in the photography of the invisible, and the electro-magnetic
waves used in wireless telegraphy.

Roentgen's discovery was published in 1895. It was rendered possible by
the prior work of Geissler and Crookes on the luminous phenomena
produced by the passage of electric discharges through high vacua in
glass tubes. Roentgen discovered that the invisible rays, or radiation,
emitted from certain parts of a high-vacuum tube, when high-tension
discharges from induction coils were passing, possessed the curious
property of traversing certain opaque substances as readily as light
does glass or water. He also discovered that these rays were capable of
exciting fluorescence in some substances,--that is, of causing them to
emit light and become luminous,--and that these rays, like the rays of
light, were capable of affecting a photographic plate. From these
properties two curious possibilities arose; namely, to see through
opaque bodies, and to photograph the invisible. Roentgen called these
rays X, or unknown rays. They are now almost invariably called by the
name of their distinguished discoverer.

Let us briefly investigate how it is possible both to see and to
photograph the invisible. Shortly after Roentgen's discovery, Edison,
with that wonderful power of finding practical applications for nearly
all discoveries, had invented the fluoroscope,--a screen covered with a
peculiar chemical substance that becomes luminous when exposed to the
Roentgen rays. Suppose, now, between the rays and such a screen be
interposed a substance opaque to ordinary light, as, for example, the
human hand. The tissues of the hand, such as the flesh and the blood,
permit the rays to readily pass through them, but the bones are opaque
to the rays, and, therefore, oppose their passage; consequently, the
screen; instead of being uniformly illumined, will show shadows of the
bones, so that, to an eye examining the screen, it will seem as though
it were looking through the flesh and blood directly at the bones. In a
similar manner, if a photographic plate be employed instead of the
screen, a distinct photographic picture will be obtained.

Both the fluoroscope and the photographic camera have proved an
invaluable aid to the surgeon, who can now look directly through the
human body and examine its internal organs, and so be able to locate
such foreign bodies as bullets and needles in its various parts, or make
correct diagnoses of fractures or dislocations of the bones, or even
examine the action of such organs as the liver and heart.

About 1886, Hertz discovered that if a small Leyden jar is discharged
through a short and simple circuit, provided with a spark-gap of
suitable length, a series of electro-magnetic waves are set up, which,
moving through space in all directions, are capable of exciting in a
similar circuit effects that can be readily recognized, although the two
circuits are at fairly considerable distances apart. Here we have a
simple basic experiment in wireless telegraphy, which, briefly
considered, consists of means whereby oscillations or waves, set up in
free space by means of disruptive discharges, are caused to traverse
space and produce various effects in suitably constructed receptive
devices that are operated by the waves as they impinge on them.

At first a doubt was expressed by eminent scientific men as to the
practicability of successfully transmitting wireless messages through
long distances, since these waves, travelling in all directions, would
soon become too attenuated to produce intelligible signals; but when it
was shown, from theoretical considerations, that these waves when
traversing great distances are practically confined to the space between
the earth's surface and the upper rarified strata of the atmosphere, the
possibility of long-distance wireless telegraphic transmission was
recognized. To increase the distance, it was only necessary either to
increase the energy of the waves at the transmitting station, or to
increase the delicacy of the receiving instruments, or both.

It has been but a short time since both the scientific and the financial
worlds were astounded by the actual transmission of intelligible
wireless signals across the Atlantic, and the name of Marconi will go
down to posterity as the one who first accomplished this great feat.

The principal limit to the distance of transmission lies in the delicacy
of the receiving instruments. The most sensitive are those in which a
telephone receiver forms a part of the receiving apparatus. The almost
incredibly small amount of electric energy required to produce
intelligible speech in an ordinary Bell telephone receiver nearly passes
belief. The work done in lifting such an instrument from its hook to the
ear of the listener, would, if converted into electric energy, be
sufficient to maintain an audible sound in a telephone for 240,000
years! Even extremely attenuated waves may therefore produce audible
signals in such a receiver.

The electric motor was another gift of Faraday to commercial science,
although in this case there are others who can, perhaps, justly claim to
share the honor with him. Faraday's early electric motor consisted
essentially in a device whereby a movable conductor, suspended so as to
be capable of rotation around a magnet pole, was caused to rotate by the
mutual interaction of the magnetic fields of the active conductor and
the magnet. The magnet, which consisted of a bar of hardened steel, was
fixed in a cork stopper, which completely closed the end of an upright
glass tube. A small quantity of mercury was placed in the lower end of
the tube, so as to form a liquid contact for the lower end of a movable
wire, suspended so as to be capable of rotating at its lower extremity
about the axis of the tube. On the passage of an electric current
through the wire, a continuous rotary motion was produced in it, the
direction of which depends both on the direction of the current, and on
the polarity of the end of the magnet around which the rotation occurs.

The great value of the electric motor to the world is too evident to
need any proof. The number of purposes for which electric motors are now
employed is so great that the actual number of motors in daily use is
almost incredible, and every year sees this number rapidly increasing.

The above are the more important machines or devices that have been
directly derived from Faraday's great investigation as to the production
of electricity from magnetism. Let us now inquire briefly as to what
useful processes or industries have been rendered possible by the
existence of these machines.

Apparently one of the most marked requirements of our twentieth-century
civilization is that man shall be readily able to extend the day far
into the night. He can no longer go to sleep when the sun sets, and keep
abreast with his competitors. Of all artificial illuminants yet
employed, the arc and the incandescent electric lights are
unquestionably the best, whether from a sanitary, aesthetic, or truest
economical standpoint. Now, while it is a well-known matter of record
that both arc and incandescent lights were invented long before
Faraday's time, yet it was not until a source of electricity was
invented, superior both in economy and convenience to the voltaic
battery, that either of these lights became commercial possibilities.
Such an electric source was given to the world by Faraday through his
invention of the dynamo-electric machine, and it was not until this
machine was sufficiently developed and improved that commercial electric
lighting became possible. The energy of burning coal, through the
steam-engine, working the dynamo, is far cheaper and more efficient for
producing electricity than the consumption of metals through the
voltaic pile.

It is characteristic of the modesty of Faraday that when, in
after-life, he heard inventors speaking of their electric lights, he
refrained from claiming the electric light as his own, although, without
the machine he taught the world how to construct, commercial lighting
would have been an impossibility.

The marvellous activity in the electric arts and sciences, which
followed as a natural result of Faraday giving to the world in the
dynamo-electric machine a cheap electric source, naturally leads to the
inquiry as to whether at a somewhat later day a yet greater revolution
may not follow the production of a still cheaper electric source. In
point of fact such a discovery is by no means an impossibility. When a
dynamo-electric machine is caused to produce an electric current by the
intervention of a steam-engine, the transformation of energy which takes
place from the energy of the coal to electric energy is an extremely
wasteful one. Could some practical method be discovered by means of
which the burning of coal liberates electric energy, instead of heat
energy, an electric source would be discovered that would far exceed in
economy the best dynamo in existence. With such a discovery what the
results would be no one can say; this much is certain, that it would,
among other things, relegate the steam-engine to the scrap-heap, and
solve the problem of aerial navigation.

What is justly regarded as one of the greatest achievements of modern
times is the electrical transmission of power over comparatively great
distances. At some cheap source of energy, say, at a waterfall, a
water-wheel is employed to drive a dynamo or generator, thus converting
mechanical energy into electrical energy. This electricity is passed
over a conducting line to a distant station, where it is either directly
utilized for the purpose of lighting, heating, chemical decomposition,
etc., or indirectly utilized for the purpose of obtaining mechanical
power for driving machinery, by passing it through an electric motor.
The electric transmission of power has been successfully made in
California over a distance of some 220 miles, at a pressure on
transmission lines of 50,000 volts.

The high pressures required for the economical use of transmission lines
necessitates the employment of transformers at each end of the line;
namely, step-up transformers at the transmitting end, to raise the
voltage delivered by the generators, and step-down transformers, at the
receiving end, to lower it for use in the various translating devices.
These transformers are employed in connection with alternating-current
dynamos. Faraday not only gave to the world the first electric
generator, but also the first transformer, and one of the first electric
motors, and without these gifts the electric transmission of power over
long distances, which has justly been regarded as one of the most
marvellous achievements of our age, would have been an impossibility.

In high-tension circuits over which such pressures as 50,000 volts is
transmitted, no little difficulty is experienced from leakage and
consequent loss of energy. This leakage occurs both between the line
conductors and at the insulators placed on the pole lines forming the
line circuit. The insulators are made either of glass or porcelain, and
are of a peculiar form known as triple petticoat pattern. The loss on
such lines, due to leakage between wires, is greater than that which
takes place at the pole insulators, and is diminished by keeping the
circuit wires as far apart as possible.

In the early history of the art, electric transmission of power was
effected by means of direct-current generators and motors,--generators
and motors through which the current always passed in the same
direction. Such generators and motors, however, possessed inconveniences
that prevented extensive commercial transmission of power, since, as we
have seen, high pressure was necessary for efficiency in such
transmission, and the collecting-brushes and commutators employed in all
direct-current generators and motors to carry the current from the
machine or to the motor, were a constant source of trouble and danger.

When the alternating-current motor first same into general use, it was
employed, in connection with the alternating-current generator, in
electric transmission systems; but such motors also possess the
inconvenience of not readily starting from a state of rest, with their
full turning power, or torque, and of therefore being unsuitable where
the motor requires to be frequently stopped or started. Had these
difficulties remained unsolved, long-distance electric transmission of
power, so successful in operation to-day, and which bids fair to be
still more successful in the near future, would have been impossible.
Fortunately, these difficulties were overcome by the genius of Nikola
Tesla, in the invention of the multiphase alternating-current motor, or
the induction motor, as it is now generally called. Although Baily,
Deprez, and Ferraris had accomplished much before Tesla's time, yet it
was practically to the investigations and discoveries made by Tesla,
between 1887 and 1891, that the induction motor of to-day is due.

Another requirement of our twentieth-century civilization is rapid
transit, either urban or inter-urban, and this is afforded by various
systems of electric street railways or electric traction generally,
including electric locomotives and electric automobiles. The wonderful
growth in this direction which has been witnessed in the last few
decades would have been impossible without the electric generator and
motor, both gifts of Faraday to the world. Their application in this
direction must, therefore, go to swell the debt our civilization owes to
the labors of this great investigator.

In the system of electric street-car propulsion very generally employed
to-day, a single trolley wheel is employed for taking the driving
current from an overhead conductor, suspended above the street. The
trolley wheel is supported by a trolley pole, and is maintained in good
electric contact with the trolley wire, or overhead conductor. By this
means the current passes from the wire down the conductor connected with
the trolley pole, thence through the motors placed below the body of the
car, and from them, through the track or ground-return, back to the
power station. A small portion of the current is employed for lighting
the electric lamps in the car. In some systems an underground trolley
is employed.

An important device, called the series-parallel controller, is employed
in all systems of electric street-car propulsion. It consists of means
by which the starting and stopping of the car, and changes, both in its
speed and direction, are placed under the control of the motorman. A
separate controller is placed on both platforms of the car. The
series-parallel controller consists essentially of a switch by means of
which the several motors, that are employed in all street cars, can
be variously connected with each other, or with different electric
resistances, or can be successively cut out or introduced into the
circuit, so that the speed of the car can be regulated at will, as the
handle of the controller is moved by the motorman to the various notches
on the top of the controller box. As generally arranged, the speed
increases from the first notch or starting position to the last notch,
movements in the opposite direction changing connections in the opposite
order of succession, and, therefore, slowing the car. There is, however,
no definite speed corresponding to each notch, for this will vary with
the load on each car, and with the gradient upon which it may
be running.

But there is another valuable gift received by the world as a result of
this great discovery of Faraday; namely, that most marvellous instrument
of modern times, the speaking telephone. This instrument was invented in
1861, by Philip Ries, and subsequently independently reinvented in 1876,
by Elisha Gray and Alexander Graham Bell.

As is well known, it is electric currents and not sound-waves that are
transmitted over a telephone circuit. The magneto-electric telephone in
its simplest form consists of a pair of instruments called respectively
the transmitter and the receiver. We talk into the transmitter and
listen at the receiver. Both transmitter and receiver consist of a
permanent magnet of hardened steel around one end of which is placed a
coil of insulated wire. In front of this coil a diaphragm, or thin
plate, of soft iron, is so supported as to be capable of freely
vibrating towards and from the magnet pole.

The operation of the transmitting instrument is readily understood in
the light of Faraday's discovery. It is simply a dynamo-electric machine
driven by the voice of the speaker. As the sound-waves from the
speaker's voice strike against the diaphragm, which has become magnetic
from its nearness to the magnet pole, electric currents are generated in
the coil of wire surrounding such pole, since the to-and-fro motions
cause the lines of electro-magnetic force to pass through the wire on
the moving coil. The operation of the receiving instrument is also
readily understood. It acts as an electric motor driven by the
to-and-fro currents generated by the transmitter. As these currents are
transmitted over the wire, they pass through the coil of wire on the
receiving instrument, and reproduce therein the exact movements of the
transmitting diaphragm, since, as they strengthen or weaken the
magnetism of the pole, they cause similar motions in the diaphragm
placed before it. Consequently, one listening at the receiving diaphragm
will hear all that is uttered into the transmitting diaphragm. It was
thus, by the combination of the dynamo and motor, both of which were
given by Faraday to the world, that we have received this priceless
instrument, which has been so potent in its effects on the civilization
of the Twentieth century.

The electric telegraph had its beginnings long before Faraday's time. As
early as 1847, Watson had erected a line some two miles in length,
extending over the housetops in London, and operated it by means of
discharges from an ordinary frictional electric machine. In 1774, Lesage
had erected in Geneva an electric telegraph consisting of a number of
metallic wires, one for each letter of the alphabet. These wires were
carefully insulated from each other. When a message was to be sent over
this early telegraphic line an electric discharge was passed through the
particular wire representing the letter of the alphabet to be sent; this
discharge, reaching the other end, caused a pithball to be repelled and
thus laboriously, letter by letter, the message was transmitted. How
ludicrously cumbersome was such an instrument when contrasted with the
Morse electro-magnetic telegraph of to-day, which requires but a single
wire; or with the harmonic telegraph of Gray, which permits the
simultaneous transmission of eight or more separate messages over a
single wire; or with the wonderful quadruplex telegraphic system of
Edison which permits the simultaneous transmission of four separate and
distinct messages over a single wire, two in one direction, and two in
the opposite direction at the same time; or with the still more
wonderful multiplex telegraph of Delaney, which is able to
simultaneously transmit as many as seventy-two separate messages over a
single wire, thirty-six in one direction and thirty-six in the opposite
direction. These achievements have been possible only through the
researches and discoveries of Oersted, Faraday, and hosts of other
eminent workers; for, it was the electro-magnet, rendered possible by
Oersted, together with the magnificent discoveries of Faraday, and
others since his time, that these marvellous advances in
electro-telegraphic transmission of intelligence have become

Before completing this brief sketch of some of the effects that
Faraday's work has had on the practical arts and sciences, let us
briefly examine the generating plants that are either in operation or
construction at Niagara Falls.

Some idea of the size of the Niagara Falls generating plant on the
American side may be gained from the fact that there have already been
installed eleven of the separate 5,000 horse-power generators. The
remaining capacity of the tunnel will permit of the installation of
50,000 additional horse-power, or 105,000 horse-power in all.

On the Canadian side of the Falls another great plant is about to be
erected with an ultimate capacity of several hundred thousand
horse-power. Here, however, the size of the generating unit will be
double that on the American side, or 10,000 horse-power. These
generators will be wound to produce an electric pressure of 12,000
volts, raised by means of step-up transformers to 22,000, 40,000, and
60,000 volts, according to the distance of transmission. Each of the
revolving parts of these machines will weigh 141,000 pounds. To what
gigantic proportions has the little infant dynamo of Faraday grown in
this short time since its birth!

The low rates at which electric power can be sold in the immediate
neighborhood of the Niagara generating plant have naturally resulted in
an enormous growth of the electro-chemical industries, for these
industries could never otherwise develop into extended commercial
applications. Of the total output of, say, 55,000 horse-power at the
Niagara Falls generating plant, no less than 23,200 horse-power is used
in various electrolytic and electro-thermal processes in the immediate
neighborhood. Some of the more important consumers of the electric
power, named in the order of consumption, are for the manufacture of the
following products: calcium carbide, aluminium, caustic soda and
bleaching salt, carborundum, and graphite.

Calcium carbide, employed in the production of acetylene gas, either for
the purposes of artificial illumination, or for the manufacture of ethyl
alcohol, is produced by subjecting a mixture of carbon and lime to the
prolonged action of heat in an electric furnace.

Aluminium, the now well-known valuable metal, present in clay, bauxite,
and a variety of other mineral substances, is electrolytically deposited
from a bath of alumina obtained by dissolving bauxite either in
potassium fluoride or in cryolite. Aluminium is now coming into extended
use in the construction of long-distance electric power
transmission lines.

Caustic soda and bleaching salt are produced by the electrolytic
decomposition of brine (chloride of sodium). The chlorine liberated at
the anode is employed in the manufacture of bleaching-salt, and the
sodium is liberated at a mercury cathode, with which it at once enters
into combination as an alloy. On throwing this alloy into water the
sodium is liberated as caustic soda.

Carborundum, a silicide of carbon, is a valuable substance produced by
the action of the heat of an electric furnace on an intimate mixture of
carbon and sand. It has an extensive use as an abrasive for grinding and

Artificial graphite is another product produced by the long-continued
action of the heat of the electric furnace on carbon under certain

According to reports from the United States Geological Survey, the
graphite works at Niagara Falls produced in 1901, 2,500,000 lbs. of
artificial graphite, valued at $119,000. This was an increase from
860,270 lbs., valued at $69,860 for 1900, and from 162,382 lbs., valued
at $10,140, in 1897, the first year of its commercial production. In
1901, more than half of the output was in the form of graphitized
electrodes employed in the production of caustic soda and bleaching
salt, and in other electrolytic processes.

The Niagara Falls power transmission system stands to-day as a
magnificent testimonial to the genius of Faraday, and as a living
monument of the varied and valuable gifts his researches have bestowed
upon mankind. For here we have not only the dynamo, motors, and
transformers that he gave freely to the world, not only the
alternating-current transformer, and the system of transmission of
power, but we even find that the principal consumers of the enormous
electric power produced are employing it in carrying on some of the many
processes in electro-chemistry, a science that he had done so much
to advance.

Among some of the surprises electro-chemistry may have in store for the
world in the comparatively near future, may be a nearer approach to a
mastery of the laws which govern the combination of elementary
substances when under the influence of plant-life. If these laws ever
become so well known that man is able to form hi his laboratory the
various food products that are now formed naturally in plant organisms,
such a revolution would be wrought that the work of the agriculturist
would be largely transferred to the electro-chemist. Some little has
already been done in the direct formation of some vegetable substances,
such as camphor, the peculiar flavoring substance present in the vanilla
bean, and in many other substances. Should such discoveries ever reach
to the direct formation of some food staple, the wide-reaching
importance and significance of the discovery would be almost beyond

But, while the direct electro-synthetic formation of food products is
yet to be accomplished on a practical scale, the problem appears to be
nearing actual solution in an indirect manner. It has been known since
the time of Cavendish, in 1785, that small quantities of nitric acid
could be formed directly from the nitrogen and oxygen of the atmosphere
by the passage of electric sparks; but heretofore, the quantity so found
has been too small to be of any commercial value. Quite recently,
however, one of the electro-chemical companies at Niagara Falls has
succeeded in commercially solving the important problem of the fixation
of the nitrogen of the atmosphere; it being claimed that the cost of
thus producing one ton of commercial nitric acid, of a market value of
over eighty dollars, does not greatly exceed twenty dollars. Since
sodium nitrate can readily be produced by the process, and its value as
a fertilizer of wheat-fields is too well known to need comment, there
would thus, to a limited extent, be indirectly solved the
electro-chemical production of food staples.

Faraday's high rank as an investigator in the domain of natural science
was fully recognized by the learned societies of his time, by admission
into their fellowships. As early as 1824, he was honored by the Royal
Society of London by election as one of its Fellows, and in 1825 he had
become a member of the Royal Institution. It is recorded of the great
philosopher that the membership in the Royal Institution was the only
one which he personally sought; all others came unsought, but they came
so rapidly from all portions of the globe that in 1844 he was a member
of no less than seventy of the leading learned societies of the world.
Ries, the German electrician, so well known in connection with his
invention of the speaking telephone, addressed Faraday as "Professor
Michael Faraday, Member of all the Academies." Besides his membership in
the learned societies, Faraday received numerous degrees from the
colleges and universities of his time. Among some of these are the
following: The University of Prague, the degree of Ph.D.; Oxford, the
degree of D.C.L.; and Cambridge, the degree of LL.D. He also received
numerous medals of honor, and was offered the Presidency of the Royal
Society, which, however, he declined, as he did also a knighthood
proffered by the government of England. Faraday died on the 25th of
August, 1867, after a long, well-spent, useful life.

We have thus briefly traced some of the more important discoveries of
Michael Faraday. Many have necessarily been passed by, but what we have
given are more than sufficient to stamp him as a great philosopher and
investigator. Speaking of Faraday in this connection, Professor Tyndall
says: "Take him for all in all, I think it will be conceded that Michael
Faraday is the greatest experimental philosopher the world has ever
seen; and I will add the opinion that the progress of future research
will tend not to diminish or decrease, but to enhance and glorify, the
labors of this mighty investigator."


Experimental Researches in Electricity. By Michael Faraday. From the
Philosophical Transactions.

Abstracts of the Philosophical Transactions from 1800 to 1837.

Faraday's Experimental Researches in Electricity and Magnetism. 3 vols.

Life and Letters of Faraday. By Dr. Bence Jones.

Michael Faraday. By J.H. Gladstone.

Students' Text-Book of Electricity. By Henry M. Noad. Revised by W.H.

Michael Faraday. By John Tyndall.

Pioneers of Electricity. By J. Munro.

Dynamo-Electric Machinery. By Silvanus P. Thompson.

A Dictionary of Electrical Words, Terms, and Phrases. By Edwin J.

Electricity and Magnetism. By Edwin J. Houston.

Electricity One Hundred Years Ago and To-Day. By Edwin J. Houston.

Magnetism; Electro-Technical Series. By Edwin J. Houston and Arthur E.

Electro-Dynamic Machinery. By Edwin J. Houston and A. E. Kennelly.





Stagnation was the state of medicine when the Nineteenth Century opened.
It was only three years before that Jenner had announced and
demonstrated the protective efficacy of vaccination against small-pox.
His teaching, in spite of the vehement cavillings of the "antis" of his
day, gained credence readily, and vaccination speedily became recognized
and was constantly resorted to, but hardly any attempt at perfecting the
practice was made until after more than fifty years had elapsed. His
discovery--or, rather, his proof of the truth of a rustic
tradition--fell like a pebble into the doldrums; the ripple soon
subsided, and nobody was encouraged to start another. At the present
time such an announcement would be promptly followed by investigations
leading up to such doctrines as that of the attenuation of viruses and
that of antitoxines. But the times were not ripe for anything of that
sort; medicine reposed on tradition, or at best gave itself only to such
plausibilities in the way of innovation as were cleverly advocated.
Physicians strove not to advance the healing art; as individuals, they
were content to rely on their manners, their tact, and their assumption
of wisdom. In short, the body medical was in a state of suspended
animation, possessed of a mere vegetative existence.

The Humoral pathology, or that doctrine of the nature of disease which
ascribed all ailments to excess, deficiency, or ill "concoction" of some
one of the four humors (yellow and black bile, blood, and phlegm), had
not yet lost its hold on men's convictions, or at least not further than
to make them look upon exposure to cold and errors of diet as amply
explanatory of all diseases not plainly infectious. The medical writers
who were most revered were those who busied themselves with nosology;
that is to say, the naming and classifying of diseases. Wonderful were
the onomatological feats performed by some of these men, and most
diverse and grotesque were the data on which they founded their
classifications. To label a disease was high art; to cure it was
something that Providence might or might not allow. In the treatment of
"sthenic" acute diseases (meaning those accompanied by excitement and
high fever), blood-letting, mercury given to the point of salivation,
antimony, and opium, together with starvation (all included under the
euphemism of "lowering measures"), were the means universally resorted
to and reputed "sheet anchors." Some advance had been made from the
times when disease had been looked upon as an entity to be exorcised,
but it was still so far regarded as a material thing that it was to be
starved out.

But the century was not out of its second decade when signs of an
awakening from this lethargy began to show themselves. The first steps,
naturally, were along preparatory lines, and for those we are largely
indebted to the physicists, the chemists, and the botanists. Gross
anatomy became better known, owing for the most part to more enlightened
legislation on the subject of the dissection of the human body; minute
anatomy (histology) sprang into existence as the result of improvements
of the compound microscope. Physiology took on something of the
experimental; and medication was rendered far less gross and repulsive
by the isolation of the active principles of medicinal plants. But it
was long after all this that the telling strides were taken. Up to
within the memory of many men who are now living, "peritonitis" tortured
its victims to death, said "peritonitis" being often interpreted as a
manifestation of rheumatism, for example, and no well-directed
interposition was attempted against it, whereas we now know perfectly
well that the vast majority of cases of peritonitis are due to local
septic poisoning and for the most part quite readily remediable by the
removal (with a minimum of danger) of the organ from which such
poisoning arises--almost always the vermiform appendix. "Appendicitis,"
of which we hear so much nowadays, is no new disease; it is simply the
"peritonitis" that killed so many people in former times. But while no
well-informed person would now maintain that this disease was a new one,
there are many, and those, too, among the best instructed, who find it
difficult to avoid the conclusion that, if not new, it must at least be
of far more frequent occurrence than formerly. It must be borne in mind,
however, that in the great majority of instances in past years it ended
spontaneously in recovery and was forgotten.

Two features of the progress in medicine in the Nineteenth Century,
negative as they may seem to have been, were undoubtedly potent in the
promotion of advance. They were the recognition of the fact that many
dangerous diseases are self-limited, and the experiment of the so-called
"expectant treatment." The result of the first of them was to teach men
to desist from futile attempts to _cure_ the self-limited diseases, in
the sense of cutting them short in their course, and the "expectant
treatment" followed as a natural consequence. It was a method of
managing disease rather than attempting to cure it. There was no
interference save to promote the patient's comfort, to nourish him as
thoroughly as might be without unduly taxing his powers, and to meet
complications as they arose. It was stooping to conquer, perhaps, but it
was a policy that conduced greatly to the well-being of the sick,
improved their chances of recovery, and enabled physicians to study
disease more accurately by reason of its course not being rendered
irregular by meddlesome medication. It has never been dropped, and it
never will be, save as such directly curative agents as the antitoxines
are made available.

In the early part of the century, except for gross anatomy and operative
surgery, medicine was taught almost wholly, so far as the schools were
concerned, by means of didactic lectures. The "drawing" capacity of a
professor was proportionate rather to his rhetorical powers and to the
persuasiveness with which he inculcated the views peculiar to himself
than to the amount of real information that he conveyed to the students.
Although the apprentice system--for that was what the practice of
students' attaching themselves to individual practitioners, whom they
called their preceptors, virtually amounted to--in many instances made
up more or less completely for the lack of systematic clinical teaching,
yet in the great majority of cases it amounted to little more than the
preceptor's allowing the student the use of his library and occasionally
examining into the latter's diligence and intelligence, in return for
which he, the preceptor, required an annual fee and exacted from the
student such minor services as his proficiency enabled him to render. It
is true the students "walked" the hospitals, drinking in some great
man's utterances, but they did it in droves, not a moiety of them being
able to get a good look at a patient, unless it was such a passing
glance as might tell them that the patient was jaundiced. By clinical
teaching we understand teaching, not in glittering generalities, but in
the concrete, either at the bedside, as the word _clinical_ originally
implied, or at least with the patient actually present to illustrate in
his person the professor's descriptions and the success or failure of
the treatment employed. The clinic is now firmly established, and has
been for years, but it was long before this grand result was attained.

Experimental methods of study gradually came into vogue, particularly in
the domain of physiology. In this sphere Dr. William Beaumont, of the
United States Army, was a pioneer. His historic experiments on Alexis
St. Martin, a soldier who had been wounded in the stomach and recovered
with a permanent opening into that organ, will ever rank among the most
important of the early experimental studies of digestion. It was not
long before Claude Bernard extended similar inquiries to the other
functions of the body, notably those of the nervous system; and since
his time there has been a long array of brilliant investigators of
physiology and of other branches of science tributary to medicine.
Experiments on living animals were almost the only means of carrying on
these researches. In the early days the animals employed were doubtless
put to a great deal of pain--perhaps in many instances to unnecessary
suffering--and an altogether laudable feeling of humanity has led good
people to band themselves together for the purpose of putting a stop to
vivisection, or at least of greatly restricting the practice and of
freeing it from all avoidable infliction of pain. These praiseworthy
efforts have in some instances been carried so far, unfortunately, as to
seriously hamper scientific investigation--investigation which has for
its object the alleviation of human suffering and the saving of human
life. We may earnestly deprecate and strive to prevent wanton
reiteration of painful experiments for purposes of demonstrating anew
that which is unquestioned, and we may resort to all possible means to
render necessary experiments free from actual pain (from the anguish of
trepidation we can seldom relieve the poor animals), but let us not
block the wheels of scientific progress.

At the dawn of the Nineteenth Century, to examine a sick person's
pulse, to inspect his tongue, to observe his breathing, to interrogate
his skin by our sense of touch, and to try to make his statements and
those of his friends fit in with some tenable theory of the nature of
his ailment, were about all we could do. Possibly it was because he
realized to an uncommon degree the tremendous impediment of this narrow
limitation that Samuel Hahnemann, the founder of Homoeopathy, cut the
Gordian knot in sheer rebelliousness, and proclaimed, as he virtually
did, that a diagnosis was not necessary to the successful treatment of
disease, but that one only needed to know empirically how to subdue
symptoms, meaning mainly, if not solely, what we term "subjective"
symptoms--those of which the patient complains, as opposed to those that
we ourselves discover. But the physical examination of the sick, before
extremely meagre in its sphere and restricted in its possibilities, was
destined to expand before many years into the minute and positive
physical diagnosis of the present day.

In the year 1816 a French physician, Rene Theophile Hyacinthe Laennec,
achieved undying fame by publishing to the world an account of his
labors in the application of mediate auscultation and of percussion to
the diagnosis of the diseases of the chest. It is true that no less a
personage than the "Father of Medicine," Hippocrates, is reputed to have
practised succussion as a means of diagnosis; that is, the shaking of a
patient, as one would shake a cask, to ascertain by the occurrence or
non-occurrence of a splashing sound if the person's pleural cavity was
distended partly with water and partly with air. It is probable that
Hippocrates and many others after him carried the physical examination
of the chest still further, for it is difficult to imagine, for example,
that so simple a device as that of thumping a partition to make out the
situation of a joist by the sound evoked should not early have been
applied to the human chest. But, be this as it may, to Laennec belongs
the great credit of having laid a substantial foundation for the
physical diagnosis of the present time, and, more than for laying a
foundation, for constructing a fairly complete edifice. He who should
now undertake to practise general medicine without having first made
himself proficient in the detection and interpretation of the sounds
elicited by auscultation and percussion in diseases of the heart and
lungs would foredoom himself to failure.

It was not until many years later, early in the second half of the
century, that the clinical thermometer came into general use, but it
soon showed most strikingly the superiority of the "instrument of
precision" to the unaided senses of man. Who would think now of trying
to estimate the height of a fever by laying his hand on the patient's
skin, or who, even among the laity, would be satisfied with such a
procedure? "Doubtless," said the present writer in a former publication
("New York Medical Journal," Dec. 29, 1900), "the use of the thermometer
has occasionally given rise to needless alarm, but almost invariably it
may be interpreted with great certainty. Often it dispels unnecessary
anxiety as in a twinkling by its negative indication, and surely it is
to be credited with being distinctly diagnostic in those diseases of
which it has itself established the 'curve.'" By the thermometric
"curve" of a disease is understood the general visual impression made by
the graphic chart of a temperature record--the course of a zigzag line
connecting the points indicated by the various individual observations.

Numerous other instruments of precision are now in constant use, among
the most wonderful of which perhaps is the ophthalmoscope, whereby we
are enabled to subject the retina and the intervening media of the eye
to minute visual examination. There is not an organ of the body that is
not now interrogated daily in the way of physical diagnosis, and we even
examine separately the secretion of each of the two kidneys. In
addition, there are multitudinous specific signs of which we were not
long ago in complete ignorance. To cite only one of these, there is
Widal's agglutination test, by which the bacteriologist can usually make
a diagnosis of typhoid fever far in advance of the time at which it
could otherwise be distinguished. The use of the Roentgen rays in
diagnosis was one of the crowning achievements of the century, and now
we seem about to enter upon a course of their successful employment in
the treatment of disease--even some forms of cancer--as well as in its

Beyond the vermin that infest the skin and the hair, tapeworm, and a few
other intestinal worms, little if anything was known of morbific
parasites before the Nineteenth Century; but the labors of Van Beneden,
Kuechenmeister, Cobbold, Manson, Laveran, and others have now established
the causal relationship between great numbers of animal parasites--gross
and microscopic--and certain definite morbid states. This has led to a
great increase in our knowledge of the connection between the parasites

Book of the day: