Full Text Archive logoFull Text Archive — Books, poems, drama…

Part 4 out of 4

Adobe PDF icon
Download this document as a .pdf
File size: 0.4 MB
What's this? light bulb idea Many people prefer to read off-line or to print out text and read from the real printed page. Others want to carry documents around with them on their mobile phones and read while they are on the move. We have created .pdf files of all out documents to accommodate all these groups of people. We recommend that you download .pdfs onto your mobile phone when it is connected to a WiFi connection for reading off-line.

Moderator: William L. Hooton, Vice President of Operations,
I-NET

A) Principal Methods for Image Capture of Text:
Direct scanning
Use of microform

Anne R. Kenney, Assistant Director, Department of Preservation
and Conservation, Cornell University
Pamela Q.J. Andre, Associate Director, Automation, and
Judith A. Zidar, Coordinator, National Agricultural Text
Digitizing Program (NATDP), National Agricultural Library
(NAL)
Donald J. Waters, Head, Systems Office, Yale University Library

B) Special Problems:
Bound volumes
Conservation
Reproducing printed halftones

Carl Fleischhauer, Coordinator, American Memory, Library of
Congress
George Thoma, Chief, Communications Engineering Branch,
National Library of Medicine (NLM)

10:30-
11:00 AM Break

11:00 AM Session IV. Image Capture, Text Capture, Overview of Text and
Image Storage Formats (Cont'd.).

C) Image Standards and Implications for Preservation

Jean Baronas, Senior Manager, Department of Standards and
Technology, Association for Information and Image Management
(AIIM)
Patricia Battin, President, The Commission on Preservation and
Access (CPA)

D) Text Conversion:
OCR vs. rekeying
Standards of accuracy and use of imperfect texts
Service bureaus

Stuart Weibel, Senior Research Specialist, Online Computer
Library Center, Inc. (OCLC)
Michael Lesk, Executive Director, Computer Science Research,
Bellcore
Ricky Erway, Associate Coordinator, American Memory, Library of
Congress
Pamela Q.J. Andre, Associate Director, Automation, and
Judith A. Zidar, Coordinator, National Agricultural Text
Digitizing Program (NATDP), National Agricultural Library
(NAL)

12:30-
1:30 PM Lunch

1:30 PM Session V. Approaches to Preparing Electronic Texts.

Discussion of approaches to structuring text for the computer;
pros and cons of text coding, description of methods in
practice, and comparison of text-coding methods.

Moderator: Susan Hockey, Director, Center for Electronic Texts
in the Humanities (CETH), Rutgers and Princeton Universities
David Woodley Packard
C.M. Sperberg-McQueen, Editor, Text Encoding Initiative (TEI),
University of Illinois-Chicago
Eric M. Calaluca, Vice President, Chadwyck-Healey, Inc.

3:30-
4:00 PM Break

4:00 PM Session VI. Copyright Issues.

Marybeth Peters, Policy Planning Adviser to the Register of
Copyrights, Library of Congress

5:00 PM Session VII. Conclusion.

General discussion.
What topics were omitted or given short shrift that anyone
would like to talk about now?
Is there a "group" here? What should the group do next, if
anything? What should the Library of Congress do next, if
anything?
Moderator: Prosser Gifford, Director for Scholarly Programs,
Library of Congress

6:00 PM Adjourn

*** *** *** ****** *** *** ***

Appendix II: ABSTRACTS

SESSION I

Avra MICHELSON Forecasting the Use of Electronic Texts by
Social Sciences and Humanities Scholars

This presentation explores the ways in which electronic texts are likely
to be used by the non-scientific scholarly community. Many of the
remarks are drawn from a report the speaker coauthored with Jeff
Rothenberg, a computer scientist at The RAND Corporation.

The speaker assesses 1) current scholarly use of information technology
and 2) the key trends in information technology most relevant to the
research process, in order to predict how social sciences and humanities
scholars are apt to use electronic texts. In introducing the topic,
current use of electronic texts is explored broadly within the context of
scholarly communication. From the perspective of scholarly
communication, the work of humanities and social sciences scholars
involves five processes: 1) identification of sources, 2) communication
with colleagues, 3) interpretation and analysis of data, 4) dissemination
of research findings, and 5) curriculum development and instruction. The
extent to which computation currently permeates aspects of scholarly
communication represents a viable indicator of the prospects for
electronic texts.

The discussion of current practice is balanced by an analysis of key
trends in the scholarly use of information technology. These include the
trends toward end-user computing and connectivity, which provide a
framework for forecasting the use of electronic texts through this
millennium. The presentation concludes with a summary of the ways in
which the nonscientific scholarly community can be expected to use
electronic texts, and the implications of that use for information
providers.

Susan VECCIA and Joanne FREEMAN Electronic Archives for the Public:
Use of American Memory in Public and
School Libraries

This joint discussion focuses on nonscholarly applications of electronic
library materials, specifically addressing use of the Library of Congress
American Memory (AM) program in a small number of public and school
libraries throughout the United States. AM consists of selected Library
of Congress primary archival materials, stored on optical media
(CD-ROM/videodisc), and presented with little or no editing. Many
collections are accompanied by electronic introductions and user's guides
offering background information and historical context. Collections
represent a variety of formats including photographs, graphic arts,
motion pictures, recorded sound, music, broadsides and manuscripts,
books, and pamphlets.

In 1991, the Library of Congress began a nationwide evaluation of AM in
different types of institutions. Test sites include public libraries,
elementary and secondary school libraries, college and university
libraries, state libraries, and special libraries. Susan VECCIA and
Joanne FREEMAN will discuss their observations on the use of AM by the
nonscholarly community, using evidence gleaned from this ongoing
evaluation effort.

VECCIA will comment on the overall goals of the evaluation project, and
the types of public and school libraries included in this study. Her
comments on nonscholarly use of AM will focus on the public library as a
cultural and community institution, often bridging the gap between formal
and informal education. FREEMAN will discuss the use of AM in school
libraries. Use by students and teachers has revealed some broad
questions about the use of electronic resources, as well as definite
benefits gained by the "nonscholar." Topics will include the problem of
grasping content and context in an electronic environment, the stumbling
blocks created by "new" technologies, and the unique skills and interests
awakened through use of electronic resources.

SESSION II

Elli MYLONAS The Perseus Project: Interactive Sources and
Studies in Classical Greece

The Perseus Project (5) has just released Perseus 1.0, the first publicly
available version of its hypertextual database of multimedia materials on
classical Greece. Perseus is designed to be used by a wide audience,
comprised of readers at the student and scholar levels. As such, it must
be able to locate information using different strategies, and it must
contain enough detail to serve the different needs of its users. In
addition, it must be delivered so that it is affordable to its target
audience. [These problems and the solutions we chose are described in
Mylonas, "An Interface to Classical Greek Civilization," JASIS 43:2,
March 1992.]

In order to achieve its objective, the project staff decided to make a
conscious separation between selecting and converting textual, database,
and image data on the one hand, and putting it into a delivery system on
the other. That way, it is possible to create the electronic data
without thinking about the restrictions of the delivery system. We have
made a great effort to choose system-independent formats for our data,
and to put as much thought and work as possible into structuring it so
that the translation from paper to electronic form will enhance the value
of the data. [A discussion of these solutions as of two years ago is in
Elli Mylonas, Gregory Crane, Kenneth Morrell, and D. Neel Smith, "The
Perseus Project: Data in the Electronic Age," in Accessing Antiquity:
The Computerization of Classical Databases, J. Solomon and T. Worthen
(eds.), University of Arizona Press, in press.]

Much of the work on Perseus is focused on collecting and converting the
data on which the project is based. At the same time, it is necessary to
provide means of access to the information, in order to make it usable,
and them to investigate how it is used. As we learn more about what
students and scholars from different backgrounds do with Perseus, we can
adjust our data collection, and also modify the system to accommodate
them. In creating a delivery system for general use, we have tried to
avoid favoring any one type of use by allowing multiple forms of access
to and navigation through the system.

The way text is handled exemplifies some of these principles. All text
in Perseus is tagged using SGML, following the guidelines of the Text
Encoding Initiative (TEI). This markup is used to index the text, and
process it so that it can be imported into HyperCard. No SGML markup
remains in the text that reaches the user, because currently it would be
too expensive to create a system that acts on SGML in real time.
However, the regularity provided by SGML is essential for verifying the
content of the texts, and greatly speeds all the processing performed on
them. The fact that the texts exist in SGML ensures that they will be
relatively easy to port to different hardware and software, and so will
outlast the current delivery platform. Finally, the SGML markup
incorporates existing canonical reference systems (chapter, verse, line,
etc.); indexing and navigation are based on these features. This ensures
that the same canonical reference will always resolve to the same point
within a text, and that all versions of our texts, regardless of delivery
platform (even paper printouts) will function the same way.

In order to provide tools for users, the text is processed by a
morphological analyzer, and the results are stored in a database.
Together with the index, the Greek-English Lexicon, and the index of all
the English words in the definitions of the lexicon, the morphological
analyses comprise a set of linguistic tools that allow users of all
levels to work with the textual information, and to accomplish different
tasks. For example, students who read no Greek may explore a concept as
it appears in Greek texts by using the English-Greek index, and then
looking up works in the texts and translations, or scholars may do
detailed morphological studies of word use by using the morphological
analyses of the texts. Because these tools were not designed for any one
use, the same tools and the same data can be used by both students and
scholars.

NOTES:
(5) Perseus is based at Harvard University, with collaborators at
several other universities. The project has been funded primarily
by the Annenberg/CPB Project, as well as by Harvard University,
Apple Computer, and others. It is published by Yale University
Press. Perseus runs on Macintosh computers, under the HyperCard
program.

Eric CALALUCA

Chadwyck-Healey embarked last year on two distinct yet related full-text
humanities database projects.

The English Poetry Full-Text Database and the Patrologia Latina Database
represent new approaches to linguistic research resources. The size and
complexity of the projects present problems for electronic publishers,
but surmountable ones if they remain abreast of the latest possibilities
in data capture and retrieval software techniques.

The issues which required address prior to the commencement of the
projects were legion:

1. Editorial selection (or exclusion) of materials in each
database

2. Deciding whether or not to incorporate a normative encoding
structure into the databases?
A. If one is selected, should it be SGML?
B. If SGML, then the TEI?

3. Deliver as CD-ROM, magnetic tape, or both?

4. Can one produce retrieval software advanced enough for the
postdoctoral linguist, yet accessible enough for unattended
general use? Should one try?

5. Re fair and liberal networking policies, what are the risks to
an electronic publisher?

6. How does the emergence of national and international education
networks affect the use and viability of research projects
requiring high investment? Do the new European Community
directives concerning database protection necessitate two
distinct publishing projects, one for North America and one for
overseas?

From new notions of "scholarly fair use" to the future of optical media,
virtually every issue related to electronic publishing was aired. The
result is two projects which have been constructed to provide the quality
research resources with the fewest encumbrances to use by teachers and
private scholars.

Dorothy TWOHIG

In spring 1988 the editors of the papers of George Washington, John
Adams, Thomas Jefferson, James Madison, and Benjamin Franklin were
approached by classics scholar David Packard on behalf of the Packard
Humanities Foundation with a proposal to produce a CD-ROM edition of the
complete papers of each of the Founding Fathers. This electronic edition
will supplement the published volumes, making the documents widely
available to students and researchers at reasonable cost. We estimate
that our CD-ROM edition of Washington's Papers will be substantially
completed within the next two years and ready for publication. Within
the next ten years or so, similar CD-ROM editions of the Franklin, Adams,
Jefferson, and Madison papers also will be available. At the Library of
Congress's session on technology, I would like to discuss not only the
experience of the Washington Papers in producing the CD-ROM edition, but
the impact technology has had on these major editorial projects.
Already, we are editing our volumes with an eye to the material that will
be readily available in the CD-ROM edition. The completed electronic
edition will provide immense possibilities for the searching of documents
for information in a way never possible before. The kind of technical
innovations that are currently available and on the drawing board will
soon revolutionize historical research and the production of historical
documents. Unfortunately, much of this new technology is not being used
in the planning stages of historical projects, simply because many
historians are aware only in the vaguest way of its existence. At least
two major new historical editing projects are considering microfilm
editions, simply because they are not aware of the possibilities of
electronic alternatives and the advantages of the new technology in terms
of flexibility and research potential compared to microfilm. In fact,
too many of us in history and literature are still at the stage of
struggling with our PCs. There are many historical editorial projects in
progress presently, and an equal number of literary projects. While the
two fields have somewhat different approaches to textual editing, there
are ways in which electronic technology can be of service to both.

Since few of the editors involved in the Founding Fathers CD-ROM editions
are technical experts in any sense, I hope to point out in my discussion
of our experience how many of these electronic innovations can be used
successfully by scholars who are novices in the world of new technology.
One of the major concerns of the sponsors of the multitude of new
scholarly editions is the limited audience reached by the published
volumes. Most of these editions are being published in small quantities
and the publishers' price for them puts them out of the reach not only of
individual scholars but of most public libraries and all but the largest
educational institutions. However, little attention is being given to
ways in which technology can bypass conventional publication to make
historical and literary documents more widely available.

What attracted us most to the CD-ROM edition of The Papers of George
Washington was the fact that David Packard's aim was to make a complete
edition of all of the 135,000 documents we have collected available in an
inexpensive format that would be placed in public libraries, small
colleges, and even high schools. This would provide an audience far
beyond our present 1,000-copy, $45 published edition. Since the CD-ROM
edition will carry none of the explanatory annotation that appears in the
published volumes, we also feel that the use of the CD-ROM will lead many
researchers to seek out the published volumes.

In addition to ignorance of new technical advances, I have found that too
many editors--and historians and literary scholars--are resistant and
even hostile to suggestions that electronic technology may enhance their
work. I intend to discuss some of the arguments traditionalists are
advancing to resist technology, ranging from distrust of the speed with
which it changes (we are already wondering what is out there that is
better than CD-ROM) to suspicion of the technical language used to
describe electronic developments.

Maria LEBRON

The Online Journal of Current Clinical Trials, a joint venture of the
American Association for the Advancement of Science (AAAS) and the Online
Computer Library Center, Inc. (OCLC), is the first peer-reviewed journal
to provide full text, tabular material, and line illustrations on line.
This presentation will discuss the genesis and start-up period of the
journal. Topics of discussion will include historical overview,
day-to-day management of the editorial peer review, and manuscript
tagging and publication. A demonstration of the journal and its features
will accompany the presentation.

Lynne PERSONIUS

Cornell University Library, Cornell Information Technologies, and Xerox
Corporation, with the support of the Commission on Preservation and
Access, and Sun Microsystems, Inc., have been collaborating in a project
to test a prototype system for recording brittle books as digital images
and producing, on demand, high-quality archival paper replacements. The
project goes beyond that, however, to investigate some of the issues
surrounding scanning, storing, retrieving, and providing access to
digital images in a network environment.

The Joint Study in Digital Preservation began in January 1990. Xerox
provided the College Library Access and Storage System (CLASS) software,
a prototype 600-dots-per-inch (dpi) scanner, and the hardware necessary
to support network printing on the DocuTech printer housed in Cornell's
Computing and Communications Center (CCC).

The Cornell staff using the hardware and software became an integral part
of the development and testing process for enhancements to the CLASS
software system. The collaborative nature of this relationship is
resulting in a system that is specifically tailored to the preservation
application.

A digital library of 1,000 volumes (or approximately 300,000 images) has
been created and is stored on an optical jukebox that resides in CCC.
The library includes a collection of select mathematics monographs that
provides mathematics faculty with an opportunity to use the electronic
library. The remaining volumes were chosen for the library to test the
various capabilities of the scanning system.

One project objective is to provide users of the Cornell library and the
library staff with the ability to request facsimiles of digitized images
or to retrieve the actual electronic image for browsing. A prototype
viewing workstation has been created by Xerox, with input into the design
by a committee of Cornell librarians and computer professionals. This
will allow us to experiment with patron access to the images that make up
the digital library. The viewing station provides search, retrieval, and
(ultimately) printing functions with enhancements to facilitate
navigation through multiple documents.

Cornell currently is working to extend access to the digital library to
readers using workstations from their offices. This year is devoted to
the development of a network resident image conversion and delivery
server, and client software that will support readers who use Apple
Macintosh computers, IBM windows platforms, and Sun workstations.
Equipment for this development was provided by Sun Microsystems with
support from the Commission on Preservation and Access.

During the show-and-tell session of the Workshop on Electronic Texts, a
prototype view station will be demonstrated. In addition, a display of
original library books that have been digitized will be available for
review with associated printed copies for comparison. The fifteen-minute
overview of the project will include a slide presentation that
constitutes a "tour" of the preservation digitizing process.

The final network-connected version of the viewing station will provide
library users with another mechanism for accessing the digital library,
and will also provide the capability of viewing images directly. This
will not require special software, although a powerful computer with good
graphics will be needed.

The Joint Study in Digital Preservation has generated a great deal of
interest in the library community. Unfortunately, or perhaps
fortunately, this project serves to raise a vast number of other issues
surrounding the use of digital technology for the preservation and use of
deteriorating library materials, which subsequent projects will need to
examine. Much work remains.

SESSION III

Howard BESSER Networking Multimedia Databases

What do we have to consider in building and distributing databases of
visual materials in a multi-user environment? This presentation examines
a variety of concerns that need to be addressed before a multimedia
database can be set up in a networked environment.

In the past it has not been feasible to implement databases of visual
materials in shared-user environments because of technological barriers.
Each of the two basic models for multi-user multimedia databases has
posed its own problem. The analog multimedia storage model (represented
by Project Athena's parallel analog and digital networks) has required an
incredibly complex (and expensive) infrastructure. The economies of
scale that make multi-user setups cheaper per user served do not operate
in an environment that requires a computer workstation, videodisc player,
and two display devices for each user.

The digital multimedia storage model has required vast amounts of storage
space (as much as one gigabyte per thirty still images). In the past the
cost of such a large amount of storage space made this model a
prohibitive choice as well. But plunging storage costs are finally
making this second alternative viable.

If storage no longer poses such an impediment, what do we need to
consider in building digitally stored multi-user databases of visual
materials? This presentation will examine the networking and
telecommunication constraints that must be overcome before such databases
can become commonplace and useful to a large number of people.

The key problem is the vast size of multimedia documents, and how this
affects not only storage but telecommunications transmission time.
Anything slower than T-1 speed is impractical for files of 1 megabyte or
larger (which is likely to be small for a multimedia document). For
instance, even on a 56 Kb line it would take three minutes to transfer a
1-megabyte file. And these figures assume ideal circumstances, and do
not take into consideration other users contending for network bandwidth,
disk access time, or the time needed for remote display. Current common
telephone transmission rates would be completely impractical; few users
would be willing to wait the hour necessary to transmit a single image at
2400 baud.

This necessitates compression, which itself raises a number of other
issues. In order to decrease file sizes significantly, we must employ
lossy compression algorithms. But how much quality can we afford to
lose? To date there has been only one significant study done of
image-quality needs for a particular user group, and this study did not
look at loss resulting from compression. Only after identifying
image-quality needs can we begin to address storage and network bandwidth
needs.

Experience with X-Windows-based applications (such as Imagequery, the
University of California at Berkeley image database) demonstrates the
utility of a client-server topology, but also points to the limitation of
current software for a distributed environment. For example,
applications like Imagequery can incorporate compression, but current X
implementations do not permit decompression at the end user's
workstation. Such decompression at the host computer alleviates storage
capacity problems while doing nothing to address problems of
telecommunications bandwidth.

We need to examine the effects on network through-put of moving
multimedia documents around on a network. We need to examine various
topologies that will help us avoid bottlenecks around servers and
gateways. Experience with applications such as these raise still broader
questions. How closely is the multimedia document tied to the software
for viewing it? Can it be accessed and viewed from other applications?
Experience with the MARC format (and more recently with the Z39.50
protocols) shows how useful it can be to store documents in a form in
which they can be accessed by a variety of application software.

Finally, from an intellectual-access standpoint, we need to address the
issue of providing access to these multimedia documents in
interdisciplinary environments. We need to examine terminology and
indexing strategies that will allow us to provide access to this material
in a cross-disciplinary way.

Ronald LARSEN Directions in High-Performance Networking for
Libraries

The pace at which computing technology has advanced over the past forty
years shows no sign of abating. Roughly speaking, each five-year period
has yielded an order-of-magnitude improvement in price and performance of
computing equipment. No fundamental hurdles are likely to prevent this
pace from continuing for at least the next decade. It is only in the
past five years, though, that computing has become ubiquitous in
libraries, affecting all staff and patrons, directly or indirectly.

During these same five years, communications rates on the Internet, the
principal academic computing network, have grown from 56 kbps to 1.5
Mbps, and the NSFNet backbone is now running 45 Mbps. Over the next five
years, communication rates on the backbone are expected to exceed 1 Gbps.
Growth in both the population of network users and the volume of network
traffic has continued to grow geometrically, at rates approaching 15
percent per month. This flood of capacity and use, likened by some to
"drinking from a firehose," creates immense opportunities and challenges
for libraries. Libraries must anticipate the future implications of this
technology, participate in its development, and deploy it to ensure
access to the world's information resources.

The infrastructure for the information age is being put in place.
Libraries face strategic decisions about their role in the development,
deployment, and use of this infrastructure. The emerging infrastructure
is much more than computers and communication lines. It is more than the
ability to compute at a remote site, send electronic mail to a peer
across the country, or move a file from one library to another. The next
five years will witness substantial development of the information
infrastructure of the network.

In order to provide appropriate leadership, library professionals must
have a fundamental understanding of and appreciation for computer
networking, from local area networks to the National Research and
Education Network (NREN). This presentation addresses these
fundamentals, and how they relate to libraries today and in the near
future.

Edwin BROWNRIGG Electronic Library Visions and Realities

The electronic library has been a vision desired by many--and rejected by
some--since Vannevar Bush coined the term memex to describe an automated,
intelligent, personal information system. Variations on this vision have
included Ted Nelson's Xanadau, Alan Kay's Dynabook, and Lancaster's
"paperless library," with the most recent incarnation being the
"Knowledge Navigator" described by John Scully of Apple. But the reality
of library service has been less visionary and the leap to the electronic
library has eluded universities, publishers, and information technology
files.

The Memex Research Institute (MemRI), an independent, nonprofit research
and development organization, has created an Electronic Library Program
of shared research and development in order to make the collective vision
more concrete. The program is working toward the creation of large,
indexed publicly available electronic image collections of published
documents in academic, special, and public libraries. This strategic
plan is the result of the first stage of the program, which has been an
investigation of the information technologies available to support such
an effort, the economic parameters of electronic service compared to
traditional library operations, and the business and political factors
affecting the shift from print distribution to electronic networked
access.

The strategic plan envisions a combination of publicly searchable access
databases, image (and text) document collections stored on network "file
servers," local and remote network access, and an intellectual property
management-control system. This combination of technology and
information content is defined in this plan as an E-library or E-library
collection. Some participating sponsors are already developing projects
based on MemRI's recommended directions.

The E-library strategy projected in this plan is a visionary one that can
enable major changes and improvements in academic, public, and special
library service. This vision is, though, one that can be realized with
today's technology. At the same time, it will challenge the political
and social structure within which libraries operate: in academic
libraries, the traditional emphasis on local collections, extending to
accreditation issues; in public libraries, the potential of electronic
branch and central libraries fully available to the public; and for
special libraries, new opportunities for shared collections and networks.

The environment in which this strategic plan has been developed is, at
the moment, dominated by a sense of library limits. The continued
expansion and rapid growth of local academic library collections is now
clearly at an end. Corporate libraries, and even law libraries, are
faced with operating within a difficult economic climate, as well as with
very active competition from commercial information sources. For
example, public libraries may be seen as a desirable but not critical
municipal service in a time when the budgets of safety and health
agencies are being cut back.

Further, libraries in general have a very high labor-to-cost ratio in
their budgets, and labor costs are still increasing, notwithstanding
automation investments. It is difficult for libraries to obtain capital,
startup, or seed funding for innovative activities, and those
technology-intensive initiatives that offer the potential of decreased
labor costs can provoke the opposition of library staff.

However, libraries have achieved some considerable successes in the past
two decades by improving both their service and their credibility within
their organizations--and these positive changes have been accomplished
mostly with judicious use of information technologies. The advances in
computing and information technology have been well-chronicled: the
continuing precipitous drop in computing costs, the growth of the
Internet and private networks, and the explosive increase in publicly
available information databases.

For example, OCLC has become one of the largest computer network
organizations in the world by creating a cooperative cataloging network
of more than 6,000 libraries worldwide. On-line public access catalogs
now serve millions of users on more than 50,000 dedicated terminals in
the United States alone. The University of California MELVYL on-line
catalog system has now expanded into an index database reference service
and supports more than six million searches a year. And, libraries have
become the largest group of customers of CD-ROM publishing technology;
more than 30,000 optical media publications such as those offered by
InfoTrac and Silver Platter are subscribed to by U.S. libraries.

This march of technology continues and in the next decade will result in
further innovations that are extremely difficult to predict. What is
clear is that libraries can now go beyond automation of their order files
and catalogs to automation of their collections themselves--and it is
possible to circumvent the fiscal limitations that appear to obtain
today.

This Electronic Library Strategic Plan recommends a paradigm shift in
library service, and demonstrates the steps necessary to provide improved
library services with limited capacities and operating investments.

SESSION IV-A

Anne KENNEY

The Cornell/Xerox Joint Study in Digital Preservation resulted in the
recording of 1,000 brittle books as 600-dpi digital images and the
production, on demand, of high-quality and archivally sound paper
replacements. The project, which was supported by the Commission on
Preservation and Access, also investigated some of the issues surrounding
scanning, storing, retrieving, and providing access to digital images in
a network environment.

Anne Kenney will focus on some of the issues surrounding direct scanning
as identified in the Cornell Xerox Project. Among those to be discussed
are: image versus text capture; indexing and access; image-capture
capabilities; a comparison to photocopy and microfilm; production and
cost analysis; storage formats, protocols, and standards; and the use of
this scanning technology for preservation purposes.

The 600-dpi digital images produced in the Cornell Xerox Project proved
highly acceptable for creating paper replacements of deteriorating
originals. The 1,000 scanned volumes provided an array of image-capture
challenges that are common to nineteenth-century printing techniques and
embrittled material, and that defy the use of text-conversion processes.
These challenges include diminished contrast between text and background,
fragile and deteriorated pages, uneven printing, elaborate type faces,
faint and bold text adjacency, handwritten text and annotations, nonRoman
languages, and a proliferation of illustrated material embedded in text.
The latter category included high-frequency and low-frequency halftones,
continuous tone photographs, intricate mathematical drawings, maps,
etchings, reverse-polarity drawings, and engravings.

The Xerox prototype scanning system provided a number of important
features for capturing this diverse material. Technicians used multiple
threshold settings, filters, line art and halftone definitions,
autosegmentation, windowing, and software-editing programs to optimize
image capture. At the same time, this project focused on production.
The goal was to make scanning as affordable and acceptable as
photocopying and microfilming for preservation reformatting. A
time-and-cost study conducted during the last three months of this
project confirmed the economic viability of digital scanning, and these
findings will be discussed here.

From the outset, the Cornell Xerox Project was predicated on the use of
nonproprietary standards and the use of common protocols when standards
did not exist. Digital files were created as TIFF images which were
compressed prior to storage using Group 4 CCITT compression. The Xerox
software is MS DOS based and utilizes off-the shelf programs such as
Microsoft Windows and Wang Image Wizard. The digital library is designed
to be hardware-independent and to provide interchangeability with other
institutions through network connections. Access to the digital files
themselves is two-tiered: Bibliographic records for the computer files
are created in RLIN and Cornell's local system and access into the actual
digital images comprising a book is provided through a document control
structure and a networked image file-server, both of which will be
described.

The presentation will conclude with a discussion of some of the issues
surrounding the use of this technology as a preservation tool (storage,
refreshing, backup).

Pamela ANDRE and Judith ZIDAR

The National Agricultural Library (NAL) has had extensive experience with
raster scanning of printed materials. Since 1987, the Library has
participated in the National Agricultural Text Digitizing Project (NATDP)
a cooperative effort between NAL and forty-five land grant university
libraries. An overview of the project will be presented, giving its
history and NAL's strategy for the future.

An in-depth discussion of NATDP will follow, including a description of
the scanning process, from the gathering of the printed materials to the
archiving of the electronic pages. The type of equipment required for a
stand-alone scanning workstation and the importance of file management
software will be discussed. Issues concerning the images themselves will
be addressed briefly, such as image format; black and white versus color;
gray scale versus dithering; and resolution.

Also described will be a study currently in progress by NAL to evaluate
the usefulness of converting microfilm to electronic images in order to
improve access. With the cooperation of Tuskegee University, NAL has
selected three reels of microfilm from a collection of sixty-seven reels
containing the papers, letters, and drawings of George Washington Carver.
The three reels were converted into 3,500 electronic images using a
specialized microfilm scanner. The selection, filming, and indexing of
this material will be discussed.

Donald WATERS

Project Open Book, the Yale University Library's effort to convert 10,
000 books from microfilm to digital imagery, is currently in an advanced
state of planning and organization. The Yale Library has selected a
major vendor to serve as a partner in the project and as systems
integrator. In its proposal, the successful vendor helped isolate areas
of risk and uncertainty as well as key issues to be addressed during the
life of the project. The Yale Library is now poised to decide what
material it will convert to digital image form and to seek funding,
initially for the first phase and then for the entire project.

The proposal that Yale accepted for the implementation of Project Open
Book will provide at the end of three phases a conversion subsystem,
browsing stations distributed on the campus network within the Yale
Library, a subsystem for storing 10,000 books at 200 and 600 dots per
inch, and network access to the image printers. Pricing for the system
implementation assumes the existence of Yale's campus ethernet network
and its high-speed image printers, and includes other requisite hardware
and software, as well as system integration services. Proposed operating
costs include hardware and software maintenance, but do not include
estimates for the facilities management of the storage devices and image
servers.

Yale selected its vendor partner in a formal process, partly funded by
the Commission for Preservation and Access. Following a request for
proposal, the Yale Library selected two vendors as finalists to work with
Yale staff to generate a detailed analysis of requirements for Project
Open Book. Each vendor used the results of the requirements analysis to
generate and submit a formal proposal for the entire project. This
competitive process not only enabled the Yale Library to select its
primary vendor partner but also revealed much about the state of the
imaging industry, about the varying, corporate commitments to the markets
for imaging technology, and about the varying organizational dynamics
through which major companies are responding to and seeking to develop
these markets.

Project Open Book is focused specifically on the conversion of images
from microfilm to digital form. The technology for scanning microfilm is
readily available but is changing rapidly. In its project requirements,
the Yale Library emphasized features of the technology that affect the
technical quality of digital image production and the costs of creating
and storing the image library: What levels of digital resolution can be
achieved by scanning microfilm? How does variation in the quality of
microfilm, particularly in film produced to preservation standards,
affect the quality of the digital images? What technologies can an
operator effectively and economically apply when scanning film to
separate two-up images and to control for and correct image
imperfections? How can quality control best be integrated into
digitizing work flow that includes document indexing and storage?

The actual and expected uses of digital images--storage, browsing,
printing, and OCR--help determine the standards for measuring their
quality. Browsing is especially important, but the facilities available
for readers to browse image documents is perhaps the weakest aspect of
imaging technology and most in need of development. As it defined its
requirements, the Yale Library concentrated on some fundamental aspects
of usability for image documents: Does the system have sufficient
flexibility to handle the full range of document types, including
monographs, multi-part and multivolume sets, and serials, as well as
manuscript collections? What conventions are necessary to identify a
document uniquely for storage and retrieval? Where is the database of
record for storing bibliographic information about the image document?
How are basic internal structures of documents, such as pagination, made
accessible to the reader? How are the image documents physically
presented on the screen to the reader?

The Yale Library designed Project Open Book on the assumption that
microfilm is more than adequate as a medium for preserving the content of
deteriorated library materials. As planning in the project has advanced,
it is increasingly clear that the challenge of digital image technology
and the key to the success of efforts like Project Open Book is to
provide a means of both preserving and improving access to those
deteriorated materials.

SESSION IV-B

George THOMA

In the use of electronic imaging for document preservation, there are
several issues to consider, such as: ensuring adequate image quality,
maintaining substantial conversion rates (through-put), providing unique
identification for automated access and retrieval, and accommodating
bound volumes and fragile material.

To maintain high image quality, image processing functions are required
to correct the deficiencies in the scanned image. Some commercially
available systems include these functions, while some do not. The
scanned raw image must be processed to correct contrast deficiencies--
both poor overall contrast resulting from light print and/or dark
background, and variable contrast resulting from stains and
bleed-through. Furthermore, the scan density must be adequate to allow
legibility of print and sufficient fidelity in the pseudo-halftoned gray
material. Borders or page-edge effects must be removed for both
compactibility and aesthetics. Page skew must be corrected for aesthetic
reasons and to enable accurate character recognition if desired.
Compound images consisting of both two-toned text and gray-scale
illustrations must be processed appropriately to retain the quality of
each.

SESSION IV-C

Jean BARONAS

Standards publications being developed by scientists, engineers, and
business managers in Association for Information and Image Management
(AIIM) standards committees can be applied to electronic image management
(EIM) processes including: document (image) transfer, retrieval and
evaluation; optical disk and document scanning; and document design and
conversion. When combined with EIM system planning and operations,
standards can assist in generating image databases that are
interchangeable among a variety of systems. The applications of
different approaches for image-tagging, indexing, compression, and
transfer often cause uncertainty concerning EIM system compatibility,
calibration, performance, and upward compatibility, until standard
implementation parameters are established. The AIIM standards that are
being developed for these applications can be used to decrease the
uncertainty, successfully integrate imaging processes, and promote "open
systems." AIIM is an accredited American National Standards Institute
(ANSI) standards developer with more than twenty committees comprised of
300 volunteers representing users, vendors, and manufacturers. The
standards publications that are developed in these committees have
national acceptance and provide the basis for international harmonization
in the development of new International Organization for Standardization
(ISO) standards.

This presentation describes the development of AIIM's EIM standards and a
new effort at AIIM, a database on standards projects in a wide framework
of imaging industries including capture, recording, processing,
duplication, distribution, display, evaluation, and preservation. The
AIIM Imagery Database will cover imaging standards being developed by
many organizations in many different countries. It will contain
standards publications' dates, origins, related national and
international projects, status, key words, and abstracts. The ANSI Image
Technology Standards Board requested that such a database be established,
as did the ISO/International Electrotechnical Commission Joint Task Force
on Imagery. AIIM will take on the leadership role for the database and
coordinate its development with several standards developers.

Patricia BATTIN

Characteristics of standards for digital imagery:

* Nature of digital technology implies continuing volatility.

* Precipitous standard-setting not possible and probably not
desirable.

* Standards are a complex issue involving the medium, the
hardware, the software, and the technical capacity for
reproductive fidelity and clarity.

* The prognosis for reliable archival standards (as defined by
librarians) in the foreseeable future is poor.

Significant potential and attractiveness of digital technology as a
preservation medium and access mechanism.

Productive use of digital imagery for preservation requires a
reconceptualizing of preservation principles in a volatile,
standardless world.

Concept of managing continuing access in the digital environment
rather than focusing on the permanence of the medium and long-term
archival standards developed for the analog world.

Transition period: How long and what to do?

* Redefine "archival."

* Remove the burden of "archival copy" from paper artifacts.

* Use digital technology for storage, develop management
strategies for refreshing medium, hardware and software.

* Create acid-free paper copies for transition period backup
until we develop reliable procedures for ensuring continuing
access to digital files.

SESSION IV-D

Stuart WEIBEL The Role of SGML Markup in the CORE Project (6)

The emergence of high-speed telecommunications networks as a basic
feature of the scholarly workplace is driving the demand for electronic
document delivery. Three distinct categories of electronic
publishing/republishing are necessary to support access demands in this
emerging environment:

1.) Conversion of paper or microfilm archives to electronic format
2.) Conversion of electronic files to formats tailored to
electronic retrieval and display
3.) Primary electronic publishing (materials for which the
electronic version is the primary format)

OCLC has experimental or product development activities in each of these
areas. Among the challenges that lie ahead is the integration of these
three types of information stores in coherent distributed systems.

The CORE (Chemistry Online Retrieval Experiment) Project is a model for
the conversion of large text and graphics collections for which
electronic typesetting files are available (category 2). The American
Chemical Society has made available computer typography files dating from
1980 for its twenty journals. This collection of some 250 journal-years
is being converted to an electronic format that will be accessible
through several end-user applications.

The use of Standard Generalized Markup Language (SGML) offers the means
to capture the structural richness of the original articles in a way that
will support a variety of retrieval, navigation, and display options
necessary to navigate effectively in very large text databases.

An SGML document consists of text that is marked up with descriptive tags
that specify the function of a given element within the document. As a
formal language construct, an SGML document can be parsed against a
document-type definition (DTD) that unambiguously defines what elements
are allowed and where in the document they can (or must) occur. This
formalized map of article structure allows the user interface design to
be uncoupled from the underlying database system, an important step
toward interoperability. Demonstration of this separability is a part of
the CORE project, wherein user interface designs born of very different
philosophies will access the same database.

NOTES:
(6) The CORE project is a collaboration among Cornell University's
Mann Library, Bell Communications Research (Bellcore), the American
Chemical Society (ACS), the Chemical Abstracts Service (CAS), and
OCLC.

Michael LESK The CORE Electronic Chemistry Library

A major on-line file of chemical journal literature complete with
graphics is being developed to test the usability of fully electronic
access to documents, as a joint project of Cornell University, the
American Chemical Society, the Chemical Abstracts Service, OCLC, and
Bellcore (with additional support from Sun Microsystems, Springer-Verlag,
DigitaI Equipment Corporation, Sony Corporation of America, and Apple
Computers). Our file contains the American Chemical Society's on-line
journals, supplemented with the graphics from the paper publication. The
indexing of the articles from Chemical Abstracts Documents is available
in both image and text format, and several different interfaces can be
used. Our goals are (1) to assess the effectiveness and acceptability of
electronic access to primary journals as compared with paper, and (2) to
identify the most desirable functions of the user interface to an
electronic system of journals, including in particular a comparison of
page-image display with ASCII display interfaces. Early experiments with
chemistry students on a variety of tasks suggest that searching tasks are
completed much faster with any electronic system than with paper, but
that for reading all versions of the articles are roughly equivalent.

Pamela ANDRE and Judith ZIDAR

Text conversion is far more expensive and time-consuming than image
capture alone. NAL's experience with optical character recognition (OCR)
will be related and compared with the experience of having text rekeyed.
What factors affect OCR accuracy? How accurate does full text have to be
in order to be useful? How do different users react to imperfect text?
These are questions that will be explored. For many, a service bureau
may be a better solution than performing the work inhouse; this will also
be discussed.

SESSION VI

Marybeth PETERS

Copyright law protects creative works. Protection granted by the law to
authors and disseminators of works includes the right to do or authorize
the following: reproduce the work, prepare derivative works, distribute
the work to the public, and publicly perform or display the work. In
addition, copyright owners of sound recordings and computer programs have
the right to control rental of their works. These rights are not
unlimited; there are a number of exceptions and limitations.

An electronic environment places strains on the copyright system.
Copyright owners want to control uses of their work and be paid for any
use; the public wants quick and easy access at little or no cost. The
marketplace is working in this area. Contracts, guidelines on electronic
use, and collective licensing are in use and being refined.

Issues concerning the ability to change works without detection are more
difficult to deal with. Questions concerning the integrity of the work
and the status of the changed version under the copyright law are to be
addressed. These are public policy issues which require informed
dialogue.

*** *** *** ****** *** *** ***

Appendix III: DIRECTORY OF PARTICIPANTS

PRESENTERS:

Pamela Q.J. Andre
Associate Director, Automation
National Agricultural Library
10301 Baltimore Boulevard
Beltsville, MD 20705-2351
Phone: (301) 504-6813
Fax: (301) 504-7473
E-mail: INTERNET: PANDRE@ASRR.ARSUSDA.GOV

Jean Baronas, Senior Manager
Department of Standards and Technology
Association for Information and Image Management (AIIM)
1100 Wayne Avenue, Suite 1100
Silver Spring, MD 20910
Phone: (301) 587-8202
Fax: (301) 587-2711

Patricia Battin, President
The Commission on Preservation and Access
1400 16th Street, N.W.
Suite 740
Washington, DC 20036-2217
Phone: (202) 939-3400
Fax: (202) 939-3407
E-mail: CPA@GWUVM.BITNET

Howard Besser
Centre Canadien d'Architecture
(Canadian Center for Architecture)
1920, rue Baile
Montreal, Quebec H3H 2S6
CANADA
Phone: (514) 939-7001
Fax: (514) 939-7020
E-mail: howard@lis.pitt.edu

Edwin B. Brownrigg, Executive Director
Memex Research Institute
422 Bonita Avenue
Roseville, CA 95678
Phone: (916) 784-2298
Fax: (916) 786-7559
E-mail: BITNET: MEMEX@CALSTATE.2

Eric M. Calaluca, Vice President
Chadwyck-Healey, Inc.
1101 King Street
Alexandria, VA 223l4
Phone: (800) 752-05l5
Fax: (703) 683-7589

James Daly
4015 Deepwood Road
Baltimore, MD 21218-1404
Phone: (410) 235-0763

Ricky Erway, Associate Coordinator
American Memory
Library of Congress
Phone: (202) 707-6233
Fax: (202) 707-3764

Carl Fleischhauer, Coordinator
American Memory
Library of Congress
Phone: (202) 707-6233
Fax: (202) 707-3764

Joanne Freeman
2000 Jefferson Park Avenue, No. 7
Charlottesville, VA 22903

Prosser Gifford
Director for Scholarly Programs
Library of Congress
Phone: (202) 707-1517
Fax: (202) 707-9898
E-mail: pgif@seq1.loc.gov

Jacqueline Hess, Director
National Demonstration Laboratory
for Interactive Information Technologies
Library of Congress
Phone: (202) 707-4157
Fax: (202) 707-2829

Susan Hockey, Director
Center for Electronic Texts in the Humanities (CETH)
Alexander Library
Rutgers University
169 College Avenue
New Brunswick, NJ 08903
Phone: (908) 932-1384
Fax: (908) 932-1386
E-mail: hockey@zodiac.rutgers.edu

William L. Hooton, Vice President
Business & Technical Development
Imaging & Information Systems Group
I-NET
6430 Rockledge Drive, Suite 400
Bethesda, MD 208l7
Phone: (301) 564-6750
Fax: (513) 564-6867

Anne R. Kenney, Associate Director
Department of Preservation and Conservation
701 Olin Library
Cornell University
Ithaca, NY 14853
Phone: (607) 255-6875
Fax: (607) 255-9346
E-mail: LYDY@CORNELLA.BITNET

Ronald L. Larsen
Associate Director for Information Technology
University of Maryland at College Park
Room B0224, McKeldin Library
College Park, MD 20742-7011
Phone: (301) 405-9194
Fax: (301) 314-9865
E-mail: rlarsen@libr.umd.edu

Maria L. Lebron, Managing Editor
The Online Journal of Current Clinical Trials
l333 H Street, N.W.
Washington, DC 20005
Phone: (202) 326-6735
Fax: (202) 842-2868
E-mail: PUBSAAAS@GWUVM.BITNET

Michael Lesk, Executive Director
Computer Science Research
Bell Communications Research, Inc.
Rm 2A-385
445 South Street
Morristown, NJ 07960-l9l0
Phone: (201) 829-4070
Fax: (201) 829-5981
E-mail: lesk@bellcore.com (Internet) or bellcore!lesk (uucp)

Clifford A. Lynch
Director, Library Automation
University of California,
Office of the President
300 Lakeside Drive, 8th Floor
Oakland, CA 94612-3350
Phone: (510) 987-0522
Fax: (510) 839-3573
E-mail: calur@uccmvsa

Avra Michelson
National Archives and Records Administration
NSZ Rm. 14N
7th & Pennsylvania, N.W.
Washington, D.C. 20408
Phone: (202) 501-5544
Fax: (202) 501-5533
E-mail: tmi@cu.nih.gov

Elli Mylonas, Managing Editor
Perseus Project
Department of the Classics
Harvard University
319 Boylston Hall
Cambridge, MA 02138
Phone: (617) 495-9025, (617) 495-0456 (direct)
Fax: (617) 496-8886
E-mail: Elli@IKAROS.Harvard.EDU or elli@wjh12.harvard.edu

David Woodley Packard
Packard Humanities Institute
300 Second Street, Suite 201
Los Altos, CA 94002
Phone: (415) 948-0150 (PHI)
Fax: (415) 948-5793

Lynne K. Personius, Assistant Director
Cornell Information Technologies for
Scholarly Information Sources
502 Olin Library
Cornell University
Ithaca, NY 14853
Phone: (607) 255-3393
Fax: (607) 255-9346
E-mail: JRN@CORNELLC.BITNET

Marybeth Peters
Policy Planning Adviser to the
Register of Copyrights
Library of Congress
Office LM 403
Phone: (202) 707-8350
Fax: (202) 707-8366

C. Michael Sperberg-McQueen
Editor, Text Encoding Initiative
Computer Center (M/C 135)
University of Illinois at Chicago
Box 6998
Chicago, IL 60680
Phone: (312) 413-0317
Fax: (312) 996-6834
E-mail: u35395@uicvm..cc.uic.edu or u35395@uicvm.bitnet

George R. Thoma, Chief
Communications Engineering Branch
National Library of Medicine
8600 Rockville Pike
Bethesda, MD 20894
Phone: (301) 496-4496
Fax: (301) 402-0341
E-mail: thoma@lhc.nlm.nih.gov

Dorothy Twohig, Editor
The Papers of George Washington
504 Alderman Library
University of Virginia
Charlottesville, VA 22903-2498
Phone: (804) 924-0523
Fax: (804) 924-4337

Susan H. Veccia, Team leader
American Memory, User Evaluation
Library of Congress
American Memory Evaluation Project
Phone: (202) 707-9104
Fax: (202) 707-3764
E-mail: svec@seq1.loc.gov

Donald J. Waters, Head
Systems Office
Yale University Library
New Haven, CT 06520
Phone: (203) 432-4889
Fax: (203) 432-7231
E-mail: DWATERS@YALEVM.BITNET or DWATERS@YALEVM.YCC.YALE.EDU

Stuart Weibel, Senior Research Scientist
OCLC
6565 Frantz Road
Dublin, OH 43017
Phone: (614) 764-608l
Fax: (614) 764-2344
E-mail: INTERNET: Stu@rsch.oclc.org

Robert G. Zich
Special Assistant to the Associate Librarian
for Special Projects
Library of Congress
Phone: (202) 707-6233
Fax: (202) 707-3764
E-mail: rzic@seq1.loc.gov

Judith A. Zidar, Coordinator
National Agricultural Text Digitizing Program
Information Systems Division
National Agricultural Library
10301 Baltimore Boulevard
Beltsville, MD 20705-2351
Phone: (301) 504-6813 or 504-5853
Fax: (301) 504-7473
E-mail: INTERNET: JZIDAR@ASRR.ARSUSDA.GOV

OBSERVERS:

Helen Aguera, Program Officer
Division of Research
Room 318
National Endowment for the Humanities
1100 Pennsylvania Avenue, N.W.
Washington, D.C. 20506
Phone: (202) 786-0358
Fax: (202) 786-0243

M. Ellyn Blanton, Deputy Director
National Demonstration Laboratory
for Interactive Information Technologies
Library of Congress
Phone: (202) 707-4157
Fax: (202) 707-2829

Charles M. Dollar
National Archives and Records Administration
NSZ Rm. 14N
7th & Pennsylvania, N.W.
Washington, DC 20408
Phone: (202) 501-5532
Fax: (202) 501-5512

Jeffrey Field, Deputy to the Director
Division of Preservation and Access
Room 802
National Endowment for the Humanities
1100 Pennsylvania Avenue, N.W.
Washington, DC 20506
Phone: (202) 786-0570
Fax: (202) 786-0243

Lorrin Garson
American Chemical Society
Research and Development Department
1155 16th Street, N.W.
Washington, D.C. 20036
Phone: (202) 872-4541
Fax: E-mail: INTERNET: LRG96@ACS.ORG

William M. Holmes, Jr.
National Archives and Records Administration
NSZ Rm. 14N
7th & Pennsylvania, N.W.
Washington, DC 20408
Phone: (202) 501-5540
Fax: (202) 501-5512
E-mail: WHOLMES@AMERICAN.EDU

Sperling Martin
Information Resource Management
20030 Doolittle Street
Gaithersburg, MD 20879
Phone: (301) 924-1803

Michael Neuman, Director
The Center for Text and Technology
Academic Computing Center
238 Reiss Science Building
Georgetown University
Washington, DC 20057
Phone: (202) 687-6096
Fax: (202) 687-6003
E-mail: neuman@guvax.bitnet, neuman@guvax.georgetown.edu

Barbara Paulson, Program Officer
Division of Preservation and Access
Room 802
National Endowment for the Humanities
1100 Pennsylvania Avenue, N.W.
Washington, DC 20506
Phone: (202) 786-0577
Fax: (202) 786-0243

Allen H. Renear
Senior Academic Planning Analyst
Brown University Computing and Information Services
115 Waterman Street
Campus Box 1885
Providence, R.I. 02912
Phone: (401) 863-7312
Fax: (401) 863-7329
E-mail: BITNET: Allen@BROWNVM or
INTERNET: Allen@brownvm.brown.edu

Susan M. Severtson, President
Chadwyck-Healey, Inc.
1101 King Street
Alexandria, VA 223l4
Phone: (800) 752-05l5
Fax: (703) 683-7589

Frank Withrow
U.S. Department of Education
555 New Jersey Avenue, N.W.
Washington, DC 20208-5644
Phone: (202) 219-2200
Fax: (202) 219-2106

(LC STAFF)

Linda L. Arret
Machine-Readable Collections Reading Room LJ 132
(202) 707-1490

John D. Byrum, Jr.
Descriptive Cataloging Division LM 540
(202) 707-5194

Mary Jane Cavallo
Science and Technology Division LA 5210
(202) 707-1219

Susan Thea David
Congressional Research Service LM 226
(202) 707-7169

Robert Dierker
Senior Adviser for Multimedia Activities LM 608
(202) 707-6151

William W. Ellis
Associate Librarian for Science and Technology LM 611
(202) 707-6928

Ronald Gephart
Manuscript Division LM 102
(202) 707-5097

James Graber
Information Technology Services LM G51
(202) 707-9628

Rich Greenfield
American Memory LM 603
(202) 707-6233

Rebecca Guenther
Network Development LM 639
(202) 707-5092

Kenneth E. Harris
Preservation LM G21
(202) 707-5213

Staley Hitchcock
Manuscript Division LM 102
(202) 707-5383

Bohdan Kantor
Office of Special Projects LM 612
(202) 707-0180

John W. Kimball, Jr
Machine-Readable Collections Reading Room LJ 132
(202) 707-6560

Basil Manns
Information Technology Services LM G51
(202) 707-8345

Sally Hart McCallum
Network Development LM 639
(202) 707-6237

Dana J. Pratt
Publishing Office LM 602
(202) 707-6027

Jane Riefenhauser
American Memory LM 603
(202) 707-6233

William Z. Schenck
Collections Development LM 650
(202) 707-7706

Chandru J. Shahani
Preservation Research and Testing Office (R&T) LM G38
(202) 707-5607

William J. Sittig
Collections Development LM 650
(202) 707-7050

Paul Smith
Manuscript Division LM 102
(202) 707-5097

James L. Stevens
Information Technology Services LM G51
(202) 707-9688

Karen Stuart
Manuscript Division LM 130
(202) 707-5389

Tamara Swora
Preservation Microfilming Office LM G05
(202) 707-6293

Sarah Thomas
Collections Cataloging LM 642
(202) 707-5333

END
*************************************************************

Note: This file has been edited for use on computer networks. This
editing required the removal of diacritics, underlining, and fonts such
as italics and bold.

kde 11/92

[A few of the italics (when used for emphasis) were replaced by CAPS mh]

Book of the day: